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Abstract. In [3], it was shown that there are no warped product submanifolds of a locally product
Riemannian manifold such that the spherical submanifold of a warped product is proper slant. In this
paper, we introduce the notion of warped product submanifolds with a slant function and show that there
exists a class of non-trivial warped product submanifolds of a locally product Riemannian manifold such
that the spherical submanifold is pointwise slant by giving some examples. We present a characterization
theorem and establish a sharp relationship between the squared norm of the second fundamental form
and the warping function in terms of the slant function for such warped product submanifolds of a locally
product Riemannian manifold. The equality case is also considered.

1. Introduction

Pseudo-slant submanifolds were defined and studied by A. Carriazo as a particular class of bi-slant
submanifold under the name of anti-slant submanifolds in [10]. We note that a pseudo-slant submanifold
is a special case of generic submanifold which was introduced by Ronsse [33]. We also note that the
pseudo-slant submanifolds are also studied under the name of hemi-slant slant submanifolds (see [31],
[34]).

On the other hand, F. Etayo [20] introduced the notion of ponitwise slant submanifolds of almost
Hermitian manifolds under the name of quasi-slant submnifolds. Recently, B.-Y. Chen and O.J. Garay [17]
studied these submanifolds in almost Hermitian manifolds and obtained several fundamental results. We
note that every slant submanifold is a pointwise slant submanifold. Pointwise slant submanifolds of other
structures are also studied in [26] and [21]. Recently, B. Sahin [32] introduced the idea of pointwise semi-slant
submanifolds of Kaehler manifolds. Using this notion, he investigated warped product pointwise semi-slant
submanifolds of Kaehler manifolds. In [31], Sahin studied warped product pseudo-slant submanifolds of
Kaehler manifolds under the name of warped product hemi-slant submanifolds. He proved a non-existence
result of the warped product of the form M⊥ ×Mθ of a Kaehler manifold M̃, where M⊥ and Mθ are totally
real and proper slant submanifolds of M̃, respectively. Then he introduced the notion of hemi-slant warped
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products of the form Mθ × f M⊥ and obtained many important results, including a characterization and an
inequality for such warped products.

In [3], M. Atceken proved the non-existence of warped product submanifolds of the form M⊥× f Mθ and
MT × f Mθ of a locally product Riemannian manifold M̃, where MT, M⊥ and Mθ are invariant, anti-invariant
and proper slant submanifolds of M̃, respectively. The warped product submanifolds of locally product
Riemannian manifolds are also studied in (see [2], [5, 6], [29, 30], [35]).

In [39], we investigated the geometry of warped product pseudo-slant submanifolds Mθ × f M⊥ of a
locally product Riemannian manifold M̃. The warped product pseudo-slant submanifolds also have been
studied for different structures in [31] and [37, 38, 40, 41]. For the survey on warped product submanifolds
we refers to Chen’s books [15, 18] and his survey article [16].

In this paper, we introduce the idea of pointwise pseudo-slant submanifolds of locally product Rieman-
nian manifolds and using this notion we investigate the geometry of warped product pointwise pseudo-
slant submanifolds of the form M⊥ × f Mθ of a locally product Riemannian manifold M̃ where M⊥ is an
anti-invariant submanifold of M̃ and Mθ is a proper pointwise slant submanifold of M̃ with slant function
θ. As we know that the warped product pointwise pseudo-slant submanifold Mθ × f M⊥, where Mθ is
poinwise slant submanifold is a particular class of warped product pseudo-slant submanifold Mθ × f M⊥
studied in [39], therefore we are not interested to repeat this study for pointwise pseudo-slant warped
products.

The paper is organised as follows: Section 2 is devoted to give preliminaries and basic definitions.
In Section 3, we define and study pointwise pseudo-slant submanifolds of locally product Riemannian
manifolds. In this section we investigate the geometry of the leaves of the involves distributions. In Section
4, we study warped product pointwise pseudo-slant submanifolds. In this section, we give some examples
and prove a characterization theorem of such type of warped products. In Section 5, we establish Chen
type inequality for the squared norm of the second fundamental form in terms of the warping function.
The equality case of the inequality is also considered.

2. Preliminaries

Let M̃ be a m-dimensional differentiable manifold with a tensor field F of type (1, 1) such that F2 = I and
F , ±I, then we say that M̃ is an almost product manifold with almost structure F. If an almost product
manifold M̃ has a Riemannian metric 1 such that

1(FX,FY) = 1(X,Y) (1)

for any X,Y ∈ Γ(TM̃), then M̃ is called an almost product Riemannian manifold [43], where Γ(TM̃) denotes the
set all vector fields of M̃. Let ∇̃ denotes the Levi-Civita connedtion on M̃ with respect to the Riemannian
metric 1. If (∇̃XF)Y = 0, for any X,Y ∈ Γ(TM̃), then M̃ is called a locally product Riemannian manifold [23].

Let M be a Riemannian manifold isometrically immersed in M̃ and denote by the same symbol 1 the
Riemannian metric induced on M. Let Γ(TM) be the Lie algebra of vector fields in M and Γ(T⊥M), the set
of all vector fields normal to M. Let ∇ be the Levi-Civita connection on M, then the Gauss and Weingarten
formulas are respectively given by

∇̃XY = ∇XY + h(X,Y) (2)

and

∇̃XN = −ANX + ∇⊥XN (3)

for any X,Y ∈ Γ(TM) and N ∈ Γ(T⊥M), where ∇⊥ is the normal connection in the normal bundle T⊥M and
AN is the shape operator of M with respect to N. Moreover, h : TM×TM→ T⊥M is the second fundamental
form of M in M̃. Furthermore, AN and h are related by

1(h(X,Y),N) = 1(ANX,Y) (4)
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for any X,Y ∈ Γ(TM) and N ∈ Γ(T⊥M).
For any X tanget to M, we write

FX = TX + ωX, (5)

where TX and ωX are the tangential and normal components of FX, respectively. Then T is an endomor-
phism of tangent bundle TM and ω is a normal bundle valued 1-form on TM. Similarly, for any vector field
N normal to M, we put

FN = BN + CN, (6)

where BN and CN are the tangential and normal components of FN, respectively. Moreover, from (1) and
(5), we have 1(TX,Y) = 1(X,TY), for any X,Y ∈ Γ(TM).

