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Multidecomposition of Cartesian Product of Some Graphs
into Even Cycles and Matchings
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Abstract. Let C2p and pK2 denote a cycle with 2p edges and p vertex-disjoint edges, respectively. For
graphs G, H′ and H′′, a (H′,H′′) -multidecomposition of G is a partition of the edge set of G into copies of
H′ and copies of H′′ with at least one copy of H′ and at least one copy of H′′. In this paper, we investigate
(C2p, pK2)-multidecomposition of the Cartesian product of paths, cycles and complete graphs, for some
values p ≥ 3.

1. Introduction

All graphs considered here are finite undirected simple graphs only. For the discussions, some termi-
nologies and notations are needed. Let Pn for the path on n vertices, Cn for the cycle on n vertices, Kn
for the complete graph on n vertices, and pK2 for p vertex-disjoint edges. Let V(Pn) = V(Cn) = V(Kn) =
{0, 1, 2, . . . ,n − 1}, E(Pn) = {{i, i + 1} : i ∈ {0, 1, 2, . . . ,n − 2}} and E(Cn) = E(Pn) ∪ {{n − 1, 0}}.

A decomposition of a graph G is a collection G = {G1,G2, . . . ,Gs} of nonempty subgraphs of G such that
the sets E(G1),E(G2), . . . ,E(Gs) form a partition of E(G),where E(Gi) and E(G) are, respectively, the edge sets
of Gi and G; denote this by G = G1 ⊕ G2 ⊕ · · · ⊕ Gs.

Consider a decomposition G = {G1,G2, . . . ,Gs} of G. If, for every i ∈ {1, 2, . . . , s}, Gi � H, then say that
H divides G and denote it by H|G, and the collection G is called a H-decomposition of G or a H-design of G.

Consider a decomposition G = {G1,G2, . . . ,Gs} of G; s ≥ 2. If there exists ` ∈ {1, 2, . . . , s − 1} such that,
for every i ∈ {1, 2, . . . , `}, Gi � H′ and for every i ∈ {` + 1, ` + 2, . . . , s}, Gi � H′′, and if H′ � H′′, then say
that the graph-pair (H′,H′′) divides G, and the collection G is called a (H′,H′′)-multidecomposition of G or a
(H′,H′′)-multidesign of G.

The Cartesian product H1�H2 of two graphs H1 and H2 is the simple graph with V(H1) × V(H2) as its
vertex set and two vertices (u1, v1) and (u2, v2) are adjacent in H1�H2 if and only if either u1 = u2 and v1 is
adjacent to v2 in H2, or u1 is adjacent to u2 in H1 and v1 = v2.

The study of the (G,H)-multidecomposition was introduced by Abueida and Daven in [2]. Abueida
and Daven [4] investigated the problem of the (Kk,Sk)-multidecomposition of the complete graph Kn. In [5]
Priyadharsini and Muthusamy gave necessary and sufficient conditions for the existence of the (Gn,Hn)-
multidecomposition of λKn where Gn,Hn ∈ {Cn,Pn−1,Sn−1}, where Sn denote the star on n + 1 vertices.
The graph multidecomposition problems has been widely studied (see [6 − 10]). Abueida and Daven
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[3] have recently established necessary and sufficient conditions for (C4, 2K2)-multidecomposition of the
Cartesian products Pm�Pn, Pm�Cn, Pm�Kn, Cm�Cn, Cm�Kn and Km�Kn.On this extension, we have consider
(C2p, pK2)-multidecomposition of the above Cartesian products, for some values of p ≥ 3.

2. Cartesian Product of Paths

In this section, we have proved that Pm�Pn admits a (C2p, pK2)-multidecomposition, for some values of
p ≥ 3.

As 1.c.d.(
∣∣∣E(C2p)

∣∣∣ , ∣∣∣E(pK2)
∣∣∣) = 1.c.d.(2p, p) = p and |E(Pm�Pn)| = 2mn −m − n. If Pm�Pn admits a (C2p, pK2)-

multidecomposition, then p divides 2mn−m−n.Observe that, if either m ≡ 0 mod p ≡ n or m ≡ 1 mod p ≡ n,
then p|(2mn − m − n). Note that, for p = 3, 3|(2mn − m − n) if and only if either m ≡ 0 mod 3 ≡ n or
m ≡ 1 mod 3 ≡ n. For p = 4, 4|(2mn −m − n) if and only if (m mod 4,n mod 4) ∈ {(0, 0), (1, 1), (2, 2), (3, 3)}. For
p = 5, 5|(2mn −m − n) if and only if (m mod 5,n mod 5) ∈ {(0, 0), (1, 1), (2, 4), (4, 2)}.

Theorem 2.1. For integers m ,n ≥ p and (m,n) , (3, 3), either m ≡ 0 mod p ≡ n or m ≡ 1 mod p ≡ n then
Pm�Pn admits a (C2p, pK2)-multidecomposition for all p ≥ 3.

Theorem 2.2. For integers m ,n ≥ 3 and (m,n) , (3, 3), Pm�Pn admits a (C6, 3K2)-multidecomposition if and only
if (m,n) , (3, 3) and either m ≡ 0 mod 3 ≡ n or m ≡ 1 mod 3 ≡ n.

Theorem 2.3. For integers m ,n ≥ 2 and (m,n) , (2, 2), Pm�Pn admits a (C8, 4K2)-multidecomposition if and only
if (m mod 4,n mod 4) ∈ {(0, 0), (1, 1), (2, 2), (3, 3)}.

Theorem 2.4. For integers m ,n ≥ 2 and (m,n) , (2, 2), Pm�Pn admits a (C10, 5K2)-multidecomposition if and
only if (m mod 5,n mod 5) ∈ {(0, 0), (1, 1), (2, 4), (4, 2)}.

Proof of Theorem 2.1 follows from Lemmas 2.5 to 2.9; proof of Theorem 2.2 follows from Theorem 2.1
and Lemma 2.10; proof of Theorem 2.3 follows from Theorem 2.1 and Lemmas 2.11 and 2.12; proof of
Theorem 2.4 follows from Theorem 2.1 and Lemma 2.13.

Lemma 2.5. If n ≡ 0 mod p, and if (p,n) , (3, 3), then Pp�Pn admits a (C2p, pK2)-multidecomposition.

Proof. Consider two cases.
Case 1. n ≡ 0 mod 2.

For j ∈ {0, 1, . . . , n−2
2 }, the cycle C2p( j) = (0, 2 j)(0, 2 j + 1)(1, 2 j + 1)(2, 2 j + 1) · · · (p − 1, 2 j + 1)(p − 1, 2 j)(p −

2, 2 j)(p−3, 2 j) · · · (1, 2 j)(0, 2 j) is isomorphic to C2p.For j ∈ {0, 1, . . . , n−4
2 }, the graph M1

p( j) =
p−1⊕
i=0

(i, 2 j+1)(i, 2 j+2)

is isomorphic to pK2. For j ∈ {0, 1, . . . , n−2
2 }, the graph M2

p( j) =
p−2⊕
i=1

(i, 2 j)(i, 2 j + 1) is a matching of cardinality

p−2.Furthermore,
n−2

2⋃
j=0

M2
p( j) is a matching of cardinality n

2 (p − 2). If p is odd, then n ≡ 0 mod p and n ≡ 0 mod 2

implies that n
2 ≡ 0 mod p and therefore n

2 (p − 2) ≡ 0 mod p. If p is even, then n ≡ 0 mod p implies that n
2 ≡

0 mod p
2 ; this together with p − 2 ≡ 0 mod 2 implies that n

2 (p − 2) ≡ 0 mod p. In any case, n
2 (p − 2) ≡ 0 mod p.

Consequently, (pK2)|(
n−2

2⋃
j=0

M2
p( j)). Hence, {C2p( j) : j ∈ {0, 1, . . . , n−2

2 }} ∪ {M
1
p( j) : j ∈ {0, 1, . . . , n−4

2 }} ∪ {

n−2
2⋃

j=0
M2

p( j)}

form a (C2p, pK2)-multidecomposition of Pp�Pn.
Case 2. n ≡ 1 mod 2.
Subcase 2.1. p , 3.

For j ∈ {0, 1, . . . , n−3
2 }, the cycle C2p( j) = (0, 2 j)(0, 2 j + 1)(1, 2 j + 1)(2, 2 j + 1) · · · (p − 1, 2 j + 1)(p − 1, 2 j)(p −

2, 2 j)(p− 3, 2 j) · · · (0, 2 j) is isomorphic to C2p. For j ∈ {0, 1, . . . , n−3
2 }, the graph M1

p( j) =
p−1⊕
i=0

(i, 2 j + 1)(i, 2 j + 2) is
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isomorphic to pK2. For j ∈ {0, 1, . . . , n−3
2 }, the graph M2

p( j) =
p−2⊕
i=1

(i, 2 j)(i, 2 j+1) is a matching of cardinality p−2.

