
Filomat 31:16 (2017), 5369–5377
https://doi.org/10.2298/FIL1716369A

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. We define the θω-closure operator as a new topological operator. We show that θω-closure
of a subset of a topological space is strictly between its usual closure and its θ-closure. Moreover, we
give several sufficient conditions for the equivalence between θω-closure and usual closure operators, and
between θω-closure and θ-closure operators. Also, we use the θω-closure operator to introduce θω-open
sets as a new class of sets and we prove that this class of sets lies strictly between the class of open sets
and the class of θ-open sets. We investigate θω-open sets, in particular, we obtain a product theorem and
several mapping theorems. Moreover, we introduce ω-T2 as a new separation axiom by utilizing ω-open
sets, we prove that the class of ω-T2 is strictly between the class of T2 topological spaces and the class of T1

topological spaces. We study relationship between ω-T2 and ω-regularity. As main results of this paper, we
give a characterization of ω-T2 via θω-closure and we give characterizations of ω-regularity via θω-closure
and via θω-open sets.

1. Introduction

Let (X, τ) be a topological space and let A ⊆ X. Denote the closure of A by A. A point x ∈ X is in
θ-closure of A [27] (x ∈ Clθ (A)) if U ∩ A , ∅ for any U ∈ τ and with x ∈ U. A set A is called θ-closed [27]
if Clθ (A) = A. The complement of a θ-closed set is called a θ-open set. Denote the family of all θ-open
sets in (X, τ) by τθ. It is known that τθ forms a topology on X coarser than the topology τ and τθ = τ if
and only if (X, τ) is regular. Authors in [6, 7, 17, 18, 21–25, 28] continued the study of θ-closure operator,
θ-open sets, and their related topological concepts. Recently, authors in [8–10, 19] have studied several
generalizations of θ-open sets. A set A is ω-open set in (X, τ) [20] if for each x ∈ A, there is U ∈ τ such that
x ∈ U and U − A is countable, or equivalently, A is ω-open set in (X, τ) [1] if for each x ∈ A, there is U ∈ τ
and a countable set C ⊆ X such that x ∈ U −C ⊆ A. Denote the family of all ω-open sets in (X, τ) by τω. It
is known that τω forms a topology on X finer than τ. ω-open sets played a vital role in general topology
research see, [1, 4, 5, 11–16, 29]. Al Ghour in [1], used ω-open sets to define ω-regularity as a generalization
of regularity as follows: A topological space (X, τ) is ω-regular if for each closed set F in (X, τ) and x ∈ X−F,
there exist U ∈ τ and V ∈ τω such that x ∈ U and F ⊆ V with U ∩ V = ∅. The closure of A in the topological
space (X, τω) is called the ω-closure of A in (X, τ) and is denoted by A

ω
. In this work, we use the ω-closure

operator to define the θω-closure operator in a similar way to that used in the definition of the θ-closure
operator as follows: A point x ∈ X is in θω-closure of A (x ∈ Clθω (A)) if U

ω
∩ A , ∅ for any U ∈ τ with
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x ∈ U. A set A is called θω-closed if Clθω (A) = A. The complement of a θω-closed set is called a θω-open set.
Denote the family of all θω-open sets in (X, τ) by τθω . We will show that τθω forms a topology on X which
is strictly between τθ and τ. Moreover, τθω = τ if and only if (X, τ) is ω-regular. In section 2, we define the
θω-closure operator as a new topological operator. We show that the θω-closure of a subset of a topological
space is strictly between its usual closure and its θ-closure. Moreover, we give several sufficient conditions
for the equivalence between θω-closure and usual closure operators, and between θω-closure and θ-closure
operators. Also, we use the θω-closure operator to introduce θω-open sets as a new class of sets and we
prove that this class of sets lies strictly between the class of open sets and the class of θ-open sets. We
investigate θω-open sets, in particular, we obtain a product theorem and several mapping theorems.

