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Completion of Locally Convex Cones

Davood Ayaseha, Asghar Ranjbaria

aDepartment of Pure Mathematics, Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran

Abstract. We define the concept of completion for locally convex cones. We show that how a locally convex
cone with (SP) can be embedded as an upper dense subcone in an upper complete locally convex cone with
(SP). We prove that every upper complete locally convex cone with (SP) is also symmetric complete.

1. Introduction

A cone is a setP endowed with an addition and a scalar multiplication for nonnegative real numbers. The
addition is assumed to be associative and commutative, and there is a neutral element 0 ∈ P. For the scalar
multiplication the usual associative and distributive properties hold, that is α(βa) = (αβ)a, (α+β)a = αa +βa,
α(a + b) = αa + αb, 1a = a and 0a = 0 for all a, b ∈ P and α, β ≥ 0.

The theory of locally convex cones as developed in [5] and [9] uses an order theoretical concept or
convex quasiuniform structure to introduce a topological structure on a cone. In this paper we use the later.
For recent researches see [1–4].

Let P be a cone. A collection U of convex subsets U ⊆ P2 = P × P is called a convex quasiuniform
structure on P, if the following properties hold:
(U1) ∆ ⊆ U for every U ∈ U ( ∆ = {(a, a) : a ∈ P});
(U2) for all U,V ∈ U there is a W ∈ U such that W ⊆ U ∩ V;
(U3) λUoµU ⊆ (λ + µ)U for all U ∈ U and λ, µ > 0;
(U4) αU ∈ U for all U ∈ U and α > 0.

Here, for U,V ⊆ P2, by UoV we mean the set of all (a, b) ∈ P2 such that there is some c ∈ Pwith (a, c) ∈ U
and (c, b) ∈ V.

Let P be a cone and U be a convex quasiuniform structure on P. We shall say (P,U) is a locally convex
cone if

(U5) for each a ∈ P and U ∈ U there is some ρ > 0 such that (0, a) ∈ ρU.
With every convex quasiuniform structureU onPwe associate two topologies: The neighborhood bases

for an element a in the upper and lower topologies are given by the sets

U(a) = {b ∈ P : (b, a) ∈ U}, resp. (a)U = {b ∈ P : (a, b) ∈ U}, U ∈ U.
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The common refinement of the upper and lower topologies is called symmetric topology. A neighborhood
base for a ∈ P in this topology is given by the sets

U(a)U = U(a) ∩ (a)U, U ∈ U.

LetU andW be convex quasiuniform structures onP. We say thatU is finer thanW if for every W ∈ W
there is U ∈ U such that U ⊆W.

The extended real number systemR = R∪ {+∞} is a cone endowed with the usual algebraic operations,
in particular a +∞ = +∞ for all a ∈ R, α.(+∞) = +∞ for all α > 0 and 0.(+∞) = 0. We set V = {ε̃ : ε > 0},
where

ε̃ = {(a, b) ∈ R
2

: a ≤ b + ε}.

Then Ṽ is a convex quasiuniform structure onR and (R, Ṽ) is a locally convex cone. For a ∈ R the intervals
(−∞, a + ε] are the upper and the intervals [a − ε,+∞] are the lower neighborhoods, while for a = +∞ the
intire cone R is the only upper neighborhood, and {+∞} is open in the lower topology. The symmetric
topology is the usual topology on R with as an isolated point +∞.

For conesP andQ, a mapping T : P → Q is called a linear operator if T(a+b) = T(a)+T(b) and T(αa) = αT(a)
hold for all a, b ∈ P and α ≥ 0. If both (P,U) and (Q,W) are locally convex cones, the operator T is called
(uniformly) continuous if for every W ∈ W one can find U ∈ U such that T × T(U) ⊆W.

A linear functional on P is a linear operator µ : P → R. We denote the set of all linear functional on P by
L(P) (the algebraic dual of P). For a subset F of P2 we define polar F◦ as below

F◦ = {µ ∈ L(P) : µ(a) ≤ µ(b) + 1, ∀(a, b) ∈ F}.

Clearly ({(0, 0)})◦ = L(P). A linear functional µ on (P,U) is (uniformly) continuous if there is U ∈ U such
that µ ∈ U◦. The dual cone P∗ of a locally convex cone (P,U) consists of all continuous linear functionals on
P and is the union of all polars U◦ of neighborhoods U ∈ U.