A sumanifold M is said to be F-invariant if ω is identically zero, i.e., FX ∈ Γ(TM), for any X ∈ Γ(TM). On
the other hand, M is said to be F-anti-invariant if T is identically zero i.e., FX ∈ Γ(T⊥M), for any X ∈ Γ(TM).

A submanifold M of a locally product Riemnnian manifold M̃ is said to be totally umbilical submanifold
if h(X,Y) = 1(X,Y)H, for any X,Y ∈ Γ(TM), where H = 1

n
∑n

i=1 h(ei, ei) , the mean curvature vector of M. A
submanifold M is said to be totally geodesic if h(X,Y) = 0. A totally umbilical submanifold of dimension
greater than or equal to 2 with non-vanishing parallel mean curvature vector is called an extrinsic sphere.

Also, we set

hr
i j = 1(h(ei, e j), er), i, j = 1, · · · ,n; r = n + 1, · · · ,m (7)

and

‖h‖2 =

n∑
i, j=1

1(h(ei, e j), h(ei, e j)) (8)

where {e1, · · · , en} is an orthonormal basis of the tangent space TpM, for any p ∈M.
For a differentiable function f on a m-dimensional manifold M̃, the gradient ~∇ f of f is defined as

1(~∇ f ,X) = X f , for any X tangent to M̃. As a consequence, we have

‖~∇ f ‖2 =

m∑
i=1

(ei( f ))2 (9)

for an orthonormal frame {e1 · · · , em} on M̃.
By the analogy with submanifolds in a Kaehler manifold, different classes of submanifolds in a locally

product Riemannian manifold were considered.

(1) A submanifold M of a locally product Riemannian manifold M̃ is called a semi-invariant submanifold
[27, 29] of M̃ if there exist a differentiable distribution D : p → Dp ⊂ TpM such that D is invariant
with respect to F and the complementary distributionD⊥ is anti-invariant with respect to F.

(2) A submanifold M of a locally product Riemannian manifold M̃ is said to be slant (see [11, 12], [28]),
if for each non-zero vector X tangent to M, the angle θ(X) between FX and TpM is a constant, i.e., it
does not depend on the choice of p ∈M and X ∈ TpM.

(3) A submanifold M of a locally product Riemannian manifold M̃ is called semi-slant (see [25], [9] and
[23]), if it is endowed with two orthogonal distributionsD andDθ, whereD is invariant with respect
to F andDθ is slant, i.e., θ(X) is the angle between FX andDθ

p is constant for any X ∈ Dθ
p and p ∈M.

(4) A submanifold M of a locally product Riemannian manifold M̃ is said be pseudo-slant (or hemi–slant)
(see [31] and [37]), if it is endowed with two orthogonal distributions D⊥ and Dθ, where D⊥ is
anti-invariant with respect to F andDθ is slant.
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(5) A submanifold M of a locally product Riemannian manifold M̃ is called pointwise slant [21], if at each
point p ∈M, the Wirtinger angleθ(X) between FX and TpM is independent of the choice of the non-zero
vector X ∈ TpM. In this case, the Wirtinger angle gives rise a real-valued function θ : TM − {0} → R
which is called the Wirtinger function or slant function of the pointwise slant submanifold.

We note that a pointwise slant submanifold of a locally product Riemannian manifold is called slant, in
the sense of [28] and [4], if its Wirtinger function θ is globally constant. Moreover, F-invariant and F-anti-
invariant submanifolds introduced in [43] and in [1] are pointwise slant submanifolds with slant function
θ = 0 and θ = π

2 , respectively. A pointwise slant submanifold of a locally product Riemannian manifold is
called a proper pointwise slant submanifold if it is neither F-invariant nor F-anti-invariant.

On the similar line of Chen’s result (Lemma 2.1) of [17], it is known that M is a pointwise slant
submanifold of a locally product Riemannian manifold M̃ if and only if

T2 = (cos2 θ)I, (10)

for some real-valued function θ defined on M, where I denotes the identity transformation of the tangent
bundle TM of M. The following relations are the consequences of (10) as

1(TX,TY) = cos2 θ 1(X,Y), (11)

1(ωX, ωY) = sin2 θ 1(X,Y) (12)

for any X,Y ∈ Γ(TM). Another important relation for a poitwise slant submanifold of a locally product
Riemannian manifold is obtained by using (5), (6) and (10) as

BωX = sin2 θX, CωX = −ωTX (13)

for any X ∈ Γ(TM).

3. Pointwise pseudo-slant submanifolds

In this section, we define and study pointwise pseudo-slant submanifolds of a locally product Rieman-
nian manifold. We give examples of pointwise pseudo-slant submanifolds and investigate the geometry of
the leaves of distributions.

Definition 3.1. Let M̃ be a locally product Riemannian manifold and M a real submanifold of M̃. Then, we
say that M is a pointwise pseudo-slant submanifold if there exists a pair of orthogonal distributions D⊥

andDθ on M such that

(i) The tangent space TM admits the orthogonal direct decomposition TM = D⊥ ⊕Dθ.
(ii) The distributionD⊥ is F-anti-invariant, i.e. F(D⊥) ⊂ T⊥M.

(iii) The distributionDθ is pointwise slant with slant function θ.