In section 3, we introduce ω-T2 as a new separation axiom by utilizing ω-open sets, we prove that the
class of ω-T2 is strictly between the class of T2 topological spaces and the class of T1 topological spaces.
We study relationships between ω-T2 and ω-regularity. As the main results of this chapter, we give a
chaterization of ω-T2 via θω-closure and we give characterizations of ω-regularity via θω-closure and via
θω-open sets.

In this paper, R,Q,Qc andN denote, respectively the set of real numbers, the set of rational numbers,
the set of irrational numbers and the set of natural numbers.

2. θω-Closure Operator and the Topology of θω-Open Sets

Let us start by the following definition:

Definition 2.1. ([27]) Let (X, τ) be a topological space and let A ⊆ X.
a. A point x in X is in the θ-closure of A (x ∈ Clθ (A)) if U ∩ A , ∅ for any U ∈ τ and x ∈ U.
b. A is θ-closed if Clθ (A) = A.
c. A is θ-open if the complement of A is θ-closed.
d. The family of all θ-open sets in (X, τ) is denoted by τθ.

Theorem 2.2. ([27]) Let (X, τ) be a topological space. Then
a. τθ forms a topology on X.
b. τθ ⊆ τ and τθ , τ in general.

Definition 2.3. ([20]) Let (X, τ) be a topological space and let A ⊆ X.
a. A point x in X is a condensation point of A if for each U ∈ τ with x ∈ U, the set U ∩A is uncountable.
b. A set A is ω-closed if it contains all its condensation points.
c. A set A is ω-open if the complement of A is ω-closed.

The family of allω-open sets in a topological space (X, τ) is denoted by τω. For a subset A of a topological
space (X, τ), it is known that A ∈ τω if and only if for each x ∈ A, there is U ∈ τ such that x ∈ U and U −A is
countable.

Theorem 2.4. ([2]) Let (X, τ) be a topological space. Then
a. τω is a topology on X.
b. τ ⊆ τω and τω , τ in general.

Notation 2.5. ([1]) Let (X, τ) be a topological space and let A ⊆ X. The closure of A in (X, τω) will be denoted
by A

ω
.

Theorem 2.6. ([1]) Let (X, τ) be a topological space and let A ⊆ X. Then A
ω
⊆ A and A

ω
, A in general.

The following is the main definition of this work:
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Definition 2.7. Let (X, τ) be a topological space and let A ⊆ X.
a. A point x ∈ X is in the θω-closure of A (x ∈ Clθω (A)) if U

ω
∩ A , ∅ for any U ∈ τ with x ∈ U.

b. A set A is called θω-closed if Clθω (A) = A.
c. A set A is called θω-open if its complement is θω-closed.
d. The family of all θω-open sets in (X, τ) will be denoted by τθω .

Theorem 2.8. Let (X, τ) be a topological space and let A ⊆ X. Then
a. A ⊆ Clθω (A) ⊆ Clθ (A).
b. If A is θ-closed, then A is θω-closed.
c. If A is θω-closed, then A is closed.

Proof. (a) To see that A ⊆ Clθω (A), let x ∈ A and let U ∈ τ with x ∈ U. Since x ∈ A, U ∩A , ∅. Since U ⊆ U
ω

,
we have U

ω
∩ A , ∅. Therefore, x ∈ Clθω (A). To see that Clθω (A) ⊆ Clθ (A), let x ∈ Clθω (A) and let U ∈ τ

with x ∈ U. Since x ∈ Clθω (A) ,U
ω
∩ A , ∅. Since U

ω
⊆ U, it follows that U ∩ A , ∅. Therefore, x ∈ Clθ (A).

(b) Suppose that A is θ-closed. Then Clθ (A) = A. Thus by (a), Clθω (A) = A and hence A is θω-closed.
(c) Suppose that A is θω-closed. Then Clθω (A) = A. Thus by (a), A = A and hence A is closed.