For each j ∈ {0, 1, . . . , p−3
2 },M

2
p( j)

⋃
{( j,n − 1)( j + 1,n − 1), ( p−1

2 + j,n − 1)( p+1
2 + j,n − 1)}= M3

p( j) is isomorphic

to pK2. Furthermore,
n−3

2⋃
j= p−1

2

M2
p( j) is a matching of cardinality n−p

2 (p − 2). n ≡ 0 mod p and n ≡ 1 mod 2 implies

that p ≡ 1 mod 2. Thus n−p
2 ≡ 0 mod p. Consequently, (pK2)|(

n−3
2⋃

j= p−1
2

M2
p( j)). Hence, {C2p( j) : j ∈ {0, 1, . . . , n−3

2 }} ∪

{M1
p( j) : j ∈ {0, 1, . . . , n−3

2 }} ∪ {

n−3
2⋃

j= p−1
2

M2
p( j)} ∪ {M3

p( j) : j ∈ {0, 1, . . . , p−3
2 }} form a (C2p, pK2)-multidecomposition

of Pp�Pn.
Subcase 2.2. p = 3.

n ≡ 0 mod 3 and n ≡ 1 mod 2 implies that n ≡ 3 mod 6.
For j ∈ {0, 1, . . . , n−3

2 }, the cycle C6( j) = (0, 2 j)(0, 2 j + 1)(1, 2 j + 1) (2, 2 j + 1)(2, 2 j)(1, 2 j)(0, 2 j) is isomorphic
to C6. For j ∈ {0, 1, . . . , n−3

2 }, the graph M1
3( j) = (0, 2 j + 1)(0, 2 j + 2) ⊕ (1, 2 j + 1)(1, 2 j + 2) ∪ (2, 2 j + 1) (2, 2 j + 2),

the graph M2
3 = (0,n− 1)(1,n− 1) ⊕ (1,n− 2)(1,n− 3) ⊕ (1,n− 4) (1,n− 5), the graph M3

3 = (1,n− 1)(2,n− 1) ⊕
(1,n−6)(1,n−7) ⊕ (1,n−8)(1,n−9), and for n ≥ 15 and j ∈ {0, 1, . . . , n−15

6 }, the graph M4
3( j) = (1, 6 j)(1, 6 j+1)

⊕ (1, 6 j + 2)(1, 6 j + 3) ⊕ (1, 6 j + 4)(1, 6 j + 5) are all isomorphic to 3K2.
{C6( j) : j ∈ {0, 1, . . . , n−3

2 }} ∪ {M
1
3( j) : j ∈ {0, 1, . . . , n−3

2 }} ∪ {M
2
3} ∪ {M

3
3} ∪ {M

4
3( j) : n ≥ 15 and j ∈

{0, 1, . . . , n−15
6 }} form a (C6, 3K2)-multidecomposition of P3�Pn.

Lemma 2.6. If m ≡ 0 mod p ≡ n and if (m,n) , (3, 3), then Pm�Pn admits a (C2p, pK2)-multidecomposition.

Proof. As (m,n) , (3, 3), either (p,n) , (3, 3) or (m, p) , (3, 3). Without loss of generality assume that
(p,n) , (3, 3). Observe that Pm�Pn = m

p (Pp�Pn) ⊕ m−p
p (nK2). By Lemma 2.5, Pp�Pn admits a (C2p, pK2)-

multidecomposition. As n ≡ 0 mod p, (pK2)|(nK2) and hence, (pK2)|[ m−p
p (nK2)]. Thus Pm�Pn admits a

(C2p, pK2)-multidecomposition.

Lemma 2.7. P4�P4 admits a (C6, 3K2)-multidecomposition.

Proof. P4�P4 = the 6-cycle (0, 0)(0, 1)(0, 2)(1, 2)(1, 1)(1, 0)(0, 0) ⊕ the 6-cycle (2, 1)(2, 2)(2, 3)(3, 3)(3, 2)(3, 1)(2, 1)
⊕ the 3K2 {(0, 1)(1, 1), (0, 2)(0, 3), (1, 2)(1, 3)} ⊕ the 3K2 {(2, 0)(2, 1), (3, 0)(3, 1), (2, 2)(3, 2)} ⊕ the 3K2 {(0, 3)(1, 3),
(1, 2)(2, 2), (2, 0)(3, 0)} ⊕ the 3K2 {(1, 0)(2, 0), (1, 1)(2, 1), (1, 3)(2, 3)}.

Lemma 2.8. If k ≡ 1 mod p, and if k , p + 1, then (pK2)|Pk.

Proof. For each j ∈ {0, 1, . . . , k−1−p
p }, consider

p−1⋃
i=0
{i( k−1

p ) + j, i( k−1
p ) + 1 + j}. It is a matching of cardinality p.

Hence (pK2)|Pk.

Lemma 2.9. If m ≡ 1 mod p ≡ n with m ,n ≥ 4, then Pm�Pn admits a (C2p, pK2)-multidecomposition for all
p ≥ 3.

Proof. If (m,n) = (4, 4), then p = 3 and hence the lemma follows by Lemma 2.7. Hence, assume that
(m,n) , (4, 4).Observe that Pm�Pn = a path (m−1, 0)(m−2, 0) . . . (2, 0)(1, 0)(0, 0)(0, 1)(0, 2) . . . (0,n−2)(0,n−1)
⊕ a matching {(i, 0)(i, 1) : i ∈ {1, 2, . . . ,m − 1}} ⊕ a matching {(0, j)(1, j) : j ∈ {1, 2, . . . ,n − 1}} ⊕ (Pm−1�Pn−1).

Since m − 1 ≡ 0 mod p ≡ n − 1, by Lemma 2.6, Pm−1�Pn−1 admits a (C2p, pK2)-multidecomposition if
(m,n) , (4, 4). Again, since m − 1 ≡ 0 mod p ≡ n − 1, the matchings {(i, 0)(i, 1) : i ∈ {1, 2, . . . ,m − 1}} and
{(0, j)(1, j) : j ∈ {1, 2, . . . ,n − 1}} are each divisible by pK2. Finally, by Lemma 2.8, the path (m − 1, 0)(m −
2, 0) . . . (2, 0)(1, 0)(0, 0)(0, 1)(0, 2) . . . (0,n− 2)(0,n− 1) is divisible by pK2 since its order ≡ 1 mod p and , p + 1.
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Lemma 2.10. There is no (C6, 3K2)-multidecomposition for P3�P3.

Proof. Suppose P3�P3 admits a (C6, 3K2)-multidecomposition. Then the removal of the edges of any C6 from
P3�P3 is a forest and it contains three mutually adjacent edges. These three mutually adjacent edges are
edges of two 3K2’s in the multidecompostion, a contradiction.

Lemma 2.11. If m ≡ 2 mod 4 ≡ n,m ,n ≥ 2 and (m,n) , (2, 2), then Pm�Pn admits a (C8, 4K2)-multidecomposition.

Proof. If m = 2 and n ≥ 6, then P2�Pn admits a (C8, 4K2)- multidecomposition as follows. P2�Pn = a

cycle
n−6

4⊕
j=0
{(0, 4 j + 1)(0, 4 j + 2)(0, 4 j + 3)(0, 4 j + 4)(1, 4 j + 4)(1, 4 j + 3)(1, 4 j + 2)(1, 4 j + 1)(0, 4 j + 1)} ⊕ a matching

{(0, 0)(1, 0), (0, 2)(1, 2), (0, 3)(1, 3), (0,n−1)(1,n−1)} ⊕ the remaining edges are form a matching with cardinality
n+2

4 which is divisible by 4. Now for the remaining values of (m,n), observe that Pm�Pn = a path (m −
1, 1)(m − 1, 0)(m − 2, 0) . . . (2, 0)(1, 0)(0, 0)(0, 1)(0, 2) . . . (0,n − 2)(0,n − 1)(1,n − 1) ⊕ a matching {(i, 0)(i, 1) : i ∈
{1, 2, . . . ,m − 2}} ⊕ a matching {(0, j)(1, j) : j ∈ {1, 2, . . . ,n − 2}} ⊕ (Pm−1�Pn−1).

Since m − 1 ≡ 1 mod 4 ≡ n − 1, by Lemma 2.9, Pm−1�Pn−1 admits a (C8, 4K2)-multidecomposition.
Again, since m − 2 ≡ 0 mod 4 ≡ n − 2, the matchings {(i, 0)(i, 1) : i ∈ {1, 2, . . . ,m − 2}} and {(0, j)(1, j) :
j ∈ {1, 2, . . . ,n − 2}} are each divisible by 4K2. Finally, by Lemma 2.8, the path (m − 1, 1)(m − 1, 0)(m −
2, 0) . . . (2, 0)(1, 0)(0, 0)(0, 1)(0, 2) . . . (0,n − 2)(0,n − 1)(1,n − 1) is divisible by 4K2 since its order ≡ 1 mod 4.

Lemma 2.12. If m ≡ 3 mod 4 ≡ n,m ,n ≥ 3 and (m,n) , (3, 3), then Pm�Pn admits a (C8, 4K2)-multidecomposition.

Proof. Observe that Pm�Pn = a path (m − 1, 0)(m − 2, 0) . . . (2, 0)(1, 0)(0, 0) (0, 1)(0, 2) . . . (0,n − 2)(0,n − 1) ⊕ a
matching {(i, 0)(i, 1) : i ∈ {1, 2, . . . ,m − 3}} ⊕ a matching [{(0, j)(1, j) : j ∈ {1, 2, . . . ,n − 1}} ∪ {(m − 1, 0)(m −
1, 1)} ∪ {(m − 2, 0)(m − 2, 1)}] ⊕ (Pm−1�Pn−1).