In the above definition, the angle θ is called the slant function of the pointwise slant distributionDθ. The
anti-invariant distribution D⊥ of a pointwise pseudo-slant submanifold is a pointwise slant distribution
with slant function θ = π

2 . If we denote the dimensions of Dθ and D⊥ by p and q, respectively, then we
have the following possible cases:

(i) If p = 0, then M is an anti-invariant submanifold.
(ii) If q = 0, then M is a pointwise slant submanifold.

(iii) If q = 0 and θ = 0, then M is an invariant submanifold.
(iv) If θ is constant on M, then M is a pseudo-slant submanifold with slant angle θ.
(v) If θ = 0, then M is a semi-invariant submanifold.

We note that a pointwise pseudo-slant submanifold is proper if q , 0 and θ is not a constant.
Now, we construct the following examples of pointwise pseudo-slant submanifolds.
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Example 3.2. Consider a submanifold M of R6 = R3
× R3 with cartesian coordinates (x1, x2, x3, y1, y2, y3)

and the product structure

F
(
∂
∂xi

)
= −

∂
∂xi

, F
(
∂
∂y j

)
=

∂
∂y j

, 1 ≤ i, j ≤ 3. (14)

For any θ,ϕ ∈
(
0, π2

)
, consider a submanifold M of R6 defined as

χ(θ,ϕ) = (cosθ cosϕ, sinθ cosϕ, sinϕ, sinθ sinϕ, cosθ sinϕ, cosϕ)

such that ϕ is a real-valued function on M. Then, the tangent space TM of M is spanned by the following
vector fields

Z1 = − sinθ cosϕ
∂
∂x1

+ cosθ cosϕ
∂
∂x2

+ cosθ sinϕ
∂
∂y1
− sinθ sinϕ

∂
∂y2

,

Z2 = − cosθ sinϕ
∂
∂x1
− sinθ sinϕ

∂
∂x2

+ cosϕ
∂
∂x3

+ sinθ cosϕ
∂
∂y1

+ cosθ cosϕ
∂
∂y2
− sinϕ

∂
∂y3

.

Thus, with respect to the product Riemannian structure F, we obtian

FZ1 = sinθ cosϕ
∂
∂x1
− cosθ cosϕ

∂
∂x2

+ cosθ sinϕ
∂
∂y1
− sinθ sinϕ

∂
∂y2

,

FZ2 = cosθ sinϕ
∂
∂x1

+ sinθ sinϕ
∂
∂x2
− cosϕ

∂
∂x3

+ sinθ cosϕ
∂
∂y1

+ cosθ cosϕ
∂
∂y2
− sinϕ

∂
∂y3

.

It is easy to see that FZ2 is orthogonal to TM, thus the anti-invariant distribution is D⊥ = Span{Z2} and
D
θ1 = Span{Z1} is a pointwise slant distribution with slant function θ1 = arccos

(
1(FZ1,Z1)
‖FZ1‖‖Z1‖

)
= 2ϕ and hence

M is a proper pointwise pseudo-slant submanifold with slant function θ1 = 2ϕ.

Example 3.3. Consider a submanifold M of R4 = R2
×R2 with cartesian coordinates (x1, x2, y1, y2) and the

product structure

F
(
∂
∂xi

)
=

∂
∂xi

, F
(
∂
∂yi

)
= −

∂
∂yi

, i = 1, 2.

For a real valued function v and M, define an immersion

φ(u, v) = (u + v, sin v, − u − v, cos v), u, v , 0.

Its tangent space TM is spanned by the vectors

Z1 =
∂
∂x1
−

∂
∂y1

, Z2 =
∂
∂x1

+ cos v
∂
∂x2
−

∂
∂y1

+ sin v
∂
∂y2

.

Then with respect to the product Riemannian structure F and the usual metric tensor ofR4 = R2
×R2, F(TM)

becomes

FZ1 =
∂
∂x1

+
∂
∂y1

, FZ2 =
∂
∂x1

+ cos v
∂
∂x2

+
∂
∂y1
− sin v

∂
∂y2

.

It is easy to see that FZ1 is orthogonal to TM and hence the anti-invariant distribution isD⊥ = Span{Z1} and
D
θ = Span{Z2} is a pointwise slant distribution with slant function θ = cos−1

(
cos 2v

3

)
. Since v is a real-valued

function on M, then the slant function θ is not a constant and hence M is a proper pointwise pseudo-slant
submanifold.
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Now, we give the following useful lemma.

Lemma 3.4. Let M be a pointwise pseudo-slant submanifold of a locally product Riemannian manifold M̃. Then

(i) For any X,Y ∈ Γ(Dθ) and Z ∈ Γ(D⊥), we have

cos2 θ 1(∇XY,Z) = 1(AFZTY,X) + 1(AωTYZ,X). (15)

(ii) For any Z,V ∈ Γ(D⊥) and X ∈ Γ(Dθ), we have

cos2 θ 1(∇ZV,X) = −1(AFVTX,Z) − 1(AωTXV,Z). (16)

Proof. We prove (i) and (ii) in a similar way. For any X,Y ∈ Γ(Dθ) and Z ∈ Γ(D⊥), we have

1(∇XY,Z) = 1(∇̃XY,Z) = 1(F∇̃XY,FZ).

Using the locally product structure and (5), we obtain

1(∇XY,Z) = 1(∇̃XTY,FZ) + 1(∇̃XωY,FZ)

= 1(h(X,TY),FZ) + 1(∇̃XFωY,Z).

Then from (6), we get

1(∇XY,Z) = 1(h(AFZTY,X) + 1(∇̃XBωY,Z) + 1(∇̃XCωY,Z).

Thus from (13), we derive

1(∇XY,Z) = 1(h(AFZTY,X) + 1(∇̃X sin2 θY,Z) − 1(∇̃XωTY,Z).

