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Abstract. This paper deals with nonlinear fractional differential equation with fractional separated bound-
ary conditions. We investigate the existence of weak solutions in Banach spaces. To obtain such result we
apply an appropriate fixed point theorem and the technique of measures of weak noncompactness. An
example illustrating the theory is given.

1. Introduction

In recent years, several papers have been devoted to the study of the existence of solutions for fractional
differential equations, among others we refer to the papers by Agarwal et al. [1, 2], Ahmad et al. [3], Graef
et al. [14], Hernández et al. [15]. Moreover, it has be proved that differential models involving derivatives
of fractional order arise in many engineering and scientific disciplines as the mathematical modeling of
systems and processes in many fields, for instance, physics, control theory, rheology, chemistry, and so on
(see the monograph of Kilbas et al. [16], Podlubny [21], Sabatier et al. [22], and Samko et al. [23]).

In this paper we investigate the existence of weak solutions, for a fractional boundary value problem
with fractional separated boundary conditions given by

cDrx(t) = f (t, x(t)), t ∈ J = [0, 1], 1 < r ≤ 2

α1x(0) + β1(cDpx(0)) = γ1,

α2x(1) + β2(cDpx(1)) = γ2, 0 < p < 1,

(1)

where cDr denotes the Caputo fractional derivative of order r, f is a given function satisfying some assump-
tions that will be specified later, and αi, βi, γi (i = 1, 2) are constants in R, with α1 , 0.

This problem was studied recently in [4] in the scalar case using Banach contraction principal, Kras-
noselskii’s fixed point theorem and the nonlinear alternative of Leray-Schauder type.

Here we extend the results of [4] to cover the abstract case. We establish the existence of solutions
of the problem (1) using Mönch’s fixed point theorem combined with the technique of measures of weak
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noncompactness, which is an important method for seeking solutions of differential and integral equations.
This technique was mainly initiated in the paper of De Blasi [13] and then subsequently developed and
used in many papers, for example Allahyari et al. [5], Banas̀ et al. [6–8], Benchohra et al. [9–11], Dhage
et al. [12], Lakshmikantham et al. [17], Liao et al. [18] and the references therein. Let us note that the
exposition of this method in the framework of problem (1) is new.

2. Preliminaries

In this section, we will state definitions and notations that are used in the remainder of the paper.
Denote by L1(J) the Banach space of real-valued Lebesgue integrable functions, on the interval J.
E denotes the real Banach space with norm ‖.‖ and dual E∗ also (E, w) = (E, σ(E, E∗)) denotes the space

E with its weak topology.
Let L∞(J) be the Banach space of real-valued essentially bounded and measurable functions defined

over J equipped with the norm ‖.‖L∞ .
C(J, E) is the Banach space of continuous functions x : J→ E, with the usual supremum norm.

‖x‖∞ = sup{‖x(t)‖, t ∈ J}.

Definition 2.1. A function h : E −→ E is said to be weakly sequentially continuous if h takes each weakly
convergent sequence in E to weakly convergent sequence in E (i.e. for any (xn)n in E with xn −→ x in (E, w)
then h(xn) −→ h(x) in (E, w) for each t ∈ J).

Definition 2.2. ([20]) The function x : J −→ E is said to be Pettis integrable on J if and only if there is an
element xI ∈ E corresponding to each I ⊂ J such that ϕ(xI) =

∫
I ϕ(x(s))ds for all ϕ ∈ E∗, where the integral on

the right is supposed to exist in the sense of Lebesgue. By definition, xI =
∫

I x(s)ds.

Let P(J, E) be the space of all E-valued Pettis integrable functions in the interval J.

Proposition 2.3. ([20]) If x(.) is Pettis integrable and h(.) is a measurable and essentially bounded real-valued
function, then x(.)h(.) is Pettis integrable.

Definition 2.4. ([13]) Let E be a Banach space, ΩE the bounded subsets of E and B1 the unit ball of E. The
De Blasi measure of weak noncompactness is the map β : ΩE −→ [0, ∞) defined by

β(X) = inf{ε > 0 : there exists a weakly compact subset Ω of E : X ⊂ εB1 + Ω}.

Properties:
The De Blasi measure of noncompactness satisfies some properties (for more details see [13]).