We shall say that a locally convex cone (P,U) has the strict separation property if the following holds:

(SP) For all a, b ∈ P and U ∈ U such that (a, b) < ρU for some ρ > 1, there is a linear functional µ ∈ U◦

such that µ(a) > µ(b) + 1 ([5], II, 2.12).

2. Completion of a Locally Convex Cone

Definition 2.1. Suppose that (P,U) is a locally convex cone. We shall say that the subset A of P is bounded below
(above) whenever for every U ∈ U there is λ > 0 such that {0} × A ⊆ λU (A × {0} ⊆ λU). The subset A of P is
bounded whenever it is bounded below and above.

In [5], a dual pair is defined as follows.

Definition 2.2. A dual pair (P,Q) consists of two cones P and Qwith a bilinear mapping

(a, x)→< a, x >: P × Q → R.

If (P,Q) is a dual pair, then every x ∈ Q is a linear mapping on P. We denote the coarsest convex
quasiuniform structure on P that makes all x ∈ Q continuous by Uσ(P,Q). In fact (P,Uσ(P,Q)) is the
projective limit of (R, Ṽ) by x ∈ Q as linear mappings on P (projective limits of locally convex cones were
defined in [7]).

Let P be a cone. Then (P,L(P)) is a dual pair endowed with the bilinear mapping < a, µ >= µ(a), for
a ∈ P and µ ∈ L(P).

A Cauchy net in locally convex cones is defined in [6] as follows:
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Definition 2.3. A net (xi)i∈I in (P,U) is called lower (upper) Cauchy if for every U ∈ U there is some γU ∈ I such
that (xβ, xα) ∈ U (respectively, (xα, xβ) ∈ U) for all α, β ∈ I with β ≥ α ≥ γU. Also (xi)i∈I is called symmetric
Cauchy if it is lower and upper Cauchy, i.e., if for each U ∈ U there is some γU ∈ I such that (xβ, xα) ∈ U for all
α, β ∈ I with β, α ≥ γU.

The locally convex cone (P,U) is called lower (upper and symmetric) complete if every lower (respectively,
upper and symmetric) Cauchy net converges in lower (respectively, upper and symmetric) topology. It is
proved in [6], that (R, Ṽ) is upper and symmetric complete but not lower complete. Indeed the net (−n)n∈N
is lower Cauchy but it is not convergent with respect to the lower topology.

Theorem 2.4. Let P be a cone. The locally convex cone (L(P),Uσ(L(P),P)) is complete with respect to the upper
and symmetric topologies.

Proof. If (µi)i∈I is a Cauchy net in the upper topology of (L(P),Uσ(L(P),P)), then, for every a ∈ P, (µi(a))i∈I is a
Cauchy net in the upper topology of (R, Ṽ). Now we consider usual order onR and we set µ(a) = supi∈I µi(a). Then
µ is a linear functional on P by Lemma 5.5 from [9], and µi → µ with respect to the upper topology, since for every
a ∈ P, µi(a) ≤ µ(a) for all i ∈ I.

Let (µi)i∈I be a Cauchy net in the symmetric topology of (L(P),Uσ(L(P),P)). Then, for every a ∈ P, (µi(a))i∈I is
a Cauchy net in the symmetric topology of (R, Ṽ). Since (R, Ṽ) is complete with respect to the symmetric topology,
there is µ(a) ∈ R such that µi(a) → µ(a) with respect to the symmetric topology. We prove that µ ∈ L(P) and
µi → µ with respect to the symmetric topology of (L(P),Uσ(L(P),P)). It is easy to see that µ(a + b) = µ(a) + µ(b)
for a, b ∈ P (the addition is continuous with respect to the symmetric topology by Proposition 1.1 from [9]). Let
a ∈ P. Since (µi(a))i∈I is a Cauchy net and {+∞} is an open subset of R, there is i0 ∈ I such that µi(a) < +∞
for all i ≥ i0 or µi(a) = +∞ for all i ≥ i0. If µi(a) < +∞ for all i ≥ i0, then αµi(a) → αµ(a), by the continuity
of the scaler multiplication on bounded elements(see [9], Proposition 1.1). On the other hand µi(αa) → µ(αa) and
µi(αa) = αµi(a). This yields that µ(αa) = αµ(a), since the symmetric topology of (R, Ṽ) is Hausdorff. If µi(a) = +∞
for all i ≥ i0, then µ(a) = ∞. This shows that αµi(a) = +∞ → +∞ = αµ(a) for α > 0 and 0.µi(a) → 0 = 0.µ(a).
Thus αµi(a)→ αµ(a) for all α ≥ 0. On the other hand µi(αa)→ µ(αa) and µi(αa) = αµi(a). Then µ(αa) = αµ(a).

