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Abstract. This paper has been motivated by Wang and He [Q.W. Wang and Z.H. He, Solvability conditions
and general solution for mixed Sylvester equations. Automatica, 49 (2013) 2713-2719] in which the authors
consider some solvability conditions for mixed Sylvester matrix equations. The paper also considers the
same problem in the setting of a regular ring. Using the purely algebraic technique, we present some
necessary and sufficient conditions for the solvability to mixed Sylvester equations in rings.

1. Introduction

Linear matrix equations such as the Sylvester equation, Lyapunov equation, Stein equation arise fre-
quently from a variety of important applications, including control theory, completely integrable systems,
vibration system, Lie algebra, signal processing, finite element models of PDEs, invariant subspace compu-
tation, and many others disciplines. Many papers have presented different approaches for several matrix
equations [7–9, 12–14, 17, 19, 20]. Especially, many problems in control theory can be transformed into the
Sylvester matrix equations, such as singular system control [4, 21], robust control [3, 26], neural network
[25, 36]. The solvability of linear equations is a fundamental problem, and various results are developed,
such as solvability conditions of linear equations for matrices over the complex field [1, 2, 10, 11, 18, 22, 23, 29–
34, 37], solvability conditions of linear equations over algebras or rings [5, 6, 24, 27, 28, 35].

Recently, Lee and Vu [16] proved that the mixed Sylvester matrix

A1X − YB1 = C1 and A2Z − YB2 = C2, (1)

is consistent if and only if there exist invertible matrices R1, R2 and S such that(
A1 C1
O B1

)
R1 = S

(
A1 O
O B1

)
,

(
A2 C2
O B2

)
R2 = S

(
A2 O
O B2

)
,
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where Ai, Bi and Ci (i = 1, 2) are given complex matrices, X,Y and Z are variable matrices. Liu [18] also
gave a solvability condition to (1). Wang and He [31] presented new necessary and sufficient solvability
conditions for the system (1), and gave an expression of the general solution when it is solvable. When
X = Z, the system (1) becomes pairs of generalized Sylvester equations

A1X − YB1 = C1 and A2X − YB2 = C2. (2)

Wimmer [33] gave a necessary and sufficient condition for the existence of a simultaneous solution of (2).
Kägström [15] obtained a solution of (2) by using generalized Schur methods.

Motivated by the wide applications on the system of Sylvester matrix equation, it is interesting to
consider the mixed Sylvester matrix equations in a ring

a1x − yb1 = c1 and a2z − yb2 = c2, (3)

where ai, bi and ci are given elements in a ring R, x, y, and z are arbitrary elements of R. The paper is
organized as follows. In Section 2, we give some known results and lemmas. In Section 3, we consider
the solvability conditions of the mixed Sylvester matrix equations in R, which extends the results of [31,
Theorem 3.1] to the ring case.

2. Preliminaries

Let R represent an associative ring with unity 1. For x ∈ R, an inner inverse of x is an element y such
that xyx = x, we denote any inner inverse of x by x−. An element is said regular if it possesses an inner
inverse. If a ∈ R is regular, let La and Ra stand for the two idempotents La = 1− a−a and Ra = 1− aa− induced
by a, respectively. We first review some lemmas which are used in the further development of this paper.

Lemma 2.1. ([6, Theorem 3.1]) Let a, b, c ∈ R with a, b regular. Then the equation

axb = c (4)

is consistent in R if and only if c = aa−cb−b. If c = aa−cbb−b, then the general solution of (2.1) is given by

x = a−cb− + u − a−aubb−, (5)

where u ∈ R is arbitrary.

Lemma 2.2. ([5, Theorem 3.2]) Let ai, bi, ci ∈ R with ai, bi regular, i = 1, 2. If a1a−1 c1b−1 b1 = c1 and a2a−2 c2b−2 b2 = c2.
Then the following equations

a1xb1 = c1 and a2xb2 = c2 (6)

have a common solution if and only if

(1 − ss−)(c2 − 1c1 f )(1 − t−t) = 0,

where s = a2La1 , t = Rb1 b2, 1 = (1 − ss−)a2a−1 and f = b−1 b2(1 − t−t).

3. Solvability Conditions of the Mixed Sylvester Matrix Equations

Using algebra methods, in this section, we give some necessary and sufficient conditions for the con-
sistence to Eq.(3) in a ring. Let ai, bi ∈ R (i = 1, 2) in Eq. (3) be regular, and write s̃ = Ra2 a1a−1 and
t̃ = Rb1 b2.
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Theorem 3.1. Let ai, bi and ci (i = 1, 2) be given in R and set s̃ and t̃ be regular. Write

a = s̃a1, b = b2(1 − t̃− t̃) and c = Ra2 Ra1 c1b−1 b2(1 − t̃− t̃) − Ra2 c2(1 − t̃−t̃).

Then the following statements are equivalent:
(1) The mixed Sylvester matrix equations (3) is solvable;
(2) Ra1 c1Lb1 = 0, Ra2 c2Lb2 = 0 and s̃s̃−c = c;
(3) Ra1 c1Lb1 = 0, c = aa−c = cb−b.