Definition 2.9. Let (X, τ) be a topological space.
a. ([26]) (X, τ) is called locally countable if for each x ∈ X, there is U ∈ τ such that x ∈ U and U is

countable.
b. ([2]) (X, τ) is called anti-locally countable if each U ∈ τ − {∅} is uncountable.

Lemma 2.10. ([1]) a. If (X, τ) is an anti-locally countable topological space, then for all A ∈ τω,A
ω

= A.
b. If (X, τ) is locally countable, then τω is the discrete topology.

Recall that a topological space (X, τ) is called locally indiscrete if every open set in (X, τ) is closed.

Definition 2.11. A topological space (X, τ) is said to be ω-locally indiscrete if every open set in (X, τ) is
ω-closed.

Theorem 2.12. a. Every locally indiscrete topological space is ω-locally indiscrete.
b. Every locally countable topological space is ω-locally indiscrete.

Proof. (a) Follows from the fact that every closed set in a topological space is ω-closed.
(b) Let (X, τ) be locally countable. Then by Lemma 2.10 (b), τω is the discrete topology. Thus, every open

set in (X, τ) is ω-closed and hence (X, τ) is ω-locally indiscrete.

The following example will show that the converse of each of the two implications in Theorem 2.12 is
not true in general:

Example 2.13. Consider (R, τ) where τ = {∅,R,N}. Then (R, τ) is ω-locally indiscrete. On the other hand,
since N is open but not closed, then (R, τ) is not locally indiscrete. Also, clearly that (R, τ) is not locally
countable.

Theorem 2.14. Let (X, τ) be an ω-locally indiscrete topological space and let A ⊆ X. Then
a. A = Clθω (A).
b. If A is closed in (X, τ), then A is θω-closed in (X, τ).

Proof. (a) By Theorem 2.8 (a), A ⊆ Clθω (A). To see that Clθω (A) ⊆ A, let x ∈ Clθω (A) and U ∈ τ such that
x ∈ U. Then U

ω
∩ A , ∅. Since (X, τ) is ω-locally indiscrete, it follows that U

ω
= U and hence U ∩ A , ∅. It

follows that x ∈ A.
(b) Suppose that A is closed in (X, τ), then A = A. Thus by (a), A = Clθω (A) and hence A is θω-closed in

(X, τ).
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Corollary 2.15. Let (X, τ) be locally indiscrete and let A ⊆ X. Then:
a. A = Clθω (A).
b. If A is closed in (X, τ), then A is θω-closed in (X, τ).

Proof. Theorems 2.12 (a) and 2.14.

Corollary 2.16. Let (X, τ) be locally countable and let A ⊆ X. Then
a. A = Clθω (A).
b. If A is closed in (X, τ), then A is θω-closed in (X, τ).

Proof. Theorems 2.12 (b) and 2.14.

Theorem 2.17. Let (X, τ) be an anti-locally countable topological space and let A ⊆ X. Then
a. Clθ (A) = Clθω (A).
b. If A is θω-closed in (X, τ), then A is θ-closed in (X, τ).

Proof. (a) By Theorem 2.8 (a), Clθω (A) ⊆ Clθ (A). To see that Clθ (A) ⊆ Clθω (A) let x ∈ Clθ (A) and U ∈ τ such
that x ∈ U. Then U ∩ A , ∅. Since (X, τ) is anti-locally countable, then by Lemma 2.10 (a), U

ω
= U and

hence U
ω
∩ A , ∅. It follows that x ∈ Clθω (A).

(b) Suppose that A is θω-closed in (X, τ), then A = Clθω (A). Thus by (a), A = Clθ (A) and hence A is
θ-closed in (X, τ).

Theorem 2.18. Let (X, τ) be a topological space. Then τθ ⊆ τθω ⊆ τ.

