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Abstract. In this paper, a boundary version of Schwarz lemma is investigated. We take into consideration
a function f(z) holomorphic in the unit disc and f(0) = 0 such that |‘R f | < 1 for |z] < 1, we estimate a
modulus of angular derivative of f(z) function at the boundary point b with f(b) = 1, by taking into account
their first nonzero two Maclaurin coefficients. Also, we shall give an estimate below | f (b)| according to the
first nonzero Taylor coefficient of about two zeros, namely z = 0 and z, # 0. Moreover, two examples for
our results are considered.

1. Introduction

The Schwarz lemma is one of the most important results in complex analysis. This lemma, named after
Hermann Amandus Schwarz, is as results in complex analysis about holomorphic functions defined on the
unit disc. The classical Schwarz lemma can be stated as follows [7]:

Let f be a holomorphic function in the unit disc D = {z : |z| < 1}, with f(0) = 0 and | f(z)l < 1. Then
‘ f (z)| < |z, with strict inequality for all z # 0 in D unless f has the form f(z) = az for some o € C with |a| = 1.
Also f’(0)| < 1, with equality only for f(z) = az with |a| = 1.

Let f(z) be the function, which is holomorphic in the unit disc and satisfies the relations f(0) = 0 and
“R f (z)| < 1 for |z| < 1. Therefore, we have

sR(e%”f@)) >0, |2 <1.

Hence the function
2f@ _1
ez
zZ) = ——
¢(2) T

is holomorphic in D that satisfies the inequality |(p(z)| < 1for |z] < 1and ¢(0) = 0. Applying the Schwarz
lemma for the function ¢(z), we obtain

, 4
fO)f=< - (1.1)
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The equality (1.1) holds if and only if

2 1 + ze®
f@) = ah‘( )

1 — zet®

where 0 is a real number.

Thus, Schwarz lemma gives a better bound under stronger hypothesis.

It is an elementary consequence of Schwarz lemma that if f extends continuously to some boundary
point b with |b| = 1, and if | f (b)| =1and f’(b) exists, then f’(b)| > 1, which is known as the Schwarz lemma
on the boundary.

In [20], R. Osserman proposed the boundary refinement of the classical Schwarz lemma as follows:

Lemma 1.1 (The boundary Schwarz lemma). Let f : D — D be holomorphic function with f(0) = 0. Assume
that there is a b € dD so that f extends continuously to b, |f (b)| =1, and f'(b) exists. Then

2
o)z — O (1.2)

and

()| >1 (1.3)

Inequality (1.2) is sharp, with equality possible for each value of

£/(0)|- Also,

f/(b)| > 1 unless f(z) = ze', O real.

Inequality (1.3) and its generalizations have important applications in geometric theory of functions
(see, e.g., [8], [22]). Therefore, the interest to such type results is not vanished recently (see, e.g., [1], [2], [3],
[5], [6], [9], [10], [13], [14], [20], [21], [23] and references therein).

For our main results we need the following lemma known as Julia-Wolff lemma [22].

Lemma 1.2 (Julia-Wolff lemma). Let f be a holomorphic function in D, f(0) = 0and f(D) C D. If, in addition, the
function f has an angular limit f(b)atb € JD, f(b)) =1, then the angular derivative f'(b) existsand 1 < f’(b)( < oo,

V. N. Dubinin [5] strengthened the inequality f’(b)| > 1 by involving zeros of the function f(z). S.
G. Krantz and D. M. Burns [11] and D. Chelst [4] studied the uniqueness part of the Schwarz lemma.
According to M. Mateljevi¢’s studies, some other types of results which are related to the subject can be
found in (see, e.g., [15], [16], [17] and [19]). In addition, [18] was posed on ResearchGate where is discussed
concerning results in more general aspects. Also, M. Jeong [10] got some inequalities at a boundary point
for a different form of holomorphic functions and showed the sharpness of these inequalities. In addition,
M. Jeong found a necessary and sufficient condition for a holomorphic map to have fixed points only on
the boundary of the unit disc and compared its derivatives at fixed points to get some relations among
them [9]. X. Tang, T. Liu and J. Lu [14] established a new type of the classical boundary Schwraz lemma for
holomorphic self-mappings of the unit polydisk D" in C". They extended the classical Schwarz lemma at
the boundary to high dimensions.