Proof. (1) ⇔ (2). Let d1 = c1 + yb1 for some y ∈ R. Consider the equation a1x = d1, by Lemma 2.1, it
is solvable if and only if a1a−1 d1 = d1. Substituting d1 = c1 + yb1 into a1a−1 d1 = d1, which can reduce to
(1 − a1a−1 )yb1 = a1a−1 c1 − c1.

Similarly, let d2 = c2 + yb2 for some y ∈ R. According to Lemma 2.1, the equation a2z = d2 is solvable if
and only if a2a−2 d2 = d2, i.e., (1 − a2a−2 )yb2 = a2a−2 c2 − c2.

Therefore, Eq.(3) is solvable if and only if the following pair of equations have a common solution y:{
(1 − a1a−1 )yb1 = −(1 − a1a−1 )c1.
(1 − a2a−2 )yb2 = −(1 − a2a−2 )c2.

(7)

Using Lemma 2.1, the first equation in Eq.(7) is solvable if and only if (1− a1a−1 )c1b−1 b1 = (1− a1a−1 )c1, that is,

Ra1 c1Lb1 = 0. (8)

Similarly, the second equation in Eq.(7) is solvable if and only if

Ra2 c2Lb2 = 0. (9)

Combining (8) and (9), applying Lemma 2.2, it follows that the system (7) have a common solution if and
only if

(1 − s̃s̃−)(−Ra2 c2 + 1̃Ra1 c1 f̃ )(1 − t̃− t̃) = 0,

where f̃ = b−1 b2(1 − t̃− t̃) and 1̃ = (1 − s̃s̃−)Ra2 Ra1 .
By direct computation, one can see

(1 − s̃s̃−)(−Ra2 c2 + 1̃Ra1 c1 f̃ )(1 − t̃−t̃) = 0 if and only if c = s̃s̃−c.

(2)⇔ (3). Since s̃ = Ra2 a1a−1 , note that s̃ = s̃a1a−1 , for the choice (s̃a1)− = a−1 s̃−, we obtain

aa−s̃s̃− = (s̃a1)(s̃a1)−s̃s̃− = (s̃a1)(s̃a1)−(s̃a1a−1 )s̃− = s̃a1a−1 s̃− = s̃s̃−.

It gives that aa−s̃s̃−c = s̃s̃−c. If s̃s̃−c = c, we get at once aa−c = c. Conversely, assume that aa−c = c, then
(s̃a1)(s̃a1)−c = c. For the choice (s̃a1)− = a−1 s̃−, by s̃ = s̃a1a−1 . Then we obtain that c = (s̃a1)(s̃a1)−c = s̃a1a−1 s̃−c =
s̃s̃−c. Thus, one can see that aa−c = c is equivalent to s̃s̃−c = c.

Now we show that Ra2 c2Lb2 = 0 is equivalent to cb−b = c. Indeed, if Ra2 c2Lb2 = 0, it gives that Ra2 c2 =
Ra2 c2b−2 b2. By b = b2(1 − t̃− t̃), one can obtain that

Ra2 c2(1 − t̃−t̃)b−b (10)
= (Ra2 c2b−2 b2)(1 − t̃−t̃)b−b
= Ra2 c2b−2 bb−b = Ra2 c2b−2 b
= Ra2 c2b−2 b2(1 − t̃−t̃)
= Ra2 c2(1 − t̃−t̃).

And as b = b2(1 − t̃−t̃), we also have

Ra2 Ra1 c1b−1 b2(1 − t̃− t̃)b−b (11)
= Ra2 Ra1 c1b−1 b
= Ra2 Ra1 c1b−1 b2(1 − t̃− t̃).
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In view of (10) and (11), we have at once cb−b = c.
Conversely, if cb−b = c, by (11) Ra2 Ra1 c1b−1 b2(1 − t̃− t̃)b−b = Ra2 Ra1 c1b−1 b2(1 − t̃− t̃), it means that

Ra2 c2(1 − t̃−t̃)b−b = Ra2 c2(1 − t̃− t̃). (12)

Combining t̃ = Rb1 b2 and b = b2(1 − t̃− t̃), it gives that

bb−2 b2 = b2(1 − t̃− t̃)b−2 b2

= b2(1 − t̃−Rb1 b2)b−2 b2

= (1 − b2t−Rb1 )b2

= b2(1 − t̃−Rb1 b2)
= b2(1 − t̃− t̃)
= b,

that is, b(1 − b−2 b2) = 0. So post-multiply (12) by 1 − b−2 b2 gives that

Ra2 c2(1 − t̃−t̃)(1 − b−2 b2) = 0.

Thus, we obtain
Ra2 c2(1 − b−2 b2) = Ra2 c2 t̃− t̃(1 − b−2 b2) = Ra2 c2 t̃−Rb1 b2(1 − b−2 b2) = 0.

It gives that Ra2 c2Lb2 = 0. This proof is completed.

Corollary 3.2. ([31, Theorem 3.1]) Let Ai, Bi, and Ci(i = 1, 2) be given. Set

D1 = RB1 B2, A = RA2 A1, B = B2LD1 ,

C = RA2 (RA1 C1B†1B2 − C2)LD1

Then the following statements are equivalent:
(1) The mixed Sylvester matrix equations (1) is consistent.
(2) RA1 C1LB1 = 0, RAC = 0, CLB = 0.
(3) RA1 C1 = RA1 C1B†1B1, C = AA†C = CB†B.
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