Proof. To see that τθ ⊆ τθω , let A ∈ τθ. Then X − A is θ-closed and by Theorem 2.8 (b), X − A is θω-closed.
Thus A ∈ τθω . To see that τθω ⊆ τ, let A ∈ τθω . Then X − A is θω-closed and by Theorem 2.8 (c), X − A is
closed. Thus A ∈ τ.

Lemma 2.19. ([27]) Let (X, τ) be a topological space. Then for each A ∈ τ, Clθ (A) = A.

Theorem 2.20. Let (X, τ) be a topological space.
a. If A ⊆ B ⊆ X, then Clθω (A) ⊆ Clθω (B).
b. For each subsets A,B ⊆ X,Clθω (A ∪ B) = Clθω (A) ∪ Clθω (B).
c. For each subset A ⊆ X,Clθω (A) is closed in (X, τ).
d. For each A ∈ τω, Clθω (A) = A.
e. For each A ∈ τ, Clθ (A) = Clθω (A) = A.

Proof. (a) Let x ∈ Clθω (A) and U ∈ τ with x ∈ U. Since x ∈ Clθω (A), U
ω
∩ A , ∅. Since A ⊆ B, U

ω
∩ B , ∅.

This implies that x ∈ Clθω (B).
(b) By (a), we have Clθω (A) ∪ Clθω (B) ⊆ Clθω (A ∪ B). Let x < Clθω (A) ∪ Clθω (B). Then there are U,V ∈ τ

such that x ∈ U ∩ V,U
ω
∩ A = ∅ and V

ω
∩ B = ∅. Thus, we have x ∈ U ∩ V ∈ τ and

U ∩ V
ω
∩ (A ∪ B) =

(
U ∩ V

ω
∩ A

)
∪

(
U ∩ V

ω
∩ B

)
⊆

(
U
ω
∩ A

)
∪

(
V
ω
∩ B

)
= ∅ ∪ ∅

= ∅.

It follows that x < Clθω (A ∪ B).
(c) We show that X−Clθω (A) ∈ τ. Let x ∈ X−Clθω (A). Then there is U ∈ τ such that x ∈ U and U

ω
∩A = ∅.

Thus, U ∩ Clθω (A) = ∅. It follows that X − Clθω (A) ∈ τ.
(d) By Theorem 2.8 (a), A ⊆ Clθω (A). Conversely, suppose to the contrary that there is x ∈ Clθω (A) ∩(

X − A
)
. Since X − A ∈ τ, we must have X − A

ω

∩ A , ∅. Choose y ∈ X − A
ω

∩ A. Since A ∈ τω, then(
X − A

)
∩ A , ∅, a contradiction.

(e) Follows from (d) and Lemma 2.19.
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Theorem 2.21. Let (X, τ) be a topological space. Then
a. ∅ and X are θω-closed sets.
b. Finite union of θω-closed sets is θω-closed.
c. Arbitrary intersection of θω-closed sets is θω-closed.

Proof. (a) Follows from Theorems 2.2 (a) and 2.8 (b).
(b) It is sufficient to see that the union of two θω-closed sets is θω-closed. Let A and B be any two

θω-closed sets in (X, τ). Then Clθω (A) = A and Clθω (B) = B. By Theorem 2.20 (b),

Clθω (A ∪ B) = Clθω (A) ∪ Clθω (B)
= A ∪ B.

It follows that A ∪ B is θω-closed.
(c) Let {Aα : α ∈ ∆} be a family of θω-closed sets in (X, τ). Then for all α ∈ ∆,Clθω (Aα) = Aα. We show

that Clθω (∩{Aα : α ∈ ∆}) ⊆ ∩{Aα : α ∈ ∆}. Let x ∈ Clθω (∩{Aα : α ∈ ∆}) and let U ∈ τ such that x ∈ U. Then
U
ω
∩ (∩{Aα : α ∈ ∆}) , ∅. Therefore, U

ω
∩ Aα , ∅ for all α ∈ ∆. It follows that x ∈ ∩{Clθω (Aα) : α ∈ ∆} =

∩{Aα : α ∈ ∆}.