= 1(h(AFZTY,X) + sin2 θ 1(∇̃XY,Z) + sin 2θX(θ) 1(Y,Z) + 1(AωTYX,Z).

Then by the orthogonality of two distributions and the symmetry of the shape operator, we get (i). In a
similar way we can prove (ii).

Theorem 3.5. Let M be a proper pointwise pseudo-slant submanifold of a locally product Riemannian manifold M̃.
Then

(i) The distributionD⊥ is integrable if and only if

1(h(X,V),FZ) = 1(h(X,Z),FV),

for any X ∈ Γ(Dθ) and Z,V ∈ Γ(D⊥).
(ii) The distributionDθ is integrable if and only if

1(AFZTY,X) − 1(AFZTX,Y) = 1(AωTXZ,Y) − 1(AωTYZ,X),

for any X,Y ∈ Γ(Dθ) and Z ∈ Γ(D⊥).

Proof. Using polarization identity in Lemma 3.4 (ii), we have

cos2 θ 1(∇VZ,X) = −1(AFZTX,V) − 1(AωTXZ,V), (17)

for Z,V ∈ Γ(D⊥) and X ∈ Γ(Dθ). Then, relations (16), (17) and the symmetry of the shape operator imply
that

cos2 θ 1([Z,V],X) = 1(h(TX,V),FZ) − 1(h(TX,Z),FV),

which gives the assertion by interchanging X by TX and using (10). Similaly, by using the polarization
identity in Lemma 3.4 (i) and the definition of Lie bracket, we obtain (ii).
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Theorem 3.6. Let M be a proper pointwise pseudo-slant submanifold of a locally product Riemannian manifold M̃.
Then

(i) The anti-invariant distributionD⊥ defines a totally geodesic foliation if and only if

1(h(TX,Z),FV) = −1(h(Z,V), ωTX),

for any Z,V ∈ Γ(D⊥) andX ∈ Γ(Dθ).
(ii) The pointwise slant distributionDθ defines a totally geodesic foliation if and only if

1(h(X,TY),FV) = −1(h(X,V), ωTY),

for any X,Y ∈ Γ(Dθ) and V ∈ Γ(D⊥).

Proof. The proof follows from Lemma 3.4.

Thus, the following corollary is an immediate consequence of Theorem 3.6.

Corollary 3.7. Let M be a proper pointwise pseudo-slant submanifold of a locally product Riemannian manifold M̃.
Then, M is a locally Riemannian product manifold M = M⊥ ×Mθ if and only if

AωTXV = −AFVTX,

for any V ∈ Γ(D⊥) and X ∈ Γ(Dθ).

4. Warped products M⊥ × f Mθ in locally product Riemannian manifolds

In [8], R.L. Bishop and B. O’Neill in [8] introduced the notion of warped product manifolds as follows:
Let M1 and M2 be two Riemannian manifolds with Riemannian metrics 11 and 12, respectively, and a
positive differentiable function f on M1. Consider the product manifold M1 × M2 with its projections
π1 : M1 ×M2 → M1 and π2 : M1 ×M2 → M2. Then their warped product manifold M = M1 × f M2 is the
Riemannian manifold M1 ×M2 = (M1 ×M2, 1) equipped with the Riemannian structure such that

1(X,Y) = 11(π1?X, π1?Y) + ( f ◦ π1)212(π2?X, π2?Y)

for any vector field X,Y tangent to M, where ? is the symbol for the tangent maps. A warped product
manifold M = M1× f M2 is said to be trivial or simply a Riemannian product manifold if the warping function f
is constant. Let X be a vector field tangent to M1 and Z be an another vector field on M2, then from Lemma
7.3 of [8], we have

∇XZ = ∇ZX = X(ln f )Z (18)

where ∇ is the Levi-Civita connection on M. If M = M1 × f M2 be a warped product manifold then M1 is a
totally geodesic submanifold of M and M2 is a totally umbilical submanifold of M [8, 13].

A warped product submanifold M = M1 × f M2 of a locally product Riemannian manifold M̃ is said
to be mixed totally geodesic if h(X,Z) = 0, for any X ∈ Γ(TM1) and Z ∈ Γ(TM2), where M1 and M2 are any
Riemannian submanifolds of M̃.

In this section, we investigate the geometry of warped product pointwise pseudo-slant submanifolds
of a locally product Riemannian manifold. First, we give the following example of a warped product
pseudo-slant submanifold Mθ × f M⊥.

Example 4.1. For any u , 0, v ∈
(
0, π2

)
, consider a submanifold M of R5 = R3

× R2 with the cartesian
coordinates (x1, x2, x3, y1, y2) and the product structure

F
(
∂
∂xi

)
=

∂
∂xi

, F
(
∂
∂y j

)
= −

∂
∂y j

, i = 1, 2, 3 & j = 1, 2.
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The submanifold M is given by the equations

x1 = u cos v, x2 = u sin v, x3 = 2u, y1 = u cos v, y2 = u sin v.

Then the tangent bundle TM is spanned by Z1 and Z2, where

Z1 = cos v
∂
∂x1

+ sin v
∂
∂x2

+ 2
∂
∂x3

+ cos v
∂
∂y1

+ sin v
∂
∂y2

,

Z2 = −u sin v
∂
∂x1

+ u cos v
∂
∂x2
− u sin v

∂
∂y1

+ u cos v
∂
∂y2

.

From the product Riemannian structure, we find that

FZ1 = cos v
∂
∂x1

+ sin v
∂
∂x2

+ 2
∂
∂x3
− cos v

∂
∂y1
− sin v

∂
∂y2

,

FZ2 = −u sin v
∂
∂x1

+ u cos v
∂
∂x2

+ u sin v
∂
∂y1
− u cos v

∂
∂y2

.