Since m − 1 ≡ 2 mod 4 ≡ n − 1, by Lemma 2.11, Pm−1�Pn−1 admits a (C8, 4K2)-multidecomposition.
Again, since m − 3 ≡ 0 mod 4 ≡ n − 3, the matchings {(i, 0)(i, 1) : i ∈ {1, 2, . . . ,m − 3}} and [{(0, j)(1, j) : j ∈
{1, 2, . . . ,n − 1}} ∪ {(m − 1, 0)(m − 1, 1)} ∪ {(m − 2, 0)(m − 2, 1)}] are each divisible by 4K2. Finally, by Lemma
2.8, the path (m − 1, 0)(m − 2, 0) . . . (2, 0)(1, 0)(0, 0)(0, 1)(0, 2) . . . (0,n − 2)(0,n − 1) is divisible by 4K2 since its
order ≡ 1 mod 4.

Lemma 2.13. If m ≡ 2 mod 5 and n ≡ 4 mod 5, then Pm�Pn admits a (C10, 5K2)-multidecomposition.

Proof. Observe that Pm�Pn = a path (1, 0)(0, 0)(0, 1) . . . (0,n − 2)(0,n − 1)(1,n − 1) ⊕ (2, 0)(1, 0)(1, 1) . . . (1,n −
2)(1,n − 1)(2,n − 1) ⊕ the 2( m−2

5 )-cycle {(5i + 2, 2 j)(5i + 2, 2 j + 1)(5i + 3, 2 j + 1)(5i + 4, 2 j + 1)(5i + 5, 2 j +

1)(5i + 6, 2 j + 1)(5i + 6, 2 j)(5i + 5, 2 j)(5i + 4, 2 j)(5i + 3, 2 j)(5i + 2, 2 j) : i ∈ {0, 1, . . . , ( m−2
5 ) − 1}, j ∈ {0, 1}} ⊕ a

matching {(i, j)(i + 1, j) : i ∈ {0, 1}, j ∈ {1, 2, . . . ,n − 2}} ∪ {(5i + k, 2 j)(5i + k, 2 j + 1) : i ∈ {0, 1, . . . , ( m−2
5 ) −

1}, j ∈ {0, 1}, k ∈ {3, 4, 5} ∪ {(5i + 1, 2 j)(5i + 2, 2 j + 1) : i ∈ {1, 2, . . . , ( m−2
5 ) − 1}, j ∈ {0, 1}} ⊕ a matching

{(i, 2 j − 1)(i, 2 j) : i ∈ {2, 3, . . . ,m − 1}, j ∈ {1, 2}} ⊕ (Pm−2�Pn−4).
Since m−2 ≡ 0 mod 5 and n−4 ≡ 0 mod 5,by Lemma 2.9, Pm−2�Pn−4 admits a (C10, 5K2)-multidecomposition.

Again, since 2(m − 2) ≡ 0 mod 5, the matchings {(i, 2 j − 1)(i, 2 j) : i ∈ {2, 3, . . . ,m − 1}, j ∈ {1, 2}} and (n − 2) +
3( m−2

5 )+2(( m−2
5 )−1) = (n−4)+(m−2) ≡ 0 mod 5, {(i, j)(i+1, j) : i ∈ {0, 1}, j ∈ {1, 2, . . . ,n−2}}∪{(5i+k, 2 j)(5i+

k, 2 j+1) : i ∈ {0, 1, . . . , ( m−2
5 )−1}, j ∈ {0, 1}, k ∈ {3, 4, 5}}∪{(5i+1, 2 j)(5i+2, 2 j+1) : i ∈ {1, 2, . . . , ( m−2

5 )−1}, j ∈
{0, 1}} are each divisible by 5K2. Finally, by Lemma 2.8, the path (1, 0)(0, 0)(0, 1) . . . (0,n − 2)(0,n − 1)(1,n − 1)
(2, 0)(1, 0)(1, 1) . . . (1,n − 2)(1,n − 1)(2,n − 1) is divisible by 5K2 since its order ≡ 1 mod 5.

3. Cartesian Product of a Path and a Cycle

In this section, we have proved that Pm�Cn admits a (C2p, pK2)-multidecomposition, fpr some values of
p ≥ 3.

As 1.c.d.(
∣∣∣E(C2p)

∣∣∣ , ∣∣∣E(pK2)
∣∣∣) = 1.c.d.(2p, p) = p and |E(Pm�Cn)| = (2m − 1)n. If Pm�Cn admits a (C2p, pK2)-

multidecomposition, then p divides (2m − 1)n. Note that, if either 2m ≡ 1 mod p or n ≡ 0 mod p then
p|((2m−1)n). For p = 3, 3|((2m−1)n) if and only if either m ≡ 2 mod 3 or n ≡ 0 mod 3. For p = 4, 4|((2m−1)n)
if and only if n ≡ 0 mod 4. For p = 5, 5|((2m − 1)n) if and only if either m ≡ 3 mod 5 or n ≡ 0 mod 5.
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Theorem 3.1. For integers m ≥ 2, n ≥ 3, and p ≥ 3, if n ≡ 0 mod p, then Pm�Cn admits a (C2p, pK2)-
multidecomposition.

Lemma 3.2. If k ≡ 0 mod p, and if k , p then (pK2)|Ck.

Proof. Let k = pr, r is a positive integer. For each j ∈ {0, 1, . . . , r − 1}, consider
p−1⋃
i=0
{ri + j, ri + j + 1}. It is a

matching of cardinality p. Hence, (pK2)|Ck.
Proof of Theorem 3.1. Let m = ` p + s, where s ∈ {0, 1, . . . , p − 1}. Decompose Pm�Cn as follows: (i) P`p�Pn
with vertex set {0, 1, . . . , `p − 1} × {0, 1, . . . ,n − 1} ⊕ (ii) a matching {(i, 0)(i,n − 1) : i ∈ {0, 1, . . . , `p − 1}} of

cardinality `p ⊕ (iii)
m−1⊕

i=`p−1
(a matching {(i, j)(i + 1, j) : j ∈ {0, 1, . . . ,n − 1}} of cardinality n) ⊕ (iv)

m−1⊕
i=`p

(a cycle

(i, 0)(i, 1)(i, 2) . . . (i,n − 1)(i, 0) of cardinality n). If (`p,n) , (3, 3), i.e., (`, p,n) , (1, 3, 3), then by Theorem
2.1 graph (i) admits a (C2p, pK2)-multidecomposition. Clearly, graph (ii) and each graph in (iii) admits a
pK2-decomposition. By Lemma 3.2, if n , p, then each graph in (iv) admits a pK2-decomposition. Thus it
is enough to consider the following two cases.
Case 1. n = p.
Consider the following subcases
Subcase 1.1. For n = p, assume p and s are odd. Let m = ` p + s, where s ∈ {0, 1, . . . , p − 1}.
Decompose Pm�Cn as follows: (i) P`p�Pp with vertex set {0, 1, . . . , `p − 1} × {0, 1, . . . , p − 1}, by Theo-
rem 2.1 graph (i) admits a (C2p, pK2)-multidecomposition ⊕ (ii) a matching {(`p, 2 j)(`p, 2 j + 1) : j ∈
{0, 1, . . . , p−3

2 }}∪{(`p−1, `p−1)(`p, `p−1)}∪{(i, 0)(i, p−1) : i ∈ {0, 1, . . . , p−3
2 }} of cardinality p⊕ (iii) a matching

{(`p, 2 j + 1)(`p, 2 j + 2) : j ∈ {0, 1, . . . , p−3
2 }} ∪ {(`p − 1, 0)(`p, 0)} ∪ {(i, 0)(i, p − 1) : i ∈ { p−1

2 ,
p+1

2 , . . . , p − 2}} of
cardinality p ⊕ (iv) a matching {(`p− 1, j)(`p, j) : j ∈ {1, 2, . . . , p− 2}} ∪ {(`p, 0)(`p, p− 1), (p− 1, 0)(p− 1, p− 1)}
of cardinality p ⊕ (v) the subgraphs s−1

2 times P2�Cp, for each t ∈ {1, 2, . . . , s−1
2 }, decompose P2�Cp into pK2

as follows: (a) a matching {(`p+2t, 2 j)(`p+2t, 2 j+1) : j ∈ {0, 1, . . . , p−3
2 }}∪ {(`p+2t+1, 2 j)(`p+2t+1, 2 j+1) :

j ∈ {0, 1, . . . , p−3
2 }} ∪ {(`p + 2t, `p − 1)(`p + 2t + 1, `p − 1)} ⊕ (b) a matching {(`p + 2t, 2 j + 1)(`p + 2t, 2 j + 2) :

j ∈ {0, 1, . . . , p−3
2 }} ∪ {(`p + 2t + 1, 2 j + 1)(`p + 2t + 1, 2 j + 2) : j ∈ {0, 1, . . . , p−3

2 }} ∪ {(`p + 2t, 0)(`p + 2t + 1, 0)} of
cardinality p ⊕ (c) a matching {(`p + 2t, j)(`p + 2t + 1, j) : j ∈ {1, 2, . . . , p− 2}} ∪ {(`p + 2t, 0)(`p + 2t, p− 1), (`p +

2t + 1, 0)(`p + 2t + 1, p− 1)} of cardinality p ⊕
s−3

2⊕
i=0

(a matching {(`+ 2i + 1, j)(`+ 2i + 2, j) : j ∈ {0, 1, . . . , p− 1}}

of cardinality n).
Now assume p is odd and s is even. Except the last decomposition of the above, the remaining are
same, that is decomposition of Pm�Cn is (i)⊕ (ii) ⊕ (iii) ⊕ (iv) ⊕ (v) the subgraphs s

2 times P2�Cp, for each
t ∈ {1, 2, . . . , s

2 − 1}, decompose P2�Cp into pK2 as follows: (a) a matching {(`p + 2t, 2 j)(`p + 2t, 2 j + 1) : j ∈
{0, 1, . . . , p−3