Theorem 2.22. Let (X, τ) be a topological space. Then τθω is a topology on X.

Proof. (1) The fact that ∅,X ∈ τθω follows from Theorem 2.21.
(2) Let A,B ∈ τθω . Then X − A and X − B are θω-closed sets. By Theorem 2.21 (b),

X − (A ∩ B) = (X − A) ∪ (X − B)

is θω-closed sets. Hence A ∩ B ∈ τθω .
(3) Let {Aα : α ∈ ∆} ⊆ τθω . Then {X − Aα : α ∈ ∆} is a family of θω-closed sets in (X, τ). Thus by Theorem

2.21 (c),

X − ∪ {Aα : α ∈ ∆} = ∩ {X − Aα : α ∈ ∆}

is θω-closed set. Hence ∪ {Aα : α ∈ ∆} ∈ τθω .

Theorem 2.23. Let (X, τ) be a topological space and A ⊆ X. Then A ∈ τθω if and only if for each x ∈ A, there is
U ∈ τ such that x ∈ U ⊆ U

ω
⊆ A.

Proof. Suppose that A ∈ τθω and let x ∈ A. Then X − A is θω-closed and x < X − A. Thus, x < Clθω (X − A)
and hence there is U ∈ τ such that x ∈ U and U

ω
∩ (X − A) = ∅. Therefore, we have x ∈ U ⊆ U

ω
⊆ A.

Conversely, suppose for each x ∈ A, there is U ∈ τ such that x ∈ U ⊆ U
ω
⊆ A and suppose on that contrary

that A < τθω . Then X − A is not θω-closed and Clθω (X − A) , X − A. Choose x ∈ Clθω (X − A) − (X − A).
Since x ∈ A, there is U ∈ τ such that x ∈ U ⊆ U

ω
⊆ A. Thus we have x ∈ U ∈ τ and hence U

ω
∩ (X − A) = ∅.

Therefore x < Clθω (X − A), a contradiction.

Corollary 2.24. Every open ω-closed set in a topological space is θω-open.

Proof. Let (X, τ) be a topological space and let A be open and ω-closed set in (X, τ). Let x ∈ A. Since A is
ω-closed, then A

ω
= A. Take U = A. Then U ∈ τ and x ∈ U = U

ω
= A ⊆ A. Thus by Theorem 2.23, it follows

that A is θω-open.

Corollary 2.25. Every countable open set in a topological space is θω-open.

Proof. Follows directly form Corollary 2.24 since countable sets in a topological space are ω-closed.

The following example shows that θω-open sets are strictly between θ-open sets and open sets:
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Example 2.26. Consider (R, τ) where τ = {∅,R,N,Qc,N ∪Qc
}. Then

a. τθω = {∅,R,N}.
b. τθ = {∅,R}.

Proof. (a) Note that τω = τcoc ∪ {A : A ⊆N} where τcoc is the cocountable topology on R. Then a subset
B ⊆ R is closed in (R, τω) if and only if either B is countable or B = R − A where A ⊆ N. So Qc

ω
= R −N.

If Qc
∈ τθω , then there is U ∈ τ such that

√
2 ∈ U ⊆ U

ω
⊆ Qc. Since

√
2 ∈ U ∈ τ, then Qc

⊆ U and so
R −N = Qc

ω
⊆ U

ω
⊆ Qc which is impossible, it follows that Qc

∈ τ − τθω . If N ∪ Qc
∈ τθω , then there is

U ∈ τ such that
√

2 ∈ U ⊆ U
ω
⊆N∪Qc. Since

√
2 ∈ U ∈ τ, thenQc

⊆ U and soR−N = Qc
ω
⊆ U

ω
⊆N∪Qc

which is impossible and it follows thatN ∪ Qc
∈ τ − τθω . By Corollary 2.25, N ∈ τθω . This ends the proof

that τθω = {∅,R,N}.
(b) By Theorem 2.18, τθ ⊆ τθω . So to see that τθ = {∅,R}, it is sufficient to show thatN < τθ. IfN ∈ τθ,

then there is U ∈ τ such that 1 ∈ U ⊆ U ⊆ N. Since 1 ∈ U ∈ τ, we have U = N and soN = N, butN = Q.
Therefore,N < τθ.