It is easy to see that FZ2 is orthogonal to TM and hence the anti invariant distribution is D⊥ = Span{Z2}.
Also, the slant distribution is spanned by the vector Z1, i.e., Dθ = Span{Z1} with slant angle θ = cos−1

(
2
3

)
.

Thus M is a pseudo-slant submanifold of R5. It is easy to check that both the distributions are integrable.
We denote the integral manifolds of D⊥ and Dθ by M⊥ and Mθ, respectively. Then, the metric tensor 1 of
the product manifold M is given by

1 = 6du2 + 2u2 dv2 = 1Mθ + 2u21M⊥ .

Thus M is a non-trivial warped product pseudo-slant submanifold of R5 of the form Mθ ×
√

2u M⊥.

In [3], M. Atceken proved that there is no warped product pseudo-slant submanifold of a locally
product Riemannian manifold M̃ of the form M⊥ × f Mθ, where M⊥ and Mθ are anti-invariant and proper
slant submanifolds of M̃, respectively. In the following examples we can see that the warped product
M⊥ × f Mθ exists only when the spherical manifold is a pointwise slant submanifold and we call such
warped product, a pointwise pseudo-slant warped product.

Example 4.2. Consider a submanifold of R6 = R3
× R3 with the cartesian coordinates and the product

structure given in Example 3.2. Then the immersed submanifold M of R6 is given by

χ(u, v) = (u cos v, u sin v, v, u cos v, u sin v, −2v)

such that u ∈ R − {0} is a real-valued function on M and v ∈
(
0, π2

)
. The tangent space of M is spanned by

the following vectors

Z1 = cos v
∂
∂x1

+ sin v
∂
∂x2

+ cos v
∂
∂y1

+ sin v
∂
∂y2

,

Z2 = −u sin v
∂
∂x1

+ u cos v
∂
∂x2

+
∂
∂x3
− u sin v

∂
∂y1

+ u cos v
∂
∂y2
− 2

∂
∂y3

.

Then from the considered product Remannian structure of R6 in Example 3.2, we obtain

FZ1 = − cos v
∂
∂x1
− sin v

∂
∂x2

+ cos v
∂
∂y1

+ sin v
∂
∂y2

,
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FZ2 = u sin v
∂
∂x1
− u cos v

∂
∂x2
−

∂
∂x3
− u sin v

∂
∂y1

+ u cos v
∂
∂y2
− 2

∂
∂y3

.

Thus it is clear that FZ1 is orthogonal to TM and hence the anti-invariant distribution isD⊥ = Span{Z1} and
D
θ = Span{Z2} is a pointwise slant distribution with slant function θ = cos−1

(
3

5+2u2

)
. Thus M is a poitwise

pseudo-slant submanifold of R6. Also, it is easy to see that both the distributions are integrable. If we
denote the integral manifolds ofD⊥ andDθ by M⊥ and Mθ, respectively then, the metric 1 of the product
manifold M is given by

1 = 2du2 +
(
5 + 2u2

)
dv2 = 1M⊥ +

(√
5 + 2u2

)2
1Mθ .

Hence, we conclude that M is a warped product pointwise pseudo-slant submanifold of R6 of the form
M⊥ × f Mθ with the warping function f =

√

5 + 2u2.

Example 4.3. LetR6 be an Euclidean space with the cartesian coordinates (x1, x2, x3, y1, y2, y3) and the almost
product structure

F
(
∂
∂xi

)
=

∂
∂xi

, F
(
∂
∂y j

)
= −

∂
∂y j

, 1 ≤ i, j ≤ 3.

Consider a submanifold M of R6 defined by

χ(u, v,w) = (u cos v, u sin v, w, w cos v, w sin v, −u)

for non-vanishing real-valued functions u,w on M such that u , w. Then the tangent bundle TM is spanned
by Z1, Z2 and Z3, where

Z1 = cos v
∂
∂x1

+ sin v
∂
∂x2
−

∂
∂y3

,

Z2 = −u sin v
∂
∂x1

+ u cos v
∂
∂x2
− w sin v

∂
∂y1

+ w cos v
∂
∂y2

.

Z3 =
∂
∂x3

+ cos v
∂
∂y1

+ sin v
∂
∂y2

,

thus, we find that

FZ1 = cos v
∂
∂x1

+ sin v
∂
∂x2

+
∂
∂y3

,

FZ2 = −u sin v
∂
∂x1

+ u cos v
∂
∂x2

+ w sin v
∂
∂y1
− w cos v

∂
∂y2

.

FZ3 =
∂
∂x3
− cos v

∂
∂y1
− sin v

∂
∂y2

.

It is easy to see that FZ1 and FZ3 are orthogonal to TM. Then D⊥ = Span{Z1,Z3} is an anti-invariant
distribution and Dθ = Span{Z2} is a pointwise slant distribution with slant function θ = cos−1

(
u2
−w2

u2+w2

)
.

Thus M is a pointwise pseudo-slant submanifold of R6. It is easy to check that both the distributions are
integrable. If we denote the integral manifolds ofD⊥ andDθ by M⊥ and Mθ, respectively then, the metric
tensor 1 of the product manifold M is given by

1 = 2du2 + 2dw2 +
(
u2 + w2

)
dv2 = 1M⊥ +

(
u2 + w2

)
1Mθ .