We prove that (µi)i∈I is convergent to µ with respect to the symmetric topology of (L(P),Uσ(L(P),P)). Let
Uσ ∈ Uσ(L(P),P). For a ∈ P, we define the linear functional ϕa : L(P)→ R as below

ϕa(µ) = µ(a) µ ∈ L(P).

For a ∈ P, we set Φa = ϕa×ϕa. There are n ∈N and a1, ..., an ∈ P such that
⋂n

j=1 Φ−1
a j

(1̃) ⊆ Uσ. Since µi(a j)→ µ(a j)

with respect to the symmetric topology of (R,V), for each j = 1, 2, ...,n, there is i j ∈ I such that (µi(a j), µ(a j)) ∈ 1̃
and (µ(a j), µi(a j)) ∈ 1̃ for all i ≥ i j. This shows that (µi, µ) ∈ Φ−1

a j
(1̃) and (µ, µi) ∈ Φ−1

a j
(1̃) for all i ≥ i j. We set

i0 = max{i1, ..., in}, then we have (µi, µ) ∈
⋂n

j=1 Φ−1
a j

(1̃) ⊆ Uσ and (µ, µi) ∈
⋂n

j=1 Φ−1
a j

(1̃) ⊆ Uσ for all i ≥ i0. This
shows thatµi ∈ Uσ(µ)Uσ for all i ≥ i0. Thusµi → µwith respect to the symmetric topology of (L(P),Uσ(L(P),P).

Let (P,Q) be a dual pair. We shall say that a subset B ofP isUσ(P,Q)-bounded below whenever it is bounded
below in locally convex cone (P,Uσ(P,Q)). Let B be a collection of Uσ(P,Q)-bounded below subsets of P
such that

(a) αB ∈ B for all B ∈ B and α > 0,
(b) For all X,Y ∈ B there is Z ∈ B such that X ∪ Y ⊂ Z.
(c) P is spanned by

⋃
B∈B B.

For B ∈ Bwe set

UB = {(x, y) ∈ Q2 :< b, x >≤< b, y > +1, for all b ∈ B} and UB(Q,P) = {UB : B ∈ B}.

It is proved in [5], page 37, that UB(Q,P) is a convex quasiuniform structure on Q and (Q,UB(Q,P)) is a
locally convex cone. If b ∈ B for B ∈ B, then b ∈ B ⊆ U◦B. Now P ⊂ (Q,UB(Q,P))∗ by (c). This shows that
UB(Q,P) is finer than Uσ(Q,P).

If B is the collection of all finite subsets of P, then UB(Q,P) = Uσ(P,Q).
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Lemma 2.5. Let (P,Q) be a dual pair and letB be a collection ofUσ(P,Q)-bounded below subsets ofP that has (a), (b)
and (c). Then the upper neighborhoods of (Q,UB(Q,P)) are closed with respect to the lower topology of (Q,Uσ(Q,P))
and the lower neighborhoods of (Q,UB(Q,P)) are closed with respect the upper topology of (Q,Uσ(Q,P)).

Proof. Let B ∈ B, ν ∈ Q and µ ∈ UB(ν)
lσ

(the closure of UB(ν) with respect to the lower topology of (Q,Uσ(Q,P))).
Then there is a net (µi)i∈I in UB(ν) such that µi → µ with respect to the lower topology of (Q,Uσ(Q,P)). Let
b ∈ B and ε > 0. µi(b) → µ(b) with respect to the lower topology of (R, Ṽ). Then there is ib,ε such that
µ(b) ≤ µi(b) + ε ≤ ν(b) + 1 + ε for all i ≥ ib,ε. Then µ(b) ≤ ν(b) + 1, since ε is arbitrary. Thus µ ∈ UB(ν). The other
claim can be proved in a similar way.

Corollary 2.6. Under the assumptions of Lemma 2.5, the upper and lower neighborhoods of (Q,UB(Q,P)) are closed
with respect to the symmetric topology of (Q,Uσ(Q,P)).

Definition 2.7. Let (P,U) be a locally convex cone with (SP). We shall say that the locally convex cone (P̂, Û) is
completion of (P,U) whenever

(a) Û induces U on P2,
(b) (P̂, Û) is complete under the upper topology,
(c) P is dense in P̂ under the upper topology.