If (X, τ) and (Y, σ) are two topological spaces, then τ× σ will denote the product topology on X ×Y, also
πx and πy will denote the projection functions on X and Y, respectively.

Lemma 2.27. ([3]) Let (X, τ) and (Y, σ) be two topological spaces.
(a) (τ × σ)ω ⊆ τω × σω.
(b) If A ⊆ X and B ⊆ Y, then A

ω
× B

ω
⊆ A × B

ω
.

Theorem 2.28. Let (X, τ) and (Y, σ) be two topological spaces. If G ∈ (τ × σ)
θω

, then πx (G) ∈ τθω and πy (G) ∈ σθω .

Proof. Let x ∈ πx (G). Choose y ∈ Y such that
(
x, y

)
∈ G. Since G ∈ (τ × σ)

θω
, there is H ∈ τ × σ such that(

x, y
)
∈ H ⊆ H

ω
⊆ G. Choose U ∈ τ and V ∈ σ such that

(
x, y

)
∈ U × V ⊆ H. Thus, by Lemma 2.27 (b),(

x, y
)
∈ U × V ⊆ U

ω
× V

ω
⊆ U × V

ω
⊆ H

ω
⊆ G

and hence

x ∈ U ⊆ U
ω
⊆ πx (G) .

It follows that πx (G) ∈ τθω . Similarly, we can show that πy (G) ∈ σθω .

If f : (X, τ) −→ (Y, σ) is a closed function, then f : (X, τ) −→ (Y, σω) is closed, but the converse is not true
in general as the following example shows:

Example 2.29. Define f : (R, τu) −→ (R, τu) by

f (x) =

{
x if x ∈ Q
1 if x ∈ R −Q .

For every closed subset C of (R, τu), f (C) ⊆ Q, which shows that f is ω-closed. Since R is closed in (R, τu)
but f (R) = Q is not closed in (R, τu), then f is not closed.

Theorem 2.30. Let f : (X, τ) −→ (Y, σ) be a function. If f : (X, τ) −→ (Y, σ) is open and f : (X, τ) −→ (Y, σω) is
closed, then f : (X, τθ) −→

(
Y, σθω

)
is open.

Proof. Let A ∈ τθ and let y ∈ f (A). Choose x ∈ A such that y = f (x). Choose V ∈ τ such that x ∈ V ⊆ V ⊆ A.
Thus, f (x) = y ∈ f (V) ⊆ f

(
V
)
⊆ f (A). Since f is open, then f (V) ∈ σ. Since f is ω-closed, then f

(
V
)

is

ω-closed and so f (V)
ω
⊆ f

(
V
)
⊆ f (A). It follows that f (A) ∈ σθω .
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Theorem 2.31. Let f : (X, τ) −→ (Y, σ) be a function. If f : (X, τ) −→ (Y, σ) is open and f : (X, τω) −→ (Y, σω) is
closed, then f :

(
X, τθω

)
−→

(
Y, σθω

)
is open.

Proof. Let A ∈ τθω and let y ∈ f (A). Choose x ∈ A such that y = f (x). Choose V ∈ τ such that x ∈ V ⊆ V
ω
⊆ A.

Thus, f (x) = y ∈ f (V) ⊆ f
(
V
ω)
⊆ f (A). Since f is open, then f (V) ∈ σ. Since f is ω-closed, then f

(
V
)

is

ω-closed and so f (V)
ω
⊆ f

(
V
)
⊆ f (A). It follows that f (A) ∈ σθω .