(a) A ⊂ B =⇒ β(A) ≤ β(B),

(b) β(A) = 0 =⇒ A is relatively compact,

(c) β(A ∪ B) = max{β(A), β(B)},

(d) β(A
w

) = β(A), (A
w

denotes the weak closure of A),

(e) β(A + B) ≤ β(A) + β(B),

(f) β(λA) ≤ |λ|β(A),

(g) β(conv(A)) ≤ β(A),

(h) β(
⋃
|λ|≤h

λA) = hβ(A).
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The following result follows directly from the Hahn-Banach theorem.

Proposition 2.5. Let E be a normed space with x0 , 0. Then there exists ϕ ∈ E∗ with ‖ϕ‖ = 1 and ϕ(x0) = ‖x0‖.

Let us now recall the definitions of the Pettis integral and Caputo derivative of fractional order.

Definition 2.6. ([25]) Let h : J −→ E be a function. The fractional Pettis integral of the function h of order
r ∈ R+ is defined by

Irh(t) =

∫ t

0

(t − s)r−1

Γ(r)
h(s)ds,

where the sign
∫

denotes the Pettis integral and Γ is the Gamma function.

Definition 2.7. ([16]) For a function h : J −→ E, the Caputo fractional-order derivative of h, is defined by

cDrh(t) =
1

Γ(n − r)

∫ t

0

h(n)(s)

(t − s)1−n+r ds,

where n = [r] + 1 and [r] denote the integer part of r.

Theorem 2.8. ([19]) Let D be a closed, convex and equicontinuous subset of a metrizable locally convex vector space
C(J,E) such that 0 ∈ D. Assume that N : D −→ D is weakly sequentially continuous. If the implication

V = conv({0} ∪N(V)) =⇒ V is relatively weakly compact, (2)

holds for every subset V ⊂ D, then N has a fixed point.

3. Main Results

To establish our existence result for the problem (1) we need the following lemma.

Lemma 3.1. For a given σ ∈ C(J, E), the unique solution of the problem
cDrx(t) = σ(t), t ∈ J, 1 < r ≤ 2

α1x(0) + β1(cDpx(0)) = γ1, α2x(1) + β2(cDpx(1)) = γ2, 0 < p < 1,

is given by

x(t) =

∫ t

0

(t − s)r−1

Γ(r)
σ(s))ds −

t
v1

(
α2

∫ 1

0

(1 − s)r−1

Γ(r)
σ(s)ds

+ β2

∫ 1

0

(1 − s)r−p−1

Γ(r − p)
σ(s)ds

)
+
α1v2t + γ1v1

α1v1
.

where

v1 =
α2Γ(2 − p) + β2

Γ(2 − p)
, v2 =

γ2α1 − α2γ1

α1
.

The proof is similar to the one given in [4].
Let us list the following hypothesis:

(H1) For each t ∈ J, the function f (t, .) is weakly sequentially continuous;

(H2) For each x ∈ C(J,E), the function f (., x(.)) is Pettis integrable on J;
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(H3) There exist ρ ∈ L∞(J) and a continuous nondecreasing function ψ : R+ −→ R∗+ such that

‖ f (t, x(t))‖ ≤ ‖ρ(t)‖L∞ψ(‖x‖);

(H4) There exists a constant R > 0 such that

R

‖ρ‖L∞ψ(R) η + | v2
v1
| + |

γ1

α1
|
> 1,

where

η =

[
1

Γ(r + 1)
+

1
|v1|

(
|α2|

Γ(r + 1)
+

|β2|

Γ(r − p + 1)

)]
;

(H5) For each bounded set D ∈ E, and each t ∈ J, the following inequality holds

β( f (s,D)) ≤ ρ(t)β(D).

Theorem 3.2. Assume that assumptions (H1)-(H5) hold. If

‖ρ‖L∞ <
1
η
, (3)

then the boundary value problem (1) has at least one solution.

Proof. In view of Lemma 3.1, we define an operator N : C(J,E) −→ C(J,E) by

Nx(t) =

∫ t

0

(t − s)r−1

Γ(r)
f (s, x(s))ds −

t
v1

[
α2

∫ 1

0

(1 − s)r−1

Γ(r)
f (s, x(s))ds

+ β2

∫ 1

0

(1 − s)r−p−1

Γ(r − p)
f (s, x(s))ds

]
+
α1v2t + γ1v1

α1v1
.