Hence, M is a non-trivial warped product pointwise pseudo-slant submanifold ofR6 of the form M⊥ × f Mθ

with the warping function f =
√

u2 + w2.
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Example 4.4. Consider a submanifold of R6 = R3
× R3 with the cartesian coordinates and the product

structure given in Example 3.2. Let M be a submanifold of R6 given by the equations

x1 = u cosh v, x2 = u sinh v, x3 = −v, y1 = u sinh v, y2 = u cosh v, y3 =
√

2 v

such that u, v ∈ R − {0} are real-valued functions on M and v ∈
(
0, π2

)
. Then the tangent bundle of M is

spanned by Z1 and Z2, where

Z1 = cosh v
∂
∂x1

+ sinh v
∂
∂x2

+ sinh v
∂
∂y1

+ cosh v
∂
∂y2

,

Z2 = u sinh v
∂
∂x1

+ u cosh v
∂
∂x2
−

∂
∂x3

+ u cosh v
∂
∂y1

+ u sinh v
∂
∂y2

+
√

2
∂
∂y3

.

Hence, we find

FZ1 = − cosh v
∂
∂x1
− sinh v

∂
∂x2

+ sinh v
∂
∂y1

+ cosh v
∂
∂y2

,

FZ2 = −u sinh v
∂
∂x1
− u cosh v

∂
∂x2

+
∂
∂x3

+ u cosh v
∂
∂y1

+ u sinh v
∂
∂y2

+
√

2
∂
∂y3

.

Since FZ1 is orthogonal to TM and

θ = cos−1

(
1(Z2,FZ2)
‖Z2‖.‖FZ2‖

)
= cos−1

( 1
3 + 2u2 cosh 2v

)
.

Then the anti-invariant distribution isD⊥ = Span{Z1}, andDθ = Span{Z2} is a pointwise slant distribution
with slant functionθ = cos−1

(
1

3+2u2 cosh 2v

)
. Hence, M is a pointwise pseudo-slant submanifold ofR6. Clearly,

both the distributions are integrable. If the integral manifolds ofD⊥ andDθ are M⊥ and Mθ, respectively
then, the metric 1 of the product manifold M is given by

1 = 2 cosh 2v du2 +
(
3 + 2u2 cosh 2v

)
dv2

=
(√

2 cosh 2v
)2
1M⊥ +

(√
3 + 2u2 cosh 2v

)2
1Mθ .

Thus M is a warped product pointwise pseudo-slant submanifold of R6 of the form f2 M⊥ × f1 Mθ with
warping functions f1 =

√

3 + 2u2 cosh 2v and f2 =
√

2 cosh 2v. In fact, M is a doubly warped product
submanifold of R6 with the warping functions f1 and f2.

Now, we investigate the geometry of the warped product pointwise pseudo-slant submanifolds of form
M⊥ × f Mθ. First, we prove the following useful lemma for later use.

Lemma 4.5. Let M = M⊥ × f Mθ be a warped product pointwise pseudo-slant submanifold of a locally product
Riemannian manifold M̃. Then

(i) 1(h(Z,V), ωX) = −1(h(X,Z),FV);
(ii) 1(h(X,Z), ωY) = −1(h(Y,Z), ωX)

for any Z,V ∈ Γ(TM⊥) and X,Y ∈ Γ(TMθ).

Proof. For any Z,V ∈ Γ(TM⊥) and X,Y ∈ Γ(TMθ), we have

1(h(Z,V), ωX) = 1(∇̃ZV, ωX)

= 1(∇̃ZV,FX) − 1(∇̃ZV,TX)

= 1(∇̃ZFV,X) + 1(∇̃ZTX,V).
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Then from (2), (3) and (18), we obtain

1(h(Z,V), ωX) = −1(AFVZ,X) + Z(ln f ) 1(TX,V).

Second term in the right hand side of above relation vanishes identically by the orthogonality of the vector
fields, thus we have

1(h(Z,V), ωX) = −1(h(X,Z),FV)

which is (i). For the second part of the lemma, we have

1(∇̃ZX,TY) = Z(ln f ) 1(X,TY) (19)

for any X,Y ∈ Γ(TMθ) and Z ∈ Γ(TM⊥). On the other hand, we also have

1(∇̃ZX,TY) = 1(∇̃ZX,FY) − 1(∇̃ZX, ωY)

= 1(∇̃ZFX,Y) − 1(h(X,Z), ωY)

= 1(∇̃ZTX,Y) + 1(∇̃ZωX,Y) − 1(h(X,Z), ωY)

= Z(ln f ) 1(TX,Y) − 1(∇̃ZY, ωX) − 1(h(X,Z), ωY).

Then from (1) and (3), we find that

1(∇̃ZX,TY) = Z(ln f ) 1(X,TY) − 1(h(Y,Z), ωX) − 1(h(X,Z), ωY). (20)

Thus, (ii) follows from (19) and (20), which proves the lemma completely.

Lemma 4.6. Let M = M⊥ × f Mθ be a warped product pointwise pseudo-slant submanifold of a locally product
Riemannian manifold M̃. Then

(i) 1(h(X,Y),FZ) = −Z(ln f )1(X,TY),
(ii) 1(h(TX,Y),FZ) = − cos2 θZ(ln f ) 1(X,Y) − 1(h(Y,Z), ωTX)

for any X,Y ∈ Γ(TMθ) and Z ∈ Γ(TM⊥).

Proof. For any X,Y ∈ Γ(TMθ) and Z ∈ Γ(TM⊥), we have

1(h(X,Y),FZ) = 1(∇̃XY,FZ) = 1(∇̃XFY,Z).

Using (5), we obtain

1(h(X,Y),FZ) = 1(∇̃XTY,Z) + 1(∇̃XωY,Z) = −1(∇̃XZ,TY) − 1(AωYX,Z).