Theorem 2.32. Let f : (X, τ) −→ (Y, σ) be function. If f : (X, τ) −→ (Y, σ) and f : (X, τω) −→ (Y, σω) are both
continuous, then f :

(
X, τθω

)
−→

(
Y, σθω

)
is continuous.

Proof. Let B ∈ σθω and let x ∈ f−1 (B). Then f (x) ∈ B and so there is V ∈ σ such that f (x) ∈ V ⊆ V
ω
⊆ B.

Thus, x ∈ f−1 (V) ⊆ f−1
(
V
ω)
⊆ f−1 (B). Since f : (X, τ) −→ (Y, σ) is continuous, then f−1 (V) ∈ τ. Since

f : (X, τω) −→ (Y, σω) is continuous, then f−1
(
V
ω)

is ω-closed and so f−1 (V)
ω
⊆ f−1

(
V
ω)
⊆ f−1 (B). It

follows that f−1 (B) ∈ τθω .

3. Separation Axioms

Definition 3.1. A topological space (X, τ) is said to be ω-T2 if for any pair
(
x, y

)
of distinct points in X there

exist U ∈ τ,V ∈ τω such that x ∈ U, y ∈ V and U ∩ V = ∅.

Theorem 3.2. A topological space (X, τ) is ω-T2 if and only if for each x ∈ X,Clθω ({x}) = {x}.

Proof. Suppose that (X, τ) is ω-T2 and suppose on the contrary that for some x ∈ X,Clθω ({x}) , {x}. Choose
y ∈ Clθω ({x}) − {x}. Then there exist U ∈ τω and V ∈ τ such that x ∈ U, y ∈ V and U ∩ V = ∅. Since y ∈ V ∈ τ
and y ∈ Clθω ({x}), then V

ω
∩ {x} , ∅. Thus we have x ∈ U ∈ τω and x ∈ V

ω
and hence U ∩ V , ∅, a

contradiction.
Conversely, suppose for each x ∈ X,Clθω ({x}) = {x}. Let x, y ∈ X with x , y. By assumption, Clθω

({
y
})

={
y
}

and so we have x < Clθω
({

y
})

. Thus there is U ∈ τ such that x ∈ U and U
ω
∩

{
y
}

= ∅. Take V = X − U
ω

.
Then we have y ∈ V ∈ τω and U ∩ V = ∅. This ends the proof that (X, τ) is ω-T2.

Theorem 3.3. If (X, τ) is an ω-T2 topological space, then (X, τω) is T2.

Proof. Obvious.

The converse of Theorem 3.3 is not true in general as the following example clarifies:

Example 3.4. Consider (X, τ) where X is any countable set which contains at least two distinct points and τ
is the indiscrete topology. It is obvious that τω is the discrete topology and so (X, τω) is T2. Choose x, y ∈ X
such that x , y. If U ∈ τ and V ∈ τω such that x ∈ U, y ∈ V. Then U = X and U ∩V , ∅. It follows that (X, τ)
is not ω-T2.

Theorem 3.5. Every ω-T2 topological space is T1.

Proof. Let (X, τ) be ω-T2. We show for each x ∈ X, {x} ⊆ {x}. Let x ∈ X. Since (X, τ) is ω-T2, then by Theorem
3.2, Clθω ({x}) = {x}. By Theorem 2.8 (a), we have {x} ⊆ Clθω ({x}) = {x}.

The following example shows that the converse of Theorem 3.5 is not true in general:

Example 3.6. Consider (R, τ) where τ is the cofinite topology. It is clear that (R, τ) is T1. It is not difficult to
check that τω is the cocountable topology. Thus (R, τω) is not T2 and by Theorem 3.3, (R, τ) not ω-T2.