2 }} ∪ {(`p + 2t + 1, 2 j)(`p + 2t + 1, 2 j + 1) : j ∈ {0, 1, . . . , p−3
2 }} ∪ {(`p + 2t, `p− 1)(`p + 2t + 1, `p− 1)} ⊕

(b) a matching {(`p + 2t, 2 j + 1)(`p + 2t, 2 j + 2) : j ∈ {0, 1, . . . , p−3
2 }} ∪ {(`p + 2t + 1, 2 j + 1)(`p + 2t + 1, 2 j + 2) :

j ∈ {0, 1, . . . , p−3
2 }} ∪ {(`p + 2t, 0)(`p + 2t + 1, 0)} of cardinality p ⊕ (c) a matching {(`p + 2t, j)(`p + 2t + 1, j) : j ∈

{1, 2, . . . , p− 2}} ∪ {(`p + 2t, 0)(`p + 2t, p− 1), (`p + 2t + 1, 0)(`p + 2t + 1, p− 1)} of cardinality p ⊕
s
2⊕

i=1
(a matching

{(` + 2i + 1, j)(` + 2i + 2, j) : j ∈ {0, 1, . . . , p − 1}} of cardinality n).
Subcase 1.2. For n = p, assume p and s are even. Let m = ` p + s, where s ∈ {0, 1, . . . , p − 1}.
Decompose Pm�Cn as follows: (i) P`p�Pp with vertex set {0, 1, . . . , `p − 1} × {0, 1, . . . , p − 1}, by Theo-
rem 2.1 graph (i) admits a (C2p, pK2)-multidecomposition ⊕ (ii) the subgraphs s

2 times P2�Cp, for each
t ∈ {0, 1, . . . , s

2 − 1}, decompose P2�Cp into (C2p, pK2) as follows: (a) a matching {(`p + 2t, j)(`p + 2t + 1, j) :
j ∈ {1, 2, . . . , p− 2}} ∪ {(`p + 2t, 0)(`p + 2t, p− 1), (`p + 2t + 1, 0)(`p + 2t + 1, p− 1)} of cardinality p ⊕ (b) a cycle
(`p + 2t, 0)(`p + 2t, 1)(`p + 2t, 2) . . . (`p + 2t,n− 1)(`p + 2t + 1,n− 1) . . . (`p + 2t + 1, 1)(`p + 2t + 1, 0)(`p + 2t, 0) of
cardinality 2p ⊕ (iii) for each t ∈ {0, 1, . . . , s

2 − 1}, a matching {(`p + 2t − 1, j)(`p + 2t, j) : j ∈ {0, 1, . . . , p − 1}}
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of cardinality p ⊕ (iv) a matching
`p−1⊕
i=0
{((i, 0)(i, p − 1))} of cardinality `p.

Now assume p is even and s is odd. Decompose Pm�Cn as follows: (i) P`p�Pp with vertex set {0, 1, . . . , `p−
1}× {0, 1, . . . , p−1}, by Theorem 2.1 graph (i) admits a (C2p, pK2)-multidecomposition ⊕ (ii) the subgraphs s−1

2
times P2�Cp, for each t ∈ {1, 2, . . . , s−1

2 }, decompose P2�Cp into (C2p, pK2) as follows: (a) a matching {(`p+2t−
1, j)(`p+2t, j) : j ∈ {1, 2, . . . , p−2}}∪{(`p+2t−1, 0)(`p+2t−1, p−1), (`p+2t, 0)(`p+2t, p−1)} of cardinality p⊕ (b)
a cycle (`p+2t−1, 0)(`p+2t−1, 1)(`p+2t−1, 2) . . . (`p+2t−1, p−1)(`p+2t, p−1) . . . (`p+2t, 1)(`p+2t, 0)(`p+2t−1, 0)
of cardinality 2p⊕ (iii) for each t ∈ {1, 2, . . . , s−1

2 }, a matching {(`p+2t−2, j)(`p+2t−1, j) : j ∈ {0, 1, . . . , p−1}}
of cardinality p ⊕ (iv)for each t ∈ {0, 1, . . . , s−3

2 }, a matching {(`p + 2t, j)(`p + 2t + 1, j) : j ∈ {0, 1, . . . , p − 1}}
of cardinality p ⊕ (v) a matching {(`p − 1, j)(`p, j) : j ∈ {0, 1, . . . , p − 1}} of cardinality p ⊕ (vi) a match-
ing {(`p, 2 j)(`p, 2 j + 1) : j ∈ {0, 1, . . . , p

2 − 1}} ∪ {(i, 0)(i, p − 1) : i ∈ {0, 1, . . . , lp
2 − 1}} of cardinality p ⊕ (vii) a

matching {(`p, 2 j+1)(`p, 2 j+2) : j ∈ {0, 1, . . . , p
2 −1}}∪{(i, 0)(i, p−1) : i ∈ { lp2 ,

lp
2 +1, . . . , lp−1}} of cardinality p

Case 2. (`, p,n) = (1, 3, 3). P`p+s�Cn = P3+s�C3, if s = 0, P3�C3, is decomposable into (C6, 3K2)-
multidecomposition as
(i) a cycle (0, 0)(0, 1)(0, 2)(1, 2)(1, 1)(1, 0) ⊕ (ii) a matching {(0, 0)(0, 2), (1, 2)(2, 2), (2, 0)(2, 1)} ⊕ (iii) a matching
{(0, 1)(1, 1), (1, 0)(2, 0), (2, 1)(2, 2)} ⊕ (iv) a matching {(1, 0)(1, 2), (1, 1)(2, 1), (2, 0)(2, 2)}.Now assume that s ≥ 1,
consider the following two subcases.

Subcase 2.1. For m is even,P3+s�C3, is decomposable into (C6, 3K2)-multidecomposition as (i)
m−2

2⊕
i=0

(a cycle

(2i, 0)(2i, 1)(2i, 2)(2i + 1, 2)(2i + 1, 1)(2i + 1, 0) of cardinality 6) ⊕ (ii)
m−2

2⊕
i=0

(a matching {(2i, 0)(2i, 2), (2i, 1)(2i +

1, 1), (2i + 1, 0)(2i + 1, 2)} of cardinality 3) ⊕ (iii)
m−4

2⊕
i=0

(a matching {(2i + 1, 0)(2i + 2, 0), (2i + 1, 1)(2i + 2, 1), (2i +

1, 2)(2i + 2, 2)} of cardinality 3).

Subcase 2.2. For m is odd,P3+s�C3, is decomposable into (C6, 3K2)-multidecomposition as (i)
m−3

2⊕
i=0

(a cycle

(2i, 0)(2i, 1)(2i, 2)(2i + 1, 2)(2i + 1, 1)(2i + 1, 0) of cardinality 6) ⊕ (ii)
m−3

2⊕
i=0

(a matching {(2i, 0)(2i, 2), (2i, 1)(2i +

1, 1), (2i + 1, 0)(2i + 1, 2)} of cardinality 3) ⊕ (iii)
m−7

2⊕
i=0

(a matching {(2i + 1, 0)(2i + 2, 0), (2i + 1, 1)(2i + 2, 1), (2i +

1, 2)(2i + 2, 2)} of cardinality 3) ⊕ (iv) a matching {(m − 1, 0)(m − 1, 1), (m − 1, 2)(m − 2, 2), (m − 3, 2)(m − 4, 2)}
of cardinality 3 ⊕ (v) a matching {(m − 1, 1)(m − 1, 2), (m − 1, 0)(m − 2, 0), (m − 3, 0)(m − 4, 0)} of cardinality 3
⊕ (vi) a matching {(m − 1, 0)(m − 1, 2), (m − 1, 1)(m − 2, 1), (m − 3, 1)(m − 4, 1)} of cardinality 3.

Theorem 3.3. For integers m ≥ 5 and n ≥ 4, Pm�Cn admits a (C6, 3K2)-multidecomposition if and only if
m ≡ 2 mod 3 or n ≡ 0 mod 3.

Theorem 3.4. For integers m ,n ≥ 4, Pm�Cn admits a (C8, 4K2)-multidecomposition if and only if n ≡ 0 mod 4.

Theorem 3.5. For integers m ,n ≥ 3, Pm�Cn admits a (C10, 5K2)-multidecomposition if and only if m ≡ 3 mod 5
or n ≡ 0 mod 5.

Proof of Theorem 3.3. follows from Lemmas 3.6., 3.7., Theorem 3.1. and P2�C6 = the 6-cycle (0, 0)(0, 1)(0, 2)
(0, 3)(0, 4)(0, 5)(0, 0)⊕ the 6-cycle (1, 0)(1, 1)(1, 2)(1, 3)(1, 4)(1, 5)(1, 0)⊕ the 3K2 {(0, 0)(1, 0), (0, 1)(1, 1), (0, 2)(1, 2)}
⊕ the 3K2 {(0, 3)(1, 3), (0, 4)(1, 4), (0, 5)(1, 5)}.; proof of Theorem 3.4. follows from Theorem 3.1.; proof of
Theorem 3.5. follows from Lemmas 3.8. to 3.11. and Theorem 3.1..
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Lemma 3.6. If m ≡ 2 mod 3 ≡ n, with m ,n ≥ 6 then Pm�Cn admits a (C6, 3K2)-multidecomposition.