As seen in [12], an aplication of the Schwarz lemma is obtained. A boundary Schwarz lemma is formed
for pluriharmonic mapping between unit balls and any dimension by Y. Liu, S. Dai and Y. Pan.

Taishun Liu, Jianfei Wang, Xiaomin Tang [24] established a new type of the classical boundary Schwarz
lemma for holomorphic self-mappings of the unit ball in C". They then applied their new Schwarz lemma
to study problems from the geometric function theory in several complex variables.

Furthermore, for historical background about the Schwarz lemma and its application on the boundary
of the unit disc we refer to (see [3], [23], [25]).
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2. Main Results

In this section, the different versions of the boundary Schwarz Lemma have been discussed. Assuming
the existence of angular limit on a boundary point, it has been obtained some inequalities about estimating
below the modulus of the derivative of the holomorphic function. Also, it has been shown that these
inequalities are sharp.

Theorem 2.1. Let f(z) be a holomorphic function in the unit disc D, f(0) = 0 and |‘Rf(z)( < 1for|z| < 1. Suppose
that, for some b € dD, f has an angular limit f(b) at b, f(b) = 1. Then, we have the inequality

> 2 2.1)
Tt

The inequality (2.1) is sharp, with equality for the function
2 1+z
= I§ ) .
/@ in n(l -

zZ

Proof. Let

e3f@ 1

P(z) = TEITh

@(z) is a holomorphic function in D, ¢(0) = 0 and |(p(z)( <1for|z| < 1. Forb € dD and f(b) = 1, we take

Zf0) 1 g%“_1 cos ¥ +isinf -1 i—1‘
| ' ’”f(b)+1 e%+1 “lcosZ+isinE+1| |i+1]
From (1.3), we obtain
, inf’ (b)ezf(b)
S q) (b)| m
(e?ﬂb) + 1) e + 1|
and
2
‘()| = —.
fo)z =

Now, we shall show that the inequality (2.1) is sharp. Let

o= 22,

zZ

Then

f()__i/

in1l

2 2 2
f()_ml T in

and

)= 2
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Theorem 2.2. Under the same assumptions as in Theorem 2.1, we have

1 16

‘)|z =—————. 2.2
f(”7u+np@| (22)
The equality in (2.2) occurs for the function
2 1+z
o= (=)
Proof. Let ¢(z) be as in the proof of Theorem 2.1. Therefore, on account of (1.2), we obtain
2 ®]=| F®eEO|  nlfollet| x )
— < (p = - = - = — .
1+ |pr(0)| (e% o 4 1)2 e + 1|2 2
Also, since
’ T 4
9O =71F o),
we take
2 T
—— <~ |f'(b)].
1+Z|f0) ~ 2 |
Thus, we have
, 1 16
Fo)z-———
T4+ 7|f(0)
To show that the inequality (2.2) is sharp, take the holomorphic function
2 1+z
0= (i)
Then
N
f (l)l = o
Since |f ’(0)| = %, (2.2) is satisfied with equality. That is;
1 16 1 16 2
T4+n|f(0) T4+n: T
0

If we know that the second coefficient in the expension of the function f(z) = ¢1z + c22% + ¢32° + ..., then
we obtain new inequalities of Schwarz lemma at the boundary by taking into account c,.

Theorem 2.3. Let f(z) = c1z + ¢2z* + ... be a holomorphic function in the unit disc D and |9%f(z)( <1for|z| < 1.
Suppose that, for some b € dD, f has an angular limit f(b) at b, f(b) = 1. Then, we have

2(4 - 7tleyl) )
16 — 72 |c1)> + 47t

ro)z2(1s @3)

The inequality (2.3) is sharp with extremal function

1+z

f2) = %m(m).
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Proof. Let h(z) = z, z € D and ¢(z) be as in the proof of Theorem 2.1. (z) is holomorphic in D and |h(z)| < 1
for |z| < 1. Lindelof principle implies that for each z € D, we have |(p(z)| < |h(z)|. Thus

o0 =23
is a holomorphic function in D and |qb(z)| < 1for [z| < 1. In particular, we take

|p(0)] = % lc1l 2.4)
and

9O = 7 leal.