Theorem 2.8. Let (P,Q) be a dual pair and let B be a collection of Uσ(P,Q)-bounded below subsets of P that has
(a), (b) and (c). Then the completion of (Q,UB(Q,P)) is the subcone

Q̂ =
⋂
B∈B

(Q + ({0} × B)◦)

of L(P), under the convex quasiuniform structure UB(Q̂,P), the polar ({0} × B)◦ being taken in L(P).

Proof. If ẑ ∈ Q̂ and B ∈ B, then ẑ ∈ Q + ({0} × B)◦. Therefore there is x ∈ Q such that ẑ ∈ x + ({0} × B)◦. There is
λ > 0 such that x ∈ λ({0}×B)◦, since B is Uσ-bounded below. Then ẑ ∈ (λ+ 1)({0}×B)◦. This shows that each B ∈ B
is Uσ(P, Q̂)-bounded below and we can define UB(Q̂,P). Also Q is dense in Q̂ under the upper topology, indeed for
every B ∈ B and ẑ ∈ Q̂ there is x ∈ Q and µ ∈ ({0} × B)◦ such that ẑ = x + µ. For b ∈ B we have

< b, ẑ >=< b, x > + < b, µ >≥< b, x > −1.

This shows that x ∈ Q ∩UB(ẑ).
Clearly, UB(Q̂,P) induces UB(Q,P) on Q.
Now, we prove that (Q̂,UB(Q̂,P)) is complete under whose upper topology. Let (ẑi)i∈I be a Cauchy net with

respect to the upper topology of (Q̂,UB(Q̂,P)). Then (ẑi)i∈I is a Cauchy net with respect to the upper topology of
(L(P),Uσ(L(P),P)). Since, (L(P),Uσ(L(P∗,P)) is complete with respect to the upper topology, there is µ ∈ L(P) such
that ẑi → µ under the upper topology. For B ∈ B there is i0 ∈ I such that ẑα ∈ UB(ẑβ) for all β ≥ α ≥ i0. Then
ẑβ ∈ (ẑα)UB for all β ≥ α ≥ i0. This implies µ ∈ (ẑα)UB for α ≥ i0, since (ẑα)UB is closed with respect to the upper
topology of (L(P),Uσ(L(P),P)) by Lemma 2.5. Thus ẑα ∈ UB(µ) for all α ≥ i0. This shows that ẑα → µ under the
upper topology of (Q̂,UB(Q̂,P)). We show µ ∈ Q̂. For γ > i0 we have < b, ẑγ >≤< b, µ > +1 for all b ∈ B. Since B is
Uσ(Q̂,P)-bounded below and ẑγ ∈ Q̂, there is λ > 0 such that −λ ≤< b, ẑγ > for all b ∈ B. Then 0 ≤< b, µ > +(λ+1)
for all b ∈ B. Then µ ∈ (λ + 1)({0} × B)◦. This shows that µ ∈ Q̂.

Theorem 2.9. The locally convex cone (Q̂,UB(Q̂,P)) from Theorem 2.8 is complete with respect to the symmetric
topology.

Proof. Let (ẑi)i∈I be a Cauchy net in (Q̂,UB(Q̂,P) with respect to the symmetric topology. SinceUB(Q̂,P) is finer than
Uσ(Q̂,P) induced on Q̂ by Uσ(L(P),P), (ẑi)i∈I is a Cauchy net under the symmetric topology of (L(P),Uσ(L(P),P)).
Now Theorem 2.4 yields that there is µ ∈ L(P) such that ẑi → µ under the symmetric topology of (L(P),Uσ(L(P),P)).
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Since (ẑi)i∈I is a Cauchy net with respect to the symmetric topology of (Q̂,UB(Q̂,P)), for every B ∈ B there is i0 ∈ I
such that (ẑi, ẑ j) ∈ UB for all i, j ≥ i0. For a fix j ≥ i0 we have ẑi ∈ UB(ẑ j) for all i ≥ i0. This shows that µ ∈ UB(ẑ j),
since UB(ẑ j) is closed in the symmetric topology of (Q̂,Uσ(Q̂,P)) by Corollary 2.6. Then (µ, ẑ j) ∈ UB for j ≥ i0.
Similarly, (ẑi, µ) ∈ UB for i ≥ i0. Thus ẑi → µ with respect to the symmetric topology of (Q̂,UB(Q̂,P)).