Proof. As m − 1 ≡ 1 mod 3 ≡ n − 1, by Theorem 2.1, Pm−1�Pn−1 admits a (C6, 3K2)-multidecomposition. The
deletion of the edges of Pm−1�Pn−1 from Pm�Cn results in the subgraph: a matching {(i, 0)(i,n − 1) : i ∈
{0, 1, . . . ,m−1}} ∪ {(m−2, 1)(m−1, 1)} of cardinality m+1⊕ a matching {(m−2, j)(m−1, j) : j ∈ {0, 2, 3, . . . ,n−2}
of cardinality n − 2 ⊕ a matching {(i,n − 2)(i,n − 1) : i ∈ {1, 2, . . . ,m − 2}} of cardinality m − 2 ⊕ a path
(0,n− 2)(0,n− 1)(1,n− 1)(2,n− 1) . . . (m− 2,n− 1)(m− 1,n− 1)(m− 1,n− 2)(m− 1,n− 3) . . . (m− 1, 1)(m− 1, 0)
of length m + n− 1. All these matchings are divisible by 3K2 and by Lemma 2.8, the path is also divisible by
3K2. Thus Pm�Cn admits a (C6, 3K2)-multidecomposition.

Lemma 3.7. If m ≡ 2 mod 3 and if n ≡ 1 mod 3, with m ≥ 5, n ≥ 4 then Pm�Cn admits a (C6, 3K2)-
multidecomposition.

Proof. For (m,n) , (5, 4).As m−1 ≡ 1 mod 3 ≡ n, by Theorem 2.1, Pm−1�Pn admits a (C6, 3K2)-multidecompos
-ition. The deletion of the edges of Pm−1�Pn from Pm�Cn results in the subgraph: a matching {(i, 0)(i,n− 1) :
i ∈ {0, 1, . . . ,m − 1}} ∪ {(m − 2, 1)(m − 1, 1)} of cardinality m + 1 ⊕ a matching {(m − 2, j)(m − 1, j) : j ∈
{0, 2, 3, . . . ,n−1} of cardinality n−1 ⊕ a path (m−1, 0)(m−1, 1)(m−1, 2) . . . (m−1,n−2)(m−1,n−1) of length
n−1. Both the matchings are divisible by 3K2 and by Lemma 2.8, the path is also divisible by 3K2. For m = 5
and n = 4. Since by Lemma 2.7, P4�P4 admits a (C6, 3K2)-multidecomposition. The deletion of the edges of
P4�P4 from P5�C4 results in the subgraph: a matching {(4, 0)(4, 3), (4, 1)(4, 2), (3, 0)(3, 3)} of cardinality 3 ⊕ a
matching{(4, 0)(4, 1), (4, 2)(4, 3), (2, 0)(2, 3)} of cardinality 3 ⊕ a matching{(0, 0)(0, 3), (1, 0)(1, 3), (3, 0)(4, 0),
(3, 1)(4, 1), (3, 2)(4, 2), (3, 3)(4, 3)} of cardinality 6. Thus Pm�Cn admits a (C6, 3K2)-multidecomposition.

Lemma 3.8. If m ≡ 3 mod 5 and if n ≡ 1 mod 5, then Pm�Cn admits a (C10, 5K2)-multidecomposition.

Proof. As m − 3 ≡ 0 mod 5 ≡ n − 1, by Theorem 2.1, Pm−3�Pn−1 admits a (C10, 5K2)-multidecomposition.
The deletion of the edges of Pm−3�Pn−1 from Pm�Cn results in the subgraph: a matching {(i, 0)(i,n − 1) : i ∈
{0, 1, . . . ,m−4}} of cardinality m−3 ⊕ a matching {(i,n−2)(i,n−1) : i ∈ {0, 1, . . . ,m−4} of cardinality m−3 ⊕
a path (0,n−1)(1,n−1)(2,n−1) . . . (m−4,n−1)(m−3,n−1)(m−3, 0)(m−2, 0)(m−2,n−1)(m−1,n−1)(m−1, 0)
of length m + 2 ≡ 0 mod 5 ⊕ a path (m − 3, 0)(m − 3, 1) . . . (m − 3,n − 1) of length n − 1 ≡ 0 mod 5 a path
(m − 2, 0)(m − 2, 1) . . . (m − 2,n − 1) of length n − 1 ≡ 0 mod 5 ⊕ a path (m − 1, 0)(m − 1, 1) . . . (m − 1,n − 1) of
length n−1 ≡ 0 mod 5 ⊕ a matching {(m−4, j)(m−3, j) : j ∈ {0, 1, . . . ,n−2}} of cardinality n−1 ⊕ a matching
{(m−3, j)(m−2, j) : j ∈ {0, 1, . . . ,n−2}} of cardinality n−1⊕ a matching {(m−2, j)(m−1, j) : j ∈ {0, 1, . . . ,n−2}}
of cardinality n − 1 All the matchings are divisible by 5K2 and by Lemma 2.8, all the paths are divisible by
5K2. Thus Pm�Cn admits a (C10, 5K2)-multidecomposition.

Lemma 3.9. If m ≡ 3 mod 5 and if n ≡ 2 mod 5, then Pm�Cn admits a (C10, 5K2)-multidecomposition.

Proof. As m − 2 ≡ 1 mod 5 ≡ n − 1, by Theorem 2.1, Pm−2�Pn−1 admits a (C10, 5K2)-multidecomposition.
The deletion of the edges of Pm−2�Pn−1 from Pm�Cn results in the subgraph: a matching {(i, 0)(i,n − 1) : i ∈
{0, 1, . . . ,m− 4}} of cardinality m− 3 ⊕ a matching {(i,n− 2)(i,n− 1) : i ∈ {0, 1, . . . ,m− 4} of cardinality m− 3
⊕ a path (0,n − 1)(1,n − 1)(2,n − 1) . . . (m − 3,n − 1)(m − 3, 0)(m − 2, 0)(m − 2,n − 1)(m − 1,n − 1)(m − 1, 0)
of length m + 2 ≡ 0 mod 5 ⊕ a path (m − 2, 0)(m − 2, 1) . . . (m − 2,n − 2) of length n − 2 ≡ 0 mod 5 ⊕ a path
(m− 1, 0)(m− 1, 1) . . . (m− 1,n− 2) of length n− 2 ≡ 0 mod 5 ⊕ a matching {(m− 3, 1)(m− 2, 1), (m− 2, 0)(m−
1, 0), (m−3,n−2)(m−3,n−1), (m−2,n−2)(m−2,n−1), (m−1,n−2)(m−1,n−1)} of cardinality 5⊕ a matching
{(m−3, j)(m−2, j) : j ∈ {2, 3, . . . ,n−1}} of cardinality n−2⊕ a matching {(m−2, j)(m−1, j) : j ∈ {1, 2, . . . ,n−2}}
of cardinality n − 2. All the matchings are divisible by 5K2 and by Lemma 2.8, all the paths are divisible by
5K2. Thus Pm�Cn admits a (C10, 5K2)-multidecomposition.

Lemma 3.10. If m ≡ 3 mod 5 and if n ≡ 3 mod 5, then Pm�Cn admits a (C10, 5K2)-multidecomposition.

Proof. As m − 3 ≡ 0 mod 5 ≡ n − 3, by Theorem 2.1, Pm−3�Pn−3 admits a (C10, 5K2)-multidecomposition.
The deletion of the edges of Pm−3�Pn−3 from Pm�Cn results in the subgraph: a matching {(i, 0)(i,n − 1) : i ∈
{0, 1, . . . ,m− 4}} of cardinality m− 3 ⊕ a matching {(i,n− 4)(i,n− 3) : i ∈ {0, 1, . . . ,m− 4} of cardinality m− 3
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⊕ a matching {(i,n− 3)(i,n− 2) : i ∈ {2, 3, . . . ,m− 2} of cardinality m− 3 ⊕ a matching {(i,n− 2)(i,n− 1) : i ∈
{0, 1, . . . ,m− 4} of cardinality m− 3 ⊕ a matching {(0,n− 3)(0,n− 2), (1,n− 3)(1,n− 2), (m− 3,n− 2)(m− 3,n−
1), (m − 2,n − 2)(m − 2,n − 1), (m − 1,n − 2)(m − 1,n − 1)} of cardinality 5 ⊕ a path (0,n − 3)(1,n − 3)(2,n −
3) . . . (m−1,n−3)(m−1,n−2)(m−2,n−2)(m−3,n−2) . . . (2,n−2)(1,n−2)(0,n−2) of length 2m−1 ≡ 0 mod 5
⊕ a path (0,n−1)(1,n−1)(2,n−1) . . . (m−3,n−1)(m−3, 0)(m−2, 0)(m−2,n−1)(m−1,n−1)(m−1, 0) of length
m + 2 ≡ 0 mod 5 ⊕ a path (m − 3, 0)(m − 3, 1) . . . (m − 3,n − 4)(m − 3,n − 3) of length n − 3 ≡ 0 mod 5 ⊕ a path
(m−2, 0)(m−2, 1) . . . (m−2,n−4)(m−2,n−3) of length n−3 ≡ 0 mod 5⊕ a path (m−1, 0)(m−1, 1) . . . (m−1,n−
4)(m− 1,n− 3) of length n− 3 ≡ 0 mod 5 ⊕ a matching {(m− 4, j)(m− 3, j) : j ∈ {0, 1, . . . ,n− 4}} of cardinality
n−3 ⊕ a matching {(m−3, j)(m−2, j) : j ∈ {1, 2, . . . ,n−4}}∪{(m−3,n−1)(m−2,n−1)} of cardinality n−3 ⊕ a
matching {(m− 2, j)(m− 1, j) : j ∈ {0, 1, . . . ,n− 4}} of cardinality n− 3.All the matchings are divisible by 5K2
and by Lemma 2.8, all the paths are divisible by 5K2. Thus Pm�Cn admits a (C10, 5K2)-multidecomposition.