In addition, it can be seen that

bo'h) , bi’ (b)
—— =o' W) = —=.
o0 POz el= S
The composite function
Gy = 2800
1= ¢(0)$(2)

satisfies the hypothesis of the Schwarz lemma on the boundary, from where we obtain estimate

2 1- o 1+](0)
— = SICO) = ———— [¢'(0)| < ——— {l¢’ ()| - 1;.
L+1GO) 1- 3000 | 1—M@N -1
Since
) = —12

16 — 2 |c1 >

we have that

2 4+n|01|{n
< —_
2

< re) -1}
47t|co| 4 —
1+ 22 el
Therefore, we get the inequality (2.3).
Now, we shall show that the inequality (2.3) is sharp. Let

2 1+z
Zufi)
@ in n 1-z
Then
ol 2
fl==
and since f’(0)| = % = |cq], (2.3) is satisfied with equality. [

If f(z) has no zeros different from z = 0 in Theorem 2.3, the inequality (2.3) can be further strengthened
as follow:
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Theorem 2.4. Let f(z) = c1z + 32> + ..., Rep = 0,

5558

-1 < 8¢ < 0 be a holomorphic function in the unit disc D and

(% f(z)| <1 for |z| < 1and f(z) has no zeros in D except z = 0. Suppose that, for some b € D, f has an angular

limit f(b) at b, f(b) = 1. Then, we have

[ 2t i) ]

je1l (In %)) = Ieal

and

o] <2

ool

The equality in (2.5) occurs for the function

o= 22

z

and the equality in (2.6) occurs for the function

2 (1420
f@)=—In| ————~1,
I 1—2612(1 n)

where Rey =0, -1 < Jeg < 0and (ln ”“1) <0.

(2.5

2.6)

Proof. Having in mind inequality (2.4), we denote by In¢(z) the holomorphic branch of the logarithm

normed by the condition and since Re; =0, -1 < Jeg < 0, we have

inc . iTcy
e +iarg|—

In$(0) = 1n(i’%) —In

Consider the function

In$(z) — In $(0)

PO = 15@) + ng0)

p(z) is holomorphic function in D, p(0) = 0,
(1.2), we obtain

21n (0
2 ) - — P
1+[p(0) ‘(m(p ®) +In$(0))’
—2In¢(0) {
arg? ¢(b) + In” $(0)

Replacing arg? ¢(b) by zero, we take
2

-1}

0)| ln(p 0) {

Since
-1 el
21ln (' S |) |Cl|

p'(0) =

' (b)| - |h'<b>|}.

<1for|z|] < 1and |p(b)| =1 for b € dD. Therefore, from
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we obtain

Fe)| -1},

2 2
L

© 2In(|EL]) lal 1

Therefore, we take the inequality (2.5) with an obvious equality case.
Similary, p(z) function satisfies the assumptions of the Schwarz lemma, we obtain

1> S
21n(|%() lal
and
o] €21 In (’ nf ‘) .

The equality in (2.6) is obtained for the function
2 1+ ze%(h1 )
f@)=+In [ﬁ]

as show simple calculations. [

In Theorem 2.3 and 2.4, there are both c; and ¢, in the right side of the inequalities. But, if we use (1.3)
instead of (1.2), we obtain weaker but more simpler inequality (not including ;).

Theorem 2.5. Under the same assumptions as in Theorem 2.4, we have

> 2 (1 N (1520) 27)

In addition, the result is sharp and the extremal function is

o= 212,

z

Proof. From proof of the Theorem 2.4, using the inequality (1.3) for the function p(z), we obtain

_ -2In¢(0) {
arg? ¢(b) + In” $(0)

Replacing arg? ¢(b) by zero, we take

1)

Thus, we obtain the inequality (2.7) with an obvious equality case. [J

1<

o' ()| - I G}

= 1n¢>(0) {

In the following Theorem, we shall give an estimate below
coefficient of about two zeros, namely z = 0 and zy # 0.

according to the first nonzero Taylor

Theorem 2.6. Let f(z) = c1z + 222 + ... be a holomorphic function in the unit disc D, f(zp) = 0 for 0 < |zo| < 1 and
‘?&f(z)| < 1for |z| < 1. Suppose that, for some b € dD, f has an angular limit f(b) at b, f(b) = 1. Then, we have
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1- |Zo\2 4|ZO|_'“|f'(0)|
(1 * lb—zof* 4|Zo|+7'l|f’(0)| (2.8)

X [1 16hm2+nﬂf'zwHfKOM(1—VoF)—4nLﬂ(a»Kl—voP)—4an<ml1—uof])
16lz0l* +722| £ (z0)|| £ (0)| (1-lz0l* ) +47| £ (z0)| (1~Izo* ) +47| £ (O)] 1b—z0