Now, we are ready to obtain the completion of a locally convex cone with (SP). Since the convex quasi-
uniform structure of a locally convex cone with (SP) can be represented as a polar-convex quasiuniform
structure, we can use Theorem 2.8 for this aim.

Theorem 2.10. Let (P,U) be a locally convex cone with (SP). The completion P̂ ofP is the subcone
⋂

U∈U(P+ ({0}×
U◦)◦) of L(P∗) endowed with the convex convex quasiuniform structure UB(P̂,P∗), where B = {U◦ : U ∈ U}.

Proof. We consider the dual pair (P∗,P) and the collection B = {U◦ : U ∈ U} of subsets P∗. It is proved in
[5], II, that the convex quasiuniform structures U and UB(P,P∗) are equivalent. Now Theorem 2.8 yields that
P̂ =

⋂
U∈U(P + ({0} ×U◦)◦) and Û = UB(P̂,P∗).

Corollary 2.11. Let (P,U) be a locally convex cone with (SP). Then the locally convex cone (P̂, Û) is complete with
respect to the upper and symmetric topologies by Theorems 2.8 and 2.9.

Proposition 2.12. Let (P,U) and (Q,W) be locally convex cones with (SP) and t : (P,U)→ (Q,W) be a continuous
linear mapping. Then t has an extension t̂ which is a continuous linear mapping of (P̂, Û) into (Q̂,Ŵ).

Proof. Let t′ be the transpose of t, mapping Q∗ into P∗, and let t′∗ be the transpose of t′ , mapping L(P∗) into
L(Q∗). Suppose that t̂ be the restriction of t′∗ to P̂. Now, we show that t̂ is continuous. Let UW◦ ∈ UB(P̂,P∗),
where B = {U◦ : U ∈ U} and W ∈ W. There is U ∈ U such that t × t(U) ⊂ W, since t is continuous. We
claim that t̂ × t̂(UU◦ ) ⊂ UW◦ . Indeed, if (â, b̂) ∈ UU◦ , then µ(â) ≤ µ(b̂) + 1 for all µ ∈ U◦. If Λ ∈ W◦ then
Λ ∈ (t × t(U))◦, since W◦

⊂ (t × t(U))◦. This shows that t′ (Λ) ∈ U◦. Then t′ (Λ)(â) ≤ t′ (Λ)(b̂) + 1. This yields that
(t′∗(â))(Λ) ≤ (t′∗(b̂))(Λ) + 1. Thus (t̂(â), t̂(b̂)) ∈ UW◦ .

Now, we prove that for â ∈ P̂, t̂(â) ∈ Q̂. If â ∈ P̂, then there is a net (ai)i∈I in P such that ai → â with respect to
the upper topology of (P̂, Û). Since t̂ is continuous with respect to the upper topologies of (P̂, Û) and (Q̂,Ŵ), then
t(ai) = t̂(ai)→ t̂(â). This shows that t̂(â) ∈ Q̂.

Proposition 2.13. If, in Proposition 2.12, t is an isomorphism, then t̂ is one to one.

Proof. Firstly, we prove that t′ is onto. If µ ∈ P∗, then µot−1
∈ Q

∗, since t is an isomorphism. Now, we have
t′∗(µot−1) = µ.

Let t̂(â) = t̂(b̂). This implies < Λ, t′∗(â) >=< Λ, t′∗(b̂) > for all Λ ∈ Q∗. Then < t′ (Λ), â >=< t′ (Λ), b̂ > for all
Λ ∈ Q∗. This yields â = b̂, since t′ is onto.

Proposition 2.14. Let (P,U) be a locally convex cone with (SP). The completion (P̂, Û) of (P,U) is unique.

Proof. Let (P̃, Ũ) be another completion of the locally convex cone (P,U). The identity mapping i : (P,U)→ (P,U)
is an isomorphism. Then the extensions mappings î1 : (P̂, Û)→ (P̃, Ũ) and î2 : (P̃, Ũ)→ (P̂, Û) are one to one. This
shows that (P̂, Û) and (P̃, Ũ) are isomorphic.

Corollary 2.15. If (P,U) is a locally convex cone with (SP) and it is complete with respect to the upper topology,
then (P̂, Û) = (P,U).

Theorem 2.16. Let (P,U) be a locally convex cone with (SP) which is complete with respect to the upper topology.
Then it is complete with respect to the symmetric topology.