Lemma 3.11. If m ≡ 3 mod 5 and if n ≡ 4 mod 5, then Pm�Cn admits a (C10, 5K2)-multidecomposition.

Proof. As m − 3 ≡ 0 mod 5 ≡ n − 4, by Theorem 2.1, Pm−3�Pn−4 admits a (C10, 5K2)-multidecomposition.
The deletion of the edges of Pm−3�Pn−4 from Pm�Cn results in the subgraph: a matching {(i, 0)(i,n − 1) : i ∈
{0, 1, . . . ,m− 4}} of cardinality m− 3 ⊕ a matching {(i,n− 5)(i,n− 4) : i ∈ {0, 1, . . . ,m− 4} of cardinality m− 3
⊕ a matching {(i,n− 4)(i,n− 3) : i ∈ {1, 2, . . . ,m− 3} of cardinality m− 3 ⊕ a matching {(i,n− 3)(i,n− 2) : i ∈
{0, 1, . . . ,m− 4} of cardinality m− 3 ⊕ a matching {(i,n− 2)(i,n− 1) : i ∈ {1, 2, . . . ,m− 5} ∪ {(m− 3,n− 2)(m−
3,n−1), (m−2,n−3)(m−2,n−2)} of cardinality m−3⊕ a matching {(m−2,n−4)(m−2,n−3), (m−3,n−3)(m−
3,n−2), (m−4,n−2)(m−4,n−1), (m−2,n−2)(m−2,n−1), (m−1,n−2)(m−1,n−1)} of cardinality 5 ⊕ a path
(m−1,n−4)(m−2,n−4) . . . (1,n−4)(0,n−4)(0,n−3)(1,n−3) . . . (m−2,n−3)(m−1,n−3)(m−1,n−2)(m−2,n−
2) . . . (1,n− 2)(0,n− 2)(0,n− 1)(1,n− 1) . . . (m− 4,n− 1)(m− 3,n− 1)(m− 3, 0)(m− 2, 0)(m− 2,n− 1)(m− 1,n−
1)(m−1, 0)(m−1, 1) of length 4m+3 ≡ 0 mod 5⊕ a path (m−3, 0)(m−3, 1) . . . (m−3,n−5)(m−3,n−4) of length
n − 3 ≡ 0 mod 5 ⊕ a path (m − 2, 0)(m − 2, 1) . . . (m − 2,n − 5)(m − 2,n − 4) of length n − 3 ≡ 0 mod 5 ⊕ a path
(m−1, 1)(m−1, 2) . . . (m−1,n−4)(m−1,n−3) of length n−3 ≡ 0 mod 5 ⊕ a matching {(m−4, j)(m−3, j) : j ∈
{0, 1, . . . ,n−5}} of cardinality n−4 ⊕ a matching {(m−3, j)(m−2, j) : j ∈ {0, 1, . . . ,n−5}} of cardinality n−4 ⊕
a matching {(m−2, j)(m−1, j) : j ∈ {0, 1, . . . ,n−5}} of cardinality n−4.All the matchings are divisible by 5K2
and by Lemma 2.8, all the paths are divisible by 5K2. Thus Pm�Cn admits a (C10, 5K2)-multidecomposition.

4. Cartesian Product of Cycles

In this section, we have proved that Cm�Cn admits a (C2p, pK2)-multidecomposition, for some values of
p ≥ 3.

If Cm�Cn admits a (C2p, pK2)-multidecomposition, then p divides |E(Cm�Cn)| = 2mn and hence for prime
p, either m ≡ 0 mod p or n ≡ 0 mod p. By symmetry, assume that n ≡ 0 mod p. By Theorem 3.1, Pm�Cn
admits a (C2p, pK2)-multidecomposition. The deletion of the edges of Pm�Cn from Cm�Cn results in nK2. As
n ≡ 0 mod p, (pK2)|(nK2). Hence, Cm�Cn admits a (C2p, pK2)-multidecomposition. Thus,

Theorem 4.1. For integers m ,n ≥ p and for prime p ≥ 2, Cm�Cn admits a (C2p, pK2)-multidecomposition if and
only if either m ≡ 0 mod p or n ≡ 0 mod p.

For p = 3, 5, Cm�Cn admits a (C6, 3K2), (C10, 5K2)-multidecomposition respectively by Theorem 4.1.

Theorem 4.2. For integers m ,n ≥ 4, Cm�Cn admits a (C8, 4K2)-multidecomposition if and only if either m ≡

0 mod 2 or n ≡ 0 mod 2.

Proof. By symmetry, assume that n ≡ 0 mod 2. Consider two cases.

Case 1. If n ≡ 0 mod 4, then Cm�Cn = Pm�Cn ⊕ nK2. By Theorem 3.4., Pm�Cn admits a (C8, 4K2)-
multidecomposition and by lemma 2.8., (4K2)|(nK2). Thus Cm�Cn admits a (C8, 4K2)-multidecomposition.
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Case 2. If n ≡ 2 mod 4, Consider four cases.

Sub case 2.1. If n ≡ 2 mod 4 ≡ m then Cm�Cn = Pm�Pn ⊕ nK2 ⊕ mK2 = Pm�Pn ⊕ (n − 2)K2 ⊕ (m − 2)K2 ⊕

4K2 by choosing the edges {(0, 0)(m−1, 0), (0, 1)(m−1, 1), (1, 0)(1,n−1), (2, 0)(2,n−1)} of 4K2 from nK2 and mK2
and since (n − 2) ≡ 0 mod 4 ≡ (m − 2), by lemma 2.8., (4K2)|((n − 2)K2) and (4K2)|((m − 2)K2) and by Lemma
2.11., Pm�Pn admits a (C8, 4K2)-multidecomposition. Thus Cm�Cn admits a (C8, 4K2)-multidecomposition.

Sub case 2.2. If n ≡ 2 mod 4 and m ≡ 0 mod 4 then Cm�Cn = Cm�Pn ⊕ mK2, since m ≡ 0 mod 4, by
Theorem 3.4, Cm�Pn admits a (C8, 4K2)-multidecomposition and by lemma 2.8., (4K2)|(mK2). Thus Cm�Cn
admits a (C8, 4K2)-multidecomposition.

Sub case 2.3. If n ≡ 2 mod 4 and m ≡ 1 mod 4 then Cm�Cn = Pm�Pn−1 ⊕ a matching {(0, j)(m − 1, j) : j ∈
{0, 1, . . . ,n− 1}} ∪ {(1,n− 2)(1,n− 1), (2,n− 2)(2,n− 1)} of cardinality (n + 2) ⊕ a matching {(i, 0)(i,n− 1) : i ∈
{0, 2, 3, . . . ,m−1}} of cardinality (m−1)⊕ a matching {(i,n−2)(i,n−1) : i ∈ {0, 3, 4, . . . ,m−1}}∪{(1, 0)(1,n−1)}
of cardinality (m − 1). Since by lemma 2.9., Pm�Pn−1 admits (C8, 4K2)-multidecomposition and by lemma
2.8., 4K2|(n + 2)K2 and 4K2|(m − 1)K2. Thus Cm�Cn admits a (C8, 4K2)-multidecomposition.

Sub case 2.4. If n ≡ 2 mod 4 and m ≡ 3 mod 4 then Cm�Cn = Pm−1�Pn ⊕ a path (m − 2,n − 1)(m −
1,n − 1)(m − 1,n − 2) . . . (m − 1, 0)(0, 0)(0,n − 1) of length n + 2 ⊕ a matching {(m − 1, j)(m − 2, j) : j ∈
{0, 1, . . . ,n − 2}} ∪ {(1, 0)(1,n − 1), (2, 0)(2,n − 1), (0,n − 1)(m − 1,n − 1)} of cardinality (n + 2) ⊕ a matching
{(i, 0)(i,n − 1) : i ∈ {3, 4, . . . ,m − 1}} of cardinality (m − 3) ⊕ a matching {(0, j)(m − 1, j) : j ∈ {1, 2, . . . ,n − 2}}
of cardinality (n − 2). Since by lemma 2.11., Pm−1�Pn admits (C8, 4K2)-multidecomposition, by lemma 2.8.,
4K2|Pn+3 and 4K2|(n + 2)K2, 4K2|(m − 3)K2. Thus Cm�Cn admits a (C8, 4K2)-multidecomposition.

5. Cartesian Product of a Path and a Clique

In this section, we have proved that Pm�Kn admits a (C2p, pK2)-multidecomposition, for some values of
p ≥ 3.

If Pm�Kn admits a (C2p, pK2)-multidecomposition, then p divides |E(Pm�Kn)| = mn(n+1)
2 − n. Observe that,

if n ≡ 0 mod p, then p|
(

mn(n+1)
2 − n

)
and for all odd integers p ≥ 3, if m ≡ 1 mod p ≡ n then p|

(
mn(n+1)

2 − n
)
.

Theorem 5.1. For integers m ≥ 2, n ≥ 3 and for an odd integer p ≥ 3, then Pm�Kn admits a (C2p, pK2)-
multidecomposition if m ≡ 1 mod p ≡ n.