Then from (4) and (18), we derive

1(h(X,Y),FZ) = −Z(ln f ) 1(X,TY) − 1(h(X,Z), ωY). (21)

By polarization identity, we derive

1(h(X,Y),FZ) = −Z(ln f ) 1(Y,TX) − 1(h(Y,Z), ωX). (22)

Using (1) and Lemma 4.5 (ii), we arrive at

1(h(X,Y),FZ) = −Z(ln f ) 1(X,TY) + 1(h(X,Z), ωY). (23)

Thus from (21) and (23), we get (i). The second part of the lemma follows from (22) by interchanging X by
TX and using (11). Hence, the proof is complete.
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We can easily find the following relations by interchanging X by TX and Y by TY, for any X,Y ∈ Γ(TMθ)
in Lemma 4.6 (ii) as follows.

1(h(TX,Y),FZ) = −Z(ln f ) cos2 θ 1(X,Y), (24)

1(h(X,TY),FZ) = −Z(ln f ) cos2 θ 1(X,Y) (25)

and

1(h(TX,TY),FZ) = −Z(ln f ) cos2 θ 1(X,TY). (26)

Then from (21) and (26), we get

1(h(TX,TY),FZ) = 1(h(X,Y),FZ).

Also, from (24) and (25), we have

1(h(TX,Y),FZ) = 1(h(X,TY),FZ).

In order to give a characterization we need the following well known result of S. Hiepko [22].

Hiepko’s Theorem. Let D1 and D2 be two orthogonal distribution on a Riemannian manifold M. Suppose that
D1 andD2 both are involutive such thatD1 is a totally geodesic foliation andD2 is a spherical foliation. Then M is
locally isometric to a non-trivial warped product M1 × f M2, where M1 and M2 are integral manifolds ofD1 andD2 ,
respectively.

The following result give a characterization of warped product pointwise pseudo-slant submanifolds.

Theorem 4.7. Let M be a pointwise pseudo-slant submanifold of a locally product Riemannian manifold M̃. Then
M is locally a warped product submanifold of the form M⊥ × f Mθ if and only if

AωTXV + AFVTX = −V(µ) cos2 θX, ∀ X ∈ Γ(Dθ), V ∈ Γ(D⊥) (27)

for some smooth function µ on M satisfying Y(µ) = 0, for any Y ∈ Γ(Dθ).

Proof. Let M = M⊥ × f Mθ be a warped product pointwise pseudo-slant submanifold. Then from Lemma
4.5 (i), we have 1(AωXV,Z) = −1(AFVX,Z), for any X ∈ Γ(TMθ) and Z,V ∈ Γ(TM⊥). Interchanging X by
TX, we get 1(AωTXV + AFVTX,Z) = 0, which means that AωTXV + AFVTX has no component in TM⊥, i.e.,
AωTXV + AFVTX lies in TMθ. Using this fact with Lemma 4.6 (ii), we get (27).

Conversely, if M is a pointwise pseudo-slant submanifold such that (27) holds, then from Lemma 3.4
(ii), we have

1(∇ZV,X) = − sec2 θ 1(AωTXV + AFVTX,Z).

Using the hypothesis of the theorem, i.e., the relation (27) and the orthogonality of two distributions, we
arrive at

1(∇ZV,X) = 0

for any Z,V ∈ Γ(D⊥) and X ∈ Γ(Dθ), which means that the leaves of the distributionD⊥ are totally geodesic
in M. Let M⊥ be a leaf ofD⊥, thus M⊥ is totally geodesic in M. Also, from Lemma 3.4 (i), we have

cos2 θ 1(∇XY,V) = 1(AFVTY + AωTYV,X).

Using (27), we derive

1(∇XY,V) = −V(µ) 1(X,Y). (28)
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By polarization identity, we obtain

1(∇YX,V) = −V(µ) 1(X,Y). (29)

Subtracting (29) from (28) and using the definition of Lie bracket, we find that

1([X,Y],V) = 0,

which implies that the pointwise slant distributionDθ is integrable. Let Mθ be the integral manifold ofDθ

and hθ be the second fundamental form of Mθ in M. Then, for any X,Y ∈ Γ(Dθ) and V ∈ Γ(D⊥), from (28)
we have

1(hθ(X,Y),V) = 1(∇XY,V) = −V(µ) 1(X,Y)

or equivalently, we have

hθ(X,Y) = −~∇µ 1(X,Y) (30)

where ~∇µ is the gradient vector of the function µ which means that Mθ is totally umbilical in M with mean
curvature vector Hθ = −~∇µ. Furthermore, Y(µ) = 0, Y ∈ Γ(Dθ) implies that Hθ is parallel with respect
to the normal connection Dn of Mθ in M. Thus Mθ is a totally umbilical submanifold with non-vanishing
parallel mean curvature vector Hθ. Hence the spherical condition is also fulfilled, that is Mθ is an extrinsic
sphere in M. Then, from Hiepko Theorem, M is a non-trivial warped product of the form M = M⊥ ×µ Mθ,
which proves the theorem completely.

Remark 4.8. If we assume θ = 0 in Theorem 4.7, then the warped product pointwise pseudo-slant sub-
manifolds reduce to warped product semi-invariant submanifolds of the form M⊥ × f MT which have been
discussed in [29], thus Theorem 4.7 is a generalization of Theorem 4.1 of [29].

5. An optimal inequality for warped products M⊥ × f Mθ

In this section, we establish a sharp inequality for the squared norm of the second fundamental form in
terms of the warping function. First, we construct the following frame fields for an n = (p + q)-dimensional
warped product pointwise pseudo-slant submanifold M = M⊥ × f Mθ of a m-dimensional locally product
Riemannian manifold M̃, where M⊥ and Mθ are anti-invariant and proper pointwise slant submanifolds of
M̃, respectively. Let us denote byD⊥ andDθ the tangent bundles of M⊥ and Mθ, respectively. Also, if we
consider the dim(M⊥) = q and dim(Mθ) = p, then the orthonormal frames of D⊥ and Dθ, respectively are
given by

{e1, · · · , eq}

and

{eq+1 = e∗1 = secθTe∗1, · · · , en = eq+p = e∗p = secθTe∗p}.