Proof. We have (P̂, Û) = (P,U), by Corollary 2.15. Then (P,U) is complete with respect to the symmetric topology
by Corollary 2.11.
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The locally convex cone (R,V) is complete under whose upper topology. Then (R̂, V̂) = (R,V) by
corollary 2.15. If (P,U) is a locally convex cone with (SP) and µ : (P,U)→ (R,V) be a linear functional, then

there is a continuous extension µ̂ : (P̂, Û)→ (R̂, V̂) = (R,V) by Proposition 2.12. This yields that P∗ ⊂ P̂∗.
Let E be a real locally convex Hausdorff topological vector space, and let V be a neighborhood base

of convex, balanced and closed subsets of E. For every V ∈ V we set Ṽ = {(a, b) : a − b ∈ V}. Then
Ṽ = {Ṽ : V ∈ V} is a convex quasiuniform structure on E and (E, Ṽ) is a locally convex cone. We have
V◦ = Ṽ◦ (V◦ is taken in the dual space of E as a locally convex space and Ṽ◦ is taken in the dual cone of E
as a locally convex cone). This shows that the dual space of E as a locally convex space is equal to the dual
cone of (E, Ṽ). We denote it by E∗. The locally convex cone (E, Ṽ) has (SP). Indeed, let (a, b) < ρṼ for some
ρ > 1 and V ∈ V. Then a − b < ρV. Since E is Hausdorff, V is closed, and then there is µ ∈ E∗ such that
µ(a− b) > ρ > 1 by the Hahn-Banach theorem. Then µ(a) > µ(b) + 1. Also the algebraic dual of E∗ as a space
and a cone are equal. It is proved in [8], VI, Theorem 3 that the completion of E as a locally convex space is
Ê =

⋂
V∈V(E + V◦◦). Now we prove that the completion of (E, Ṽ) as a locally convex cone is equal to Ê. For

this we prove that ({0} × Ṽ◦)◦ = V◦◦. Indeed, let ϕ ∈ V◦◦. If µ ∈ Ṽ◦, then µ ∈ V◦. This shows that |ϕ(µ)| ≤ 1.
Then −1 ≤ ϕ(µ) and ϕ(0) = 0 ≤ ϕ(µ) + 1. Thus ϕ ∈ ({0} × Ṽ◦)◦. Similarly, we can prove that ({0} × Ṽ◦)◦ ⊆ V◦◦.

Example 2.17. The real number system R endowed with the convex quasiuniform structure V = {ε̃ : ε > 0} is a
locally convex cone. We have R∗ = (R,V)∗ = [0,+∞) and L(R∗) = L([0,+∞)) = R = R ∪ {+∞}, where +∞ is a
linear functional on [0,+∞) acting as

+∞(a) =
{0 a=0

+∞ else.

Now, we have R̂ = R, since for every ε > 0 we have +∞ ∈ ({0} × ε̃◦)◦.

Example 2.18. Let (E, ||.||) be a normed space with unit ball B. Let Q be the collection of all sets a + ρB, a ∈ E, ρ ≥ 0.
Then Q is a cone endowed with the usual addition and scaler multiplication. Its neutral element is {0}. We set

B̃ = {(A,C) ∈ Q2 : A − C ⊆ B}.

Then U = {αB̃ : α > 0} is a convex quasiuniform on Q and (Q,U) is a locally convex cone. We have Q∗ = {µ⊕ r : r ≥
0, µ ∈ E∗, ||µ|| ≤ r}, where

µ ⊕ r(a + ρB) = µ(a) + rρ,

for a ∈ E (see [5], II, Example 2.17). If E is the real number system R endowed with the usual topology, then Q̂ is the
set {a + ρB : a ∈ E, ρ ≥ 0} ∪ {{∞}}, where {∞} is a linear functional on Q∗ acting as

{∞}(µ ⊕ r) =
{0 r=0

+∞ else.

The locally convex cone (Q,U) has (SP) but it is not complete with respect to the upper topology. In fact the net
(nB)n∈N is a Cauchy net in the upper topology but is not convergent. Since {+∞} ∈ ({0} × (αB̃)◦)◦ for all α > 0, we
have

Q̂ = Q ∪ {{+∞}}.

Then the completion of (Q,U) is the locally convex cone (Q̂,UB(Q̂,Q∗), where B = {(αB̃)◦ : α > 0}.
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