The inequality (2.8) is sharp, with equality for each possible values = 2cand
- %d(OScS tlzl,0<d < il'zlg(']lz)
Proof. Let
— 20
k
@ = 1—-Zpz
and g : D — D is holomorphic function and a point zy € D. So, we have
9(zo0)| + k(z)|
l92)] < Jrtol + @) : (2.9)
1+ [g(z0)| I(2)
If m : D — D is holomorphic function and 0 < |zp| < 1, letting
m(z) — m(0
{](Z) = %
z(1 - mO)m(2))
in (2.9), we obtain
m(zo)—m(0)
me) =m©) | _ | * k@)
1-mO)m(z))| m(z0)-m(0)
( I 1| et e
and
ImO)] + |2l s
(@)l < - Télﬂl,f(zz))‘l (2.10)
where
m(zo) — m(0)

C=

20 (1 - mO)m(zp))

Without loss of generality, we will assume that b = 1. If we take

m(z) = ——

1-2pz

then we obtain

(0 ¢’ (z0) (1 - lzof
m(0) = P ), m(zo) = #
—Z0 20
and
@ (20)(1- \zUIZ) ?'(0)
C — 20 ZU

20 20

20 (1 — @M)/
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where |C| < 1. Let [m(0)] = y and

q)’(zo)(1*\20|2) ¢’ (0)
— = |t =
B 9O || E0-kR)])
ol (1 + |22 | X0
By (2.10), we take
y ID|+[k(z)|
1+|D|k(z)|
|p(2)] < la k(2) 1+ 1y RGL
1+ DIk@)]
and

IDI+lk(z)| 2 IDI+lk(z)|
1- |(P(Z)| > 1+ )4 |Z| 1+|;)||ké)| =Y |Z| |k(Z)| - Izl |k(Z)| 1+‘D||k(zz)| _

— P D|+|k
1-H (1= I2) (y 21 15350

Let A(z) = 1+ |2l {25y and s(z) = 1+ Dk(z)|. Then

1P kG) 1- |z 1 - |k(z)P
1= Gk Aese T PN T A TPV H

Since
limA(z) =14y, lims(z) =1+ D
z—1 z—1

and

2 (1= 1P) (1~ l=of)

- — 2
|1 —zoz|

Z—2
1-2zyz

7

1-k@)P=1-

passing to the angular limit in (2.11) gives

2 1— |zf? 1 Jzof?
"M = ( +D +yD
# ) (1+y)(1+D) 11— zoP 11—z
_ 2 1- _ _ 2
_ 1+1 |Z0|2 N 7/(1+1 D1 |ZO|2).
1-zo)* 14y T+ D1 -z

In addition, since

¢'(0)]  4lzol -7
@'(0) 4zl +7

70|
70|

1— (0
1 s 1- Im(O)I _ Z0 | |zo| —
T+y 1+mO)l 4, ‘@’(0)’ |zo| —
20

and

(1 -1z A@)s(z)’

5561

(2.11)
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MJrM
B z0
1-—
lzolf 1-| Z£© ¢ (1-Fol")
1 - D 0 20 E)
1+D Yoo v
B 0
1+ "
o) || "0 (1ol
|
12O @) (=) [\ |9 | |¢©
i S I 2 En
- ¢'(0) (P’(Zo)(1—|zo|2) (P’(Zo)(1—|zo|2) @' (0)
|Z°|(1 RES % e
(1 - 202|020 2 | o) _ ot 0] _ 10
0 41 z Zp 41 zo 2 4|72 gl e
- O] (=kl)| | £ O (1-10?) | 7 | (0 o
|ZO|(1_% Z_U' 20 1 ER 1 S i 20
we obtain

(P/(1)| Z (1 + 1—|Z(]|z + 4‘20|—ﬂ|f’(0)| [1 +

16z0P+72| £ (z0)|| £/ O)] (1-lz0/) —47t| £ (z0)| (1-Iz0* ) —47| £ (0)] 1_|zo|2])
lb—zo"  4lzol+7t| f(0)] )

16]z0 P+ (z0)|| £/ O] (1-lz0l* ) +4| £ (z0)| (1— |20 ) +47| £ (0)] Ib—20 [

From definition of ¢(z), we have

i f (z)e @
o= L0
(1 +e? (Z))
and
o] =3 1F ).