Then the orthonormal frame fields of the normal subbundles of FD⊥, ωDθ and ν, respectively are

{en+1 = Fe1, · · · , en+q = Feq},

{en+q+1 = ẽ1 = cscθωe∗1, · · · , e2n = ẽp = cscθωe∗p}

and

{en+q+p+1 = ẽp+1, · · · , em = ẽm−2n}.

Now, we are able to establish the following inequality with the help of the above constructed frame
fields and some previous formulas which we have obtained for warped product semi-slant submanifolds
of a locally product Riemannian manifold.
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Theorem 5.1. Let M = M⊥ × f Mθ be a proper warped product pointwise pseudo-slant submanifold of a locally
product Riemannian manifold M̃, where M⊥ and Mθ are anti-invariant and proper pointwise slant submanifolds of
M̃, respectively. Then

(i) The squared norm of the second fundamental form of M satisfies

‖h‖2 ≥ p cos2 θ ‖~∇ ln f ‖2 (31)

where p = dim Mθ and ~∇ ln f is gradient of ln f .
(ii) If equality sign in (i) holds identically, then M⊥ and Mθ are totally geodesic and totally umbilical submanifolds

of M̃, respectively. Furthermore, M⊥ × f Mθ is a mixed totally geodesic submanifold of M̃

Proof. From the definition of h, we have

‖h‖2 =

n∑
i, j=1

1(h(ei, e j), h(ei, e j)) =

m∑
r=n+1

n∑
i, j=1

1(h(ei, e j), er)2.

Thus from the frame fields ofD⊥ andDθ, we find

‖h‖2 =

m∑
r=n+1

q∑
i, j=1

1(h(ei, e j), er)2 + 2
m∑

r=n+1

q∑
i=1

n∑
j=q+1

1(h(ei, e j), er)2 +

m∑
r=n+1

n∑
i, j=q+1

1(h(ei, e j), er)2. (32)

Leaving the second positive term in the right hand side of above relation. Then, we have

‖h‖2 ≥
m∑

r=n+1

q∑
i, j=1

1(h(ei, e j), er)2 +

m∑
r=n+1

p∑
i, j=1

1(h(e∗i , e
∗

j), er)2.

Using the frame fields of FD⊥, ωDθ and ν, the above equation takes the form

‖h‖2 =

q∑
r=1

q∑
i, j=1

1(h(ei, e j),Fer)2 +

p∑
r=1

q∑
i, j=1

1(h(ei, e j), ẽr)2 +

m−2n∑
r=p+1

q∑
i, j=1

1(h(ei, e j), ẽr)2

+

q∑
r=1

p∑
i, j=1

1(h(e∗i , e
∗

j),Fer)2 +

p∑
r=1

p∑
i, j=1

1(h(e∗i , e
∗

j), ẽr)2
m−2n∑
r=p+1

p∑
i, j=1

1(h(e∗i , e
∗

j), ẽr)2. (33)

The third and sixth term have ν-components and we have not found any relation for these components,
therefore we can leave these two positive terms. Also, we could not find any relation for 1(h(ei, e j),Fer), for
any i, j, r = 1, · · · , q and 1(h(e∗i , e

∗

j), ẽr), for any i, j, r = 1, · · · , p, therefore we shall leave these positive terms
also. After leaving these terms in the right hand side of (33) and using the constructed frame fields, we find

‖h‖2 ≥
p∑

r=1

q∑
i, j=1

1(h(ei, e j), cscθωe∗r)
2 +

q∑
r=1

p∑
i, j=1

1(h(e∗i , e
∗

j),Fer)2. (34)

Again leaving the first positive term in the right hand side of above equation. Thus, from Lemma 4.6 (i),
we derive

‖h‖2 ≥
q∑

r=1

p∑
i, j=1

(
(er ln f ) 1(e∗i ,Te∗j)

)2
.
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Then from the adopted frame fields ofDθ, we know that Te∗j = cosθ e∗j, using this fact in the above relation,
then we have

‖h‖2 ≥ p cos2 θ

q∑
r=1

(er ln f )2.

Thus by using (9), we get

‖h‖2 ≥ p cos2 θ‖~∇ ln f ‖2,

which is inequality (i). From the leaving second term in the right hand side of (32), we have

h(D⊥,Dθ) = 0. (35)

Also, from the remaining first and third terms of (33), we obtain

h(D⊥,D⊥) ⊂ ωDθ. (36)

On the other hand, from Lemma 4.5 (i) and (35), we find that

h(D⊥,D⊥) ⊥ ωDθ. (37)

Then from (36) and (37), we conclude that

h(D⊥,D⊥) = 0. (38)

Also, from the remaining fifth and sixth terms in the right hand side of (33), we find that

h(Dθ,Dθ) ⊂ FD⊥. (39)

Since M⊥ is totally geodesic in M [8, 13], using this fact with (37) we get M⊥ is totally geodesic in M̃. On
the other hand, (38) implies that Mθ is totally umbilical in M̃ due to Mθ being totally umbilical in M [8, 13].
Moreover, (35), (37) and (38) imply that M is a mixed totally geodesic submanifold of M̃. Hence, the proof
is complete

From the above theorem, we have the following remark.

Remark 5.2. In Theorem 5.1, if we put θ = 0, then the warped product becomes M = M⊥ × f MT in a locally
product Riemannian manifold M̃, where MT and M⊥ are invariant and anti-invariant submanifolds of M̃,
respectively, which is a case of warped product semi-nivariant submanifolds which have been discussed in
([5], [29]). Thus, Theorem 4.2 of [29] and Theorem 4.1 of [5] are the special cases of Theorem 5.1.
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