Theorem 3.7. Every locally countable T1 topological space is ω-T2.
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Proof. Let (X, τ) be locally countable and T1. Let x, y ∈ X with x , y. Since (X, τ) is locally countable, then
τω is the discrete topology and so

{
y
}
∈ τω. On the other hand since (X, τ) is T1, then

{
y
}

is closed in (X, τ)
and X −

{
y
}
∈ τ. Take U = X −

{
y
}

and V =
{
y
}
. Then U ∈ τ,V ∈ τω, x ∈ U, y ∈ V and U ∩ V = ∅. This shows

that (X, τ) is ω-T2.

Theorem 3.8. Every T2 topological space is ω-T2.

Proof. Obvious.

The following example shows that the converse of Theorem 3.8 is not true in general:

Example 3.9. Consider (N, τ) where τ is the cofinite topology. It is clear that (N, τ) is T1 and locally
countable and thus by Theorem 3.7, it is ω-T2. On the other hand, it is well known that (N, τ) is not T2.

Definition 3.10. ([1]) A topological space (X, τ) is called ω-regular if for each closed set F in (X, τ) and
x ∈ X − F, there exist U ∈ τ and V ∈ τω such that x ∈ U,F ⊆ V and U ∩ V = ∅.

Theorem 3.11. ([1]) A topological space (X, τ) is ω-regular if and only if for each U ∈ τ and each x ∈ U there is
V ∈ τ such that x ∈ V ⊆ V

ω
⊆ U.

Theorem 3.12. ([27]) A topological space (X, τ) is regular if and only if τ = τθ.

Theorem 3.13. ([18]) A topological space (X, τ) is regular if and only if for each subset A ⊆ X, Clθ (A) = A.

The following result modify Theorems 3.12 and 3.13 for ω-regular topological spaces:

Theorem 3.14. For any topological space (X, τ), the following are equivalent:
a. (X, τ) is ω-regular.
b. τ = τθω .
c. For each subset A ⊆ X, Clθω (A) = A.

Proof. It follows from Theorems 2.18, 3.11 and 2.23.

Corollary 3.15. Every ω-locally indiscrete topological space is ω-regular.

Proof. Theorems 2.14 and 3.14.

Corollary 3.16. Every locally indiscrete topological space is ω-regular.

Proof. Theorem 2.12 (a) and Corollary 3.15.

Corollary 3.17. Every locally countable topological space is ω-regular.

Proof. Theorem 2.12 (b) and Corollary 3.15.

Theorem 3.18. ([1]) Every regular topological space is ω-regular.

The converse of Theorem 3.18 is not true in general: Consider the topological space in Example 3.9. By
Corollary 3.17, (N, τ) is ω-regular. On the other hand, it is well known that this topological space is not
regular.

Theorem 3.19. Every anti-locally countable ω-regular topological space is regular.

Proof. Let (X, τ) be anti-locally countable and ω-regular. We will apply Theorem 3.13. Let A ⊆ X. Since
(X, τ) is anti-locally countable, then by Theorem 2.17 (a) Clθ (A) = Clθω (A). Also, by Theorem 3.14 we have
Clθω (A) = A. It follows that Clθ (A) = A.
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The topological space in Example 3.9 is ω-regular but not ω-T2. Thus, ω-regularity does not imply ω-T2
in general, however we have the following result:

Theorem 3.20. Every ω-regular T1 topological space is ω-T2.

Proof. Let (X, τ) be ω-regular and T1. We apply Theorem 3.2. Let x ∈ X. Since (X, τ) is ω-regular, then by
Theorem 3.14, Clθω ({x}) = {x}. Since (X, τ) is T1, then {x} = {x}. Therefore, Clθω ({x}) = {x}.

To give an example on an ω-T2 topological space that is not ω-regular, by Theorems 3.8 and 3.19 it is
sufficient to give an example of an anti-locally countable T2 topological space that is not regular. Consider
(R, τω) where τ is the usual topology onR. Clearly that (R, τω) is anti-locally countable. On the other hand
it is well known that (R, τω) is T2 but not regular.
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