Proof. Consider two cases.
Case 1. If n is even.

As n is even, there is a decomposition of Kn into n
2 Hamilton paths. Note that each Hamilton path is

of length n − 1 ≡ 0 mod p. First decompose each of the m disjoint Kn’s in Pm�Kn into Hamilton paths and
in each layer except one Hamilton path decompose each of the remaining Hamilton paths into pK2’s. The
deletion of the edges of these pK2’s results in Pm�Pn and, by Theorem 2.1, it clearly admits a (C2p, pK2)-
multidecomposition.
Case 2. If n is odd.

As n + 1 is even, there is a decomposition of Kn+1 into n−1
2 Hamilton cycles and a 1-factor; consequently,

there is a decomposition of Kn into n−1
2 Hamilton paths and a near 1-factor. Note that each Hamilton path

is of length n− 1 ≡ 0 mod p and the near 1-factor is a matching of cardinality n−1
2 ≡ 0 mod p. First decompose

each of the m disjoint Kn’s in Pm�Kn into Hamilton paths and a near 1-factor and in each layer except one
Hamilton path decompose each of the remaining Hamilton paths into pK2’s, also in each layer decompose
the near 1-factor into pK2’s. The deletion of the edges of these pK2’s results in Pm�Pn and, by Theorem 2.1,
it clearly admits a (C2p, pK2)-multidecomposition.

If Pm�Kn admits a (C6, 3K2)-multidecomposition, then 3 divides |E(Pm�Kn)| = mn(n+1)
2 −n and hence either

n ≡ 0 mod 3 or m ≡ 1 mod 3 ≡ n.
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Lemma 5.2. For integers m ,n ≥ 2, Pm�Kn admits a (C6, 3K2)-multidecomposition if m ≡ 1 mod 3 ≡ n.

Proof. Consider two cases.
Case 1. For n ≡ 4 mod 6.
Subcase 1.1. n , 4.

Proof follows from Theorem 5.1.
Subcase 1.2. n = 4.

By lemma 2.9., Pm�P4 admits a (C6, 3K2)-multidecomposition and the deletion of the edges of Pm�P4
from Pm�K4 results in mP4. Clearly, (3K2)|(2P4) and (3K2)|(3P4), by lemma 2.8.. Using this one can find a
decomposition of mP4 by 3K2.
Case 2. For n ≡ 1 mod 6.

Proof follows from Theorem 5.1.

Theorem 5.3. For integers m ≥ 2, n ≥ 3 and p ≥ 3, Pm�Kn admits a (C2p, pK2)-multidecomposition if n ≡ 0 mod p.

Proof. Consider two cases.
Case 1. If n is odd.

As n is odd, there is a decomposition of Kn into n−1
2 Hamilton cycles. Note that each Hamilton cycle

is of length n ≡ 0 mod p. First decompose each of the m disjoint Kn’s in Pm�Kn into Hamilton cycles and
in each layer except one Hamilton cycle decompose each of the remaining Hamilton cycles into pK2’s, by
lemma 3.2.. The deletion of the edges of these pK2’s results in Pm�Cn, and by Theorem 3.1., it clearly admits
a (C2p, pK2)-multidecomposition.
Case 2. If n is even.

As n is even, there is a decomposition of Kn into n−2
2 Hamilton cycles and a 1-factor; Note that each

Hamilton cycle is of length n ≡ 0 mod p and the 1-factor is a matching of cardinality n
2 ≡ 0 mod p. First

decompose each of the m disjoint Kn’s in Pm�Kn into Hamilton cycles and a 1-factor and in each layer
except one Hamilton cycle decompose each of the remaining Hamilton cycles into pK2’s, also in each layer
decompose the 1-factor into pK2’s. The deletion of the edges of these pK2’s results in Pm�Cn, and by Theorem
3.1, it clearly admits a (C2p, pK2)-multidecomposition.

6. Cartesian Product of a Cycle and a Clique

In this section, we have proved that Cm�Kn admits a (C2p, pK2)-multidecomposition, for p = 3.
If Cm�Kn admits a (C6, 3K2)-multidecomposition, then 3 divides |E(Cm�Kn)| = mn(n+1)

2 and hence neither
m ≡ 1 mod 3 ≡ n nor m ≡ 2 mod 3 and n ≡ 1 mod 3.

Lemma 6.1. For integers m ,n ≥ 2, Cm�Kn admits a (C6, 3K2)-multidecomposition if n ≡ 0 mod 3.

Proof. Consider two cases.
Case 1. For n ≡ 3 mod 6.

As n is odd, there is a decomposition of Kn into n−1
2 Hamilton cycles. Note that each Hamilton cycle is of

length n ≡ 0 mod 3. Decompose each of the m disjoint Kn’s in Cm�Kn into Hamilton cycles and in each layer
except one Hamilton cycle decompose each of the remaining Hamilton cycles into 3K2’s. The deletion of the
edges of these 3K2’s results in Cm�Cn, and by Theorem 4.1., it clearly admits a (C6, 3K2)-multidecomposition.
Case 2. n ≡ 0 mod 6.

As n is even, there is a decomposition of Kn into n−2
2 Hamilton cycles and a 1-factor; Note that each

Hamilton cycle is of length n ≡ 0 mod 6 and the 1-factor is a matching of cardinality n
2 ≡ 0 mod 3. First

decompose each of the m disjoint Kn’s in Cm�Kn into Hamilton cycles and a 1-factor and in each layer
except one Hamilton cycle decompose each of the remaining Hamilton cycles into 3K2’s, also in each layer
decompose the 1-factor into 3K2’s. The deletion of the edges of these 3K2’s results in Cm�Cn, and by Theorem
4.1, it clearly admits a (C6, 3K2)-multidecomposition.
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Lemma 6.2. For integers m ,n ≥ 2, Cm�Kn admits a (C6, 3K2)-multidecomposition if m ≡ 0 mod 3 and n ≡
1 mod 3.

Proof. Consider two cases.
Case 1. For n ≡ 4 mod 6.

As n is even, there is a decomposition of Kn into n
2 Hamilton paths. Note that each Hamilton path is

of length n − 1 ≡ 3 mod 6. First decompose each of the m disjoint Kn’s in Cm�Kn into Hamilton paths and
in each layer except one Hamilton path decompose each of the remaining Hamilton paths into 3K2’s. The
deletion of the edges of these 3K2’s results in Cm�Pn and, by Theorem 3.3., it clearly admits a (C6, 3K2)-
multidecomposition.
Case 2. n ≡ 1 mod 6.

As n + 1 is even, there is a decomposition of Kn+1 into n−1
2 Hamilton cycles and a 1-factor; consequently,

there is a decomposition of Kn into n−1
2 Hamilton paths and a near 1-factor. Note that each Hamilton path

is of length n− 1 ≡ 0 mod 6 and the near 1-factor is a matching of cardinality n−1
2 ≡ 0 mod 3. First decompose

each of the m disjoint Kn’s in Cm�Kn into Hamilton paths and a near 1-factor and in each layer except one
Hamilton path decompose each of the remaining Hamilton paths into 3K2’s, also in each layer decompose
the near 1-factor into 3K2’s. The deletion of the edges of these 3K2’s results in Cm�Pn and, by Theorem 3.3.,
it clearly admits a (C6, 3K2)-multidecomposition.

Lemma 6.3. For integers m ,n ≥ 2, Cm�Kn admits a (C6, 3K2)-multidecomposition if m ≡ 0 mod 3 and n ≡
2 mod 3.

Proof. Consider two cases.
Case 1. For n ≡ 2 mod 6.

As n is even, there is a decomposition of Kn into n
2 Hamilton paths. First decompose each of the m

disjoint Kn’s in Cm�Kn into Hamilton paths and in each layer except one Hamilton path decompose each of
the remaining Hamilton paths into 3K2’s, by choosing one edge from each Hamilton path, with cardinality
m, m ≡ 0 mod 3. The deletion of the edges of these 3K2’s results in Cm�Pn and, by Theorem 3.1., it clearly
admits a (C6, 3K2)-multidecomposition.
Case 2. n ≡ 5 mod 6.

As n + 1 is even, there is a decomposition of Kn+1 into n−1
2 Hamilton cycles and a 1-factor; consequently,

there is a decomposition of Kn into n−1
2 Hamilton paths and a near 1-factor. Note that the near 1-factor is a

matching of cardinality n−1
2 ≡ 0 mod 3. First decompose each of the m disjoint Kn’s in Cm�Kn into Hamilton

paths and a near 1-factor and in each layer except one Hamilton path decompose each of the remaining
Hamilton paths into 3K2’s, also in each layer decompose the near 1-factor into 3K2’s. The deletion of the
edges of these 3K2’s results in Cm�Pn and, by Theorem 3.3., it clearly admits a (C6, 3K2)-multidecomposition.

Lemma 6.4. If n ≡ 2 mod 3, and if n , 6, then (3K2)|Kn −P .

Proof. For even n, first decompose Kn into n
2 Hamilton paths, let one of the Hamilton path be P =

{0, 1,n − 1, 2,n − 2, 3,n − 3, · · · , n
2 − 2, n

2 + 2, n
2 − 1, n

2 + 1, n
2 } after removing this Hamilton path, from the

remaining Hamilton path deleting the following edges {( 3n
4 + i, n

4 + i) : i ∈ {1, 2, . . . , n−2
2 }} if n

2 is even and
{( 3n+2

4 + i, n+2
4 + i) : i ∈ {1, 2, . . . , n−2

2 }} if
n
2 is odd from each Hamilton path. Which is a matching of cardinality

n−2
2 , leaves 2P n

2
, each of the length n−2

2 , as n is even, n ≡ 2 mod 3, implies n
2 ≡ 1 mod 3, by the Lemma 2.8.,

3K2|P n
2
, hence (3K2)|Kn −P .