Observe that the fixed points of the operator N are solutions of the problem (1).

First notice that, for x ∈ C(J,E), we have f (., x(.)) ∈ P(J,E) (assumption (H2)). Since s 7−→
(t − s)r−1

Γ(r)
, s 7−→

(1 − s)r−1

Γ(r)
and s 7−→

(1 − s)r−1

Γ(r)
are ∈ L∞(J) then

(t − .)r−1

Γ(r)
f (., x(.)),

(1 − .)r−1

Γ(r)
f (., x(.)) and

(1 − .)r−1

Γ(r)
f (., x(.)) for

all t ∈ J are Pettis integrable (Proposition 2.3) and thus, the operator N makes sense.
Let R > 0, and consider the set

D =



x ∈ C(J, E) : ‖x‖∞ ≤ R
and

‖x(t1) − x(t2)‖ ≤ ψ(R)‖ρ‖L∞
(

tr
2 − tr

1

Γ(r + 1)
+

t2 − t1

|v1|

[
|α2|

Γ(r + 1)
+

|β2|

Γ(r − p + 1)

])
+

∣∣∣∣∣v2

v1

∣∣∣∣∣ (t2 − t1) for t1, t2 ∈ J


Clearly, the subset D is closed, convex and equicontinuous.
We shall show that N satisfies the assumptions of Theorem 2.8, the proof will be given in three steps.

1. First we show that N maps D into itself.
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Take x ∈ D, t ∈ J and assume that Nx(t) , 0. Then there exists ϕ ∈ E∗ such that ‖Nx(t)‖ = ϕ(Nx(t)). Thus

‖Nx(t)‖ = ϕ(Nx(t)) = ϕ

(∫ t

0

(t − s)r−1

Γ(r)
f (s, x(s))ds −

t
v1

[
α2

∫ 1

0

(1 − s)r−1

Γ(r)
f (s, x(s))ds

+β2

∫ 1

0

(1 − s)r−p−1

Γ(r − p)
f (s, x(s))ds

]
+
α1v2t + γ1v1

α1v1

)
≤

∫ t

0

(t − s)r−1

Γ(r)
ϕ( f (s, x(s)))ds

+
t
|v1|

∫ 1

0

(
|α2|(1 − s)r−1

Γ(r)
+
|β2|(1 − s)r−p−1

Γ(r − p)

)
ϕ( f (s, x(s)))ds +

∣∣∣∣∣α1v2t + γ1v1

α1v1

∣∣∣∣∣
≤ ‖ρ‖L∞ψ(R)

[∫ t

0

(t − s)r−1

Γ(r)
ds +

t
|v1|

∫ 1

0

(
|α2|(1 − s)r−1

Γ(r)
+
|β2|(1 − s)r−p−1

Γ(r − p)

)
ds

]
+

∣∣∣∣∣α1v2t + γ1v1

α1v1

∣∣∣∣∣
≤ ‖ρ‖L∞ψ(R) η +

∣∣∣∣∣v2

v1

∣∣∣∣∣ +

∣∣∣∣∣γ1

α1

∣∣∣∣∣ < R.

Let t1, t2 ∈ J, t1 < t2, x ∈ D, so Nx(t2) −Nx(t1) , 0. Then there exists ϕ ∈ E∗ such that

‖Nx(t2) −Nx(t1)‖ = ϕ(Nx(t2) −Nx(t1)).