Therefore, we obtain the inequality (2.8).

Now, we shall show that the inequality (2.8) is sharp.
Since m(z) = Z(@(jz] is holomorphic function in the unit disc D and |m(z)| < 1 for |z|] < 1, we obtain

1-zpz

@'(0)] < Izol
and

’ |ZO|
Z0)| < —.
(p(0| 1—|zof?

Now, we take zy € (—1,0) and arbitrary two numbers c and 4, such that 0 < ¢ < % |zol,0 < d < %% Let
i}

Izl | ¢
d -t

. zld(l—lzolz)+c

—|z0? 2 1=zl
zo(1+cd—1zli°‘) G 1+ adlt
0

The function

z-z(
_c 1720z

_ 2 T2 1+F =22
. Z ZO 1-zpz

o) = iz———
1—-2pz . T

207 1+F 22

1-zpz
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is holomorphic in D and |¢(z)| < 1 for |z| < 1.

Let
z—z,
L4z 1*%)1
e%f(z) -1 . Z—2Z 20 1+F]z:%)z
: =iz—— —.
e2f@ 41 1—ZoZl_LzF+f_%]z
Z—Z
z0 1+F17%Z
Therefore, we take f'(0)| = %c and
1 d(1-lzof*)+c
_c
to——
; S 1=zl
. i e 2 1+cd —5+
an’(Zo)ezf(ZU) _ 20 % + Fz _ 20 2
; 2 T 21— £ - 2 —lzoP?
(27 +1) L=z 1-g520F  1-zy  ep1 dikl)e
20 "V z5 1-zo]
1+cd —5
zZ

0

4.
T

With the simple calculations, we obtain

1+

1-z2 |_p2 )4 c 15 1P
1-23 + (1 i 20)2 A+F) )(1 ) %0 (1 T P

)5 +1)

Il
-

¢'(1) 127 (—i N 1)2

1+ 1_25 1+ 1+ 1_25 1-F
2 2
(1= zp) 1_% (1-z0) 1+F

I
-

1+

Il
-

1-z; c+ 20 1-22 z +cd(1 )
5 + 1+ 3
(I-z)" —¢+2o (1 -zo) z2+cd(

inf/(l)e%[f(l) . 1 —zg ¢+ 2o . 1 —zé Z +Cd(1 -z
— =1 +
(e%’ ) 4 1)2 (1-2z)? —Cc+2zo

and

nf(l)ezf(l) . 1-22 R 1-22 zg+cd(1—z§)—d
(570 +1)’ (1-20) —€+2o

Since zp € (—1,0), the last equality show that (2.8) is sharp. [

3. Examples

Example 3.1. Let us consider a function f(z) given by

o= 22,

From here, we have that

1+z)
z

2—i(lrl‘1
T 1

_rz +iar (1+Z))
- & 1-z

fe) =2

(1—zo)2zg+cd(l—z§)+d(l—z§)+c

5563
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Thus, f(z) satisfies the conditions of theorems which is given above except Theorem 2.6. In addition, for some b € D,

and
1
- 2t Znf123)
Therefore, we take
%f(z) _arg(1+z)/
1+z 2mn
|9%f(z( arg( z) <;E=1
and
|Rf()| < 1.
we have
0= n(155)
and
i) =1.

Example 3.2. Let us define f(z) by
_ 2. (1+¢(2)
f@) =+ ln( )

1-¢(z)
where
z— 20
_c F 1%z
Z—2,
z— ZO %0 1+F1 zé)z
g(z) = 1 -, z=2( .
-2z, 122
Zo 1+F%
=z

Hence, we get

ﬂa=—§m(

1-¢(z) 1-¢(2)
and
_ 1+c¢(z) 2 1+¢(z)
=2 | nar(l—qm
Thus, we obtain
1+¢(z)
Rf@ = (1 c(Z))
_ z 1+¢(z) zz B
ol i) 25

and

|Rf(2)| < 1.

So, f(z) satisﬁes the conditions of Theorem 2.6. In addition, for some b € dD, we have
(1 + g(l)) 2 1+i
o)== (_

f= 1-c() 1—i

1+g(z)) 21(1 '1+g()+l

)

)=1.

2 2 27
p n (i) — (Inlil + iarg i) p

arg (

1+¢(2)

1-¢(2)

)
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