For odd n first decompose Kn into n−1
2 Hamilton paths and a near one factor,let one of the Hamilton path be

P = {0, 1,n−1, 2,n−2, 3,n−3, · · · , n−1
2 −2, n−1

2 +3, n−1
2 −1, n−1

2 +2, n−1
2 ,

n−1
2 +1} after removing this Hamilton

path, from the remaining Hamilton path deleting the following edges {( 3(n−1)
4 + i, n−5

4 + i) : i ∈ {2, 3, . . . , n−1
2 }}

if n−1
2 is even, {( 3(n+1)

4 + i, n+1
4 + i) : i ∈ {1, 2, . . . , n−3

2 }} if n−1
2 is odd, gives two disjoint paths. For each

i ∈ {2, 3, . . . , n−1
2 } if n−1

2 is even, on combining the vertices { 3(n−1)
4 + i} and { n−5

4 + i} gives the path Pn−1(i)
each of order n − 1 ≡ 1 mod 3. For each i ∈ {1, 2, . . . , n−3

2 } if n−1
2 is odd, on combining the vertices { 3(n+1)

4 + i}
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and { n+1
4 + i} gives the path Pn−1(i), each of order n − 1 ≡ 1 mod 3. Hence by lemma 2.8., 3K2|Pn−1(i). After

removing one 3K2 : {( n−1
2 ,n)( 3(n−1)

4 + 1, n−1
4 − 1)( 3(n−1)

4 , n−1
4 )} from {( 3(n−1)

4 + i, n−5
4 + i) : i ∈ {2, 3, . . . , n−1

2 }}

if n−1
2 is even, union the near one factor {((n − 1) − i,n + i) : i ∈ {0, 1, . . . , n−3

2 }} gives the path Pn−4
of order n − 4 ≡ 1 mod 3. Hence by lemma 2.8., 3K2|Pn−4(i). Similarly after removing two disjoint paths
{

n−1
2 ,n,n − 1, n−3

2 } ∪ {
3n−1

4 , n−3
4 ,

3n−1
4 − 1, n−3

4 + 1} from {( 3(n+1)
4 + i, n+1

4 + i) : i ∈ {1, 2, . . . , n−3
2 }} if n−1

2 is odd,
union the near one factor {((n − 1) − i,n + i) : i ∈ {0, 1, . . . , n−3

2 }} gives the path Pn−7 of order n − 7 ≡
1 mod 3.Hence by lemma 2.8., 3K2|Pn−7(i).Now by choosing the edges {(n, n−1

2 )(n− 1, n−3
2 )( n−3

4 ,
3n−1

4 − 1)} and
{(n,n − 1)( 3n−1

4 , n−3
4 )( 3n−1

4 − 1, n−3
4 + 1)} are matching and isomorphic to 3K2. Thus (3K2)|Kn −P .

Lemma 6.5. For integers m ,n ≥ 2, Cm�Kn admits a (C6, 3K2)-multidecomposition if m ≡ 1 mod 3 and n ≡
2 mod 3.

Proof. After removing m−times Kn −P from Cm�Kn, One have Cm�Pn, by the Lemma 6.4.,(3K2)|Kn −P
and by the Theorem 3.2., Cm�Pn admits a (C6, 3K2)-multidecomposition. Hence Cm�Kn admits a (C6, 3K2)-
multidecomposition.

Lemma 6.6. For integers m ,n ≥ 2, Cm�Kn admits a (C6, 3K2)-multidecomposition if m ≡ 2 mod 3 ≡ n.

Proof. After removing m−times Kn −P from Cm�Kn, one have Cm�Pn, by the Lemma 6.4., (3K2)|Kn −P
and by the Theorem 3.2., Cm�Pn admits a (C6, 3K2)-multidecomposition. Hence Cm�Kn admits a (C6, 3K2)-
multidecomposition.

7. Cartesian Product of Cliques

In this section, we have proved that Km�Kn admits a (C2p, pK2)-multidecomposition, for p = 3.
If Km�Kn admits a (C6, 3K2)-multidecomposition, then 3 divides |E(Km�Kn)| = mn(m+n−2)

2 and hence either
m ≡ 0 mod 3 or n ≡ 0 mod 3 or m ≡ 1 mod 3 ≡ n.

Lemma 7.1. For integers m ,n ≥ 2, Km�Kn admits a (C6, 3K2)-multidecomposition if m ≡ 0 mod 3.

Proof. Consider two cases.
Case 1. For m ≡ 0 mod 6.

As m is even, there is a decomposition of Km into m−2
2 Hamilton cycles and a 1-factor. Note that each

Hamilton cycle is of length m ≡ 0 mod 6. First decompose each of the n disjoint Km’s in Km�Kn into Hamilton
cycles and in each layer except one Hamilton cycle decompose each of the remaining Hamilton cycles into
3K2’s by Lemma 3.2 and the 1-factor is a matching of cardinality m

2 ≡ 0 mod 3. The deletion of the edges of
these 3K2’s results in Cm�Kn and, by Lemma 6.1,6.2 and 6.3., it clearly admits a (C6, 3K2)-multidecomposition.
Case 2. For m ≡ 3 mod 6.

As m is odd, there is a decomposition of Km into m−1
2 Hamilton cycles. Note that each Hamilton cycle

is of length m ≡ 0 mod 3. Decompose each of the n disjoint Km’s in Km�Kn into Hamilton cycles and in each
layer except one Hamilton cycle decompose each of the remaining Hamilton cycles into 3K2’s by Lemma
3.2.. The deletion of the edges of these 3K2’s results in Cm�Kn and, by Lemma 6.1,6.2 and 6.3., it clearly
admits a (C6, 3K2)-multidecomposition.

Lemma 7.2. For integers m ,n ≥ 2, Km�Kn admits a (C6, 3K2)-multidecomposition if n ≡ 0 mod 3.

Proof. Since Km�Kn = Kn�Km and n ≡ 0 mod 3, by Lemma 7.1., Km�Kn admits a (C6, 3K2)-multidecomposition.

Lemma 7.3. For integers m ,n ≥ 2, Km�Kn admits a (C6, 3K2)-multidecomposition if m ≡ 1 mod 3 ≡ n.
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Proof. Consider two cases.
Case 1. For m ≡ 4 mod 6.

As m is even, there is a decomposition of Km into m
2 Hamilton paths. Note that each Hamilton path

is of length m − 1 ≡ 3 mod 6. First decompose each of the n disjoint Km’s in Km�Kn into Hamilton paths
and in each layer except one Hamilton path decompose each of the remaining Hamilton paths into 3K2’s.
The deletion of the edges of these 3K2’s results in Pm�Kn and, by Lemma 5.2., it clearly admits a (C6, 3K2)-
multidecomposition.
Case 2. For m ≡ 1 mod 6.

As m + 1 is even, there is a decomposition of Km+1 into m−1
2 Hamilton cycles and a 1-factor; consequently,

there is a decomposition of Km into m−1
2 Hamilton paths and a near 1-factor. Note that each Hamilton path is

of length m − 1 ≡ 0 mod 6 and the near 1-factor is a matching of cardinality m−1
2 ≡ 0 mod 3. First decompose

each of the n disjoint Km’s in Km�Kn into Hamilton paths and a near 1-factor and in each layer except one
Hamilton path decompose each of the remaining Hamilton paths into 3K2’s, also in each layer decompose
the near 1-factor into 3K2’s. The deletion of the edges of these 3K2’s results in Pm�Kn and, by Lemma 5.2.,
it clearly admits a (C6, 3K2)-multidecomposition.

Acknowledgements
The author is much grateful to an anonymous referee for his/her valuable comments on my paper.

References

[1] A. Abueida, Multidesigns of the complete graph with a hole into the graph-pair of order 4, Bull. Inst. Combin. Appl. 53 (2008) 17
- 20.

[2] A. Abueida, M. Daven, Multidesigns for graphs-pairs on 4 and 5 vertices, Graphs Comb. 19(4)(2003) 433 - 447.
[3] A. Abueida, M. Daven, Multidecompositions of several graph products, Graphs and Combinatorics 29 (2013) 315 – 326.
[4] A. Abueida, M. Daven, Multidecompositions of the complete graph, Ars Combinatoria 72 (2004) 17 - 22.
[5] H. M. Priyadharsini, A. Muthusamy, (Gm,Hm)-multifactorization of λKm, Journal of Combinatorial Mathematics and Combina-

torial Computing 69 (2009) 145 – 150.
[6] T.-W. Shyu, Decomposition of complete graphs into paths and stars, Discrete Mathematics 310 15-16 (2010) 2164 - 2169.
[7] T.-W. Shyu, Decompositions of complete graphs into paths and cycles, Ars Combinatoria 97 (2010) 257 - 270.
[8] T.-W. Shyu, Decomposition of complete graphs into paths of length three and triangles, Ars Combinatoria 107 (2012) 209 - 224.
[9] T.-W. Shyu, Decomposition of complete graphs into cycles and stars, Graphs and Combinatorics 29 (2013) 301 – 313.

[10] H.C. Lee, Multidecompositions of complete bipartite graphs into cycles and stars, Ars Combinatoria 108 (2013) 355 – 364.