Thus

‖Nx(t2) −Nx(t1)‖ = ϕ

(∫ t2

0

(t2 − s)r−1

Γ(r)
f (s, x(s))ds −

t2

v1

[
α2

∫ 1

0

(1 − s)r−1

Γ(r)
f (s, x(s))ds

+β2

∫ 1

0

(1 − s)r−p−1

Γ(r − p)
f (s, x(s))ds

]
+
α1v2t2 + γ1v1

α1v1

−

∫ t1

0

(t1 − s)r−1

Γ(r)
f (s, x(s))ds +

t1

v1

[
α2

∫ 1

0

(1 − s)r−1

Γ(r)
f (s, x(s))ds

+β2

∫ 1

0

(1 − s)r−p−1

Γ(r − p)
f (s, x(s))ds

]
−
α1v2t1 + γ1v1

α1v1

)
,
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which means that

‖Nx(t2) −Nx(t1)‖ ≤ ϕ

(∫ t2

0

(t2 − s)r−1

Γ(r)
f (s, x(s))ds −

∫ t1

0

(t2 − s)r−1

Γ(r)
f (s, x(s))ds

)
+ϕ

(∫ t1

0

(t2 − s)r−1

Γ(r)
f (s, x(s))ds −

∫ t1

0

(t1 − s)r−1

Γ(r)
f (s, x(s))ds

)
+

t2 − t1

|v1|
ϕ

(∫ 1

0

[
α2(1 − s)r−1

Γ(r)
+
β2(1 − s)r−p−1

Γ(r − p)

]
f (s, x(s))ds)

)
+ |

v2

v1
|(t2 − t1)

≤ ϕ

(∫ t2

t1

(t2 − s)r−1

Γ(r)
f (s, x(s))ds

)
+ ϕ

(∫ t1

0

(t2 − s)r−1
− (t1 − s)r−1

Γ(r)
f (s, x(s))ds

)
+

t2 − t1

|v1|
ϕ

(∫ 1

0

[
α2(1 − s)r−1

Γ(r)
+
β2(1 − s)r−p−1

Γ(r − p)

]
f (s, x(s))ds

)
+ |

v2

v1
|(t2 − t1)

≤

∫ t2

t1

(t2 − s)r−1

Γ(r)
ϕ( f (s, x(s)))ds +

∫ t1

0

(t2 − s)r−1
− (t1 − s)r−1

Γ(r)
ϕ( f (s, x(s)))ds

+
t2 − t1

|v1|

∫ 1

0

[
|α2|(1 − s)r−1

Γ(r)
+
|β2|(1 − s)r−p−1

Γ(r − p)

]
ϕ( f (s, x(s)))ds + |

v2

v1
|(t2 − t1)

≤

∫ t2

t1

(t2 − s)r−1

Γ(r)
‖ f (s, x(s))‖ds +

∫ t1

0

(t2 − s)r−1
− (t1 − s)r−1

Γ(r)
‖ f (s, x(s))‖ds

+
t2 − t1

|v1|

∫ 1

0

[
|α2|(1 − s)r−1

Γ(r)
+
|β2|(1 − s)r−p−1

Γ(r − p)

]
‖ f (s, x(s))‖ds + |

v2

v1
|(t2 − t1)

≤ ψ(R)‖ρ‖L∞
(∫ t2

t1

(t2 − s)r−1

Γ(r)
ds +

∫ t1

0

(t2 − s)r−1
− (t1 − s)r−1

Γ(r)
ds

+
t2 − t1

|v1|

∫ 1

0

[
|α2|(1 − s)r−1

Γ(r)
+
|β2|(1 − s)r−p−1

Γ(r − p)

]
ds

)
+ |

v2

v1
|(t2 − t1)

≤ ψ(R)‖ρ‖L∞
(

tr
2 − tr

1

Γ(r + 1)
+

t2 − t1

|v1|

[
|α2|

Γ(r + 1)
+

|β2|

Γ(r − p + 1)

])
+

∣∣∣∣∣v2

v1

∣∣∣∣∣ (t2 − t1)

Hence N(D) ⊂ D.

2. Then we show that N is weakly sequentially continuous.

Let (xn) be a sequence in D and let xn −→ x in (E,w). Since f satisfies assumption (H1), we have f (t, xn(t))
converges weakly uniformly to f (t, x(t)). Hence the Lebesgue Dominated Convergence theorem for Pettis
integral implies Nxn(t) converges weakly uniformly to Nx(t) in (E,w). We do it for each t ∈ J so Nxn −→ Nx.
Then N : D −→ D is weakly sequentially continuous.

3. Finally we show that the implication (2) holds.

Let V ⊂ D such that V = conv(N(V)∪{0}). We have V(t) ⊂ conv(N(V)∪{0}) for all t ∈ J. NV(t) ⊂ ND(t) t ∈ J
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is bounded in E. By assumption (H5), and the properties of the measure β we have for each t ∈ J.

v(t) ≤ β(conv(N(V)(t) ∪ {0})) ≤ β(NV(t))

≤ β

(∫ t

0

(t − s)r−1

Γ(r)
f (s,V(s))ds −

t
v1

[
α2

∫ 1

0

(1 − s)r−1

Γ(r)
f (s,V(s))ds

+β2

∫ 1

0

(1 − s)r−p−1

Γ(r − p)
f (s,V(s))ds) +

α1v2t + γ1v1

α1v1

)
≤

∫ t

0

(t − s)r−1

Γ(r)
β( f (s,V(s)))ds +

t
|v1|

∫ 1

0

[
|α2|(1 − s)r−1

Γ(r)
+
|β2|(1 − s)r−p−1

Γ(r − p)

]
β( f (s,V(s)))ds

≤

∫ t

0

(t − s)r−1

Γ(r)
ρ(s)β(V(s))ds +

t
|v1|

∫ 1

0

[
|α2|(1 − s)r−1

Γ(r)
+
|β2|(1 − s)r−p−1

Γ(r − p)

]
ρ(s)β(V(s))ds

≤

∫ t

0

(t − s)r−1

Γ(r)
ρ(s)v(s)ds +

t
|v1|

∫ 1

0

[
|α2|(1 − s)r−1

Γ(r)
+
|β2|(1 − s)r−p−1

Γ(r − p)

]
ρ(s)v(s)ds

≤ ‖ρ‖L∞‖v‖∞

(∫ t

0

(t − s)r−1

Γ(r)
ds +

t
|v1|

∫ 1

0

[
|α2|(1 − s)r−1

Γ(r)
+
|β2|(1 − s)r−p−1

Γ(r − p)

]
ds

)
≤ ‖ρ‖L∞‖v‖∞η.

This means that
‖v‖∞

(
1 − ‖ρ‖L∞η

)
≤ 0.

By (3) it follows that ‖v‖∞ = 0, that is v(t) = 0 for each t ∈ J, and then V(t) is relatively weakly compact in E.
Applying Theorem 2.8 we conclude that N has a fixed point which is a solution of the problem (1).

4. Example

As an application of our result we consider the following fractional boundary value problem:

cD
3
2 xn(t) = 1

et+3 (1 + |xn(t)|), t ∈ J = [0, 1]

−xn(0) +c D
1
2 xn(0) = 1,

xn(1) +c D
1
2 xn(1) = 1,

(4)

Here, r =
3
2

, p =
1
2

, α1 = −1, α2 = 1, β1 = 1, β2 = 1, γ1 = 1, γ2 = 1.
Let

E = l1 = {x = (x1, x2, ..., xn, ...) :
∞∑

n=1

|xn| < ∞}

with the norm

‖x‖E =

∞∑
n=1

|xn|.

Set x = (x1, x2, ..., xn, ...) and f = ( f1, f2, ..., fn, ...),

fn(t, xn(t)) =
1

et+3 (1 + |xn(t)|), t ∈ J.

Further,

v1 =

√
π + 2
√
π

, v2 = 2.
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For each x ∈ R and t ∈ J we have

| fn(t, xn(t))| ≤
1

et+3 (1 + |xn(t)|). (5)

Hence conditions (H1), (H2) and (H3) are satisfied with

ρ(t) =
1

et+3 , t ∈ J

and
ψ(u) = 1 + u, u ∈ [0,∞).

By (5), for any bounded set D ⊂ l1, we have

β( f (t,D)) ≤
1

et+3 β(D), for each t ∈ J.

Hence (H5) is satisfied.
We have

‖ρ‖L∞ (1 + R)η + |
v2

v1
| + |

γ1

α1
| < R

thus

R >
‖ρ‖L∞η + | v2

v1
| + |

γ1

α1
|

1 − ‖ρ‖L∞η
.

Since ‖ρ‖L∞ = 1
e3 , | v2

v1
| =

2
√
π

√
π+2

, | γ1

α1
| = 1, then η ' 1.5755.

Hence (H4) is satisfied for R >
e−3η+ 2

√
π

√
π+2

+1

1−e−3η ' 2.1899
We have

‖ρ‖L∞ ' 0.0498 ≤
1
η
' 0.6347.

Hence (3) is satisfied.
Thus, by the conclusion of Theorem 3.2, the boundary value problem (4) has a solution defined on J.
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