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Existence of Positive Solutions for Second-Order Impulsive Time Scale
Boundary Value Problems on Infinite Intervals

İsmail Yaslan, Zehra Haznedar

Pamukkale University, Department of Mathematics, 20070 Denizli, Turkey

Abstract. In this paper, we consider nonlinear second order m-point impulsive time scale boundary value
problems on infinite intervals. By using Leray-Schauder fixed point theorem, Avery-Henderson fixed point
theorem and the five functional fixed point theorem, respectively, we establish the criteria for the existence
of at least one, two and three positive solutions to the nonlinear impulsive time scale boundary value
problems on infinite intervals.

1. Introduction

Impulsive problems describe processes which experience a sudden change in their states at certain
moments. Impulsive differential equations have been developed in modeling impulsive problems in
physics, chemical technology, population dynamics, ecology, biological systems, biotechnology, industrial
robotics, optimal control, economics, and so forth. For the introduction of the theory of impulsive differential
equations, we refer to the books [3–5]. Especially, the study of impulsive dynamic equations on time scales
has also attracted much attention since it provides an unifying structure for differential equations in the
continuous cases and finite difference equations in the discrete cases, see [6–8, 11–13, 15–17] and references
therein. Some basic definitions and theorems on time scales can be found in the books [9, 10]. In recent
years, there are a few authors studied the existence of positive solutions for time scale boundary value
problems on infinite intervals. We refer the reader to [14, 18, 19]. Due to the fact that an infinite interval is
noncompact, the discussion about boundary value problem on the infinite intervals is more complicated.
To the authors knowledge, no one has studied the existence of positive solutions for m-point impulsive
time scale boundary value problems for an increasing homeomorphism and positive homomorphism on
infinite intervals. The results are even new for the difference equations and differential equations as well
as for dynamic equations on general time scales.

We consider the following boundary value problem (BVP)


(ϕ(y∆(t))∇ + h(t) f

(
t, y(t), y∆(t)

)
= 0, t ∈ [a,∞)T, t , tk, k = 1, 2, ...,n

y(t+
k ) − y(t−k ) = Ik(y(tk)), k = 1, 2, ...,n

y(a) − βy∆(a) =
m−2∑
i=1
αiy∆(ηi), lim

t→∞
y∆(t) = 0, m ≥ 3

(1)

2010 Mathematics Subject Classification. Primary 34B18; Secondary 34B37, 34N05
Keywords. boundary value problems, cone, fixed point theorems, impulsive dynamic equations, positive solutions, time scales.
Received: 29 September 2013; Accepted: 07 October 2014
Communicated by Jelena Manojlovic
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where T is a time scale, β ≥ 0, αi ≥ 0 (1 ≤ i ≤ m − 2), 0 ≤ a < η1 < . . . < ηm−2 < ∞, f ∈ C([a,∞)T × [0,∞) ×
[0,∞), [0,∞)) and ϕ : R→ R is an increasing homeomorphism and positive homomorphism with ϕ(0) = 0.

We will assume that the following conditions are satisfied:

(H1) h ∈ C ([a,∞)T, [0,∞)),
∞∫
a

h(s)∇s < ∞,
∞∫
a
ϕ−1

∞∫
ξ

h(s)∇s

∆ξ < ∞;

(H2) f (t, (1 + t)u, v) ≤ ω (max{|u|, |v|}) with ω ∈ C ([0,∞), [0,∞)) nondecreasing;
(H3)

∑
a<tk<∞

Ik(y(tk)) < ∞, Ik ∈ C (R,R+), tk ∈ [a,∞)T and y(t+
k ) = lim

h→0
y(tk + h), y(t−k ) = lim

h→0
y(tk − h) represent

the right and left limits of y(t) at t = tk, k = 1, ...,n.
The rest of paper is organized as follows. In Section 2, we give several lemmas to prove the main results

in this paper. In Section 3, firstly, Leray-Schauder fixed-point theorem is used to investigate the existence
of at least one positive solution of the BVP (1). Second, we apply the Avery-Henderson fixed point theorem
to prove the existence of at least two positive solutions to the BVP (1). Finally, we use the five functionals
fixed-point theorem to show that the existence of at least three positive solutions for the BVP (1).

2. Preliminaries

We now state and prove several lemmas which are needed later.

Lemma 2.1. Assume (H3) holds. Let x ∈ C ([a,∞)T, [0,∞)) and
∞∫
a

x(t)∇t < ∞ then y(t) is a solution of the following

BVP 
(ϕ

(
y∆(t)

)∇
+ x(t) = 0, t ∈ [a,∞)T, t , tk, k = 1, 2, ...,n

y(t+
k ) − y(t−k ) = Ik(y(tk)), k = 1, 2, ...,n

y(a) − βy∆(a) =
m−2∑
i=1
αiy∆(ηi), lim

t→∞
y∆(t) = 0, m ≥ 3

(2)

if and only if y(t) is a solution of the following integral equation

y(t) =

m−2∑
i=1

αiϕ
−1


∞∫
ηi

x(s)∇s

 + βϕ−1


∞∫

a

x(s)∇s

 +

t∫
a

ϕ−1


∞∫
ξ

x(s)∇s

∆ξ +
∑

a<tk<t

Ik(y(tk)) (3)

and y(t) ≥ 0 for t ∈ [a,∞)T.

Proof. First, suppose that y(t) is a solution of problem (2). Then

−

(
ϕ

(
y∆(t)

))∇
= x(t)

for t ∈ [a,∞)T. An integration from t to∞ of both sides of the above equality yields

ϕ
(
y∆(t)

)
− lim

t→∞
ϕ

(
y∆(t)

)
=

∞∫
t

x(s)∇s.

Since ϕ is continuous and ϕ(0) = 0, we have

ϕ
(
y∆(t)

)
=

∞∫
t

x(s)∇s,
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y∆(t) = ϕ−1


∞∫

t

x(s)∇s

 . (4)

Integrating the above equality from a to t, we get

y(t) − y(a) −
∑

a<tk<t

Ik
(
y(tk)

)
=

t∫
a

ϕ−1


∞∫
ξ

x(s)∇s

∆ξ,

y(t) =

m−2∑
i=1

αiy∆(ηi) + βy∆(a) +

t∫
a

ϕ−1


∞∫
ξ

x(s)∇s

∆ξ +
∑

a<tk<t

Ik
(
y(tk)

)
.

Therefore, by (4), we obtain (3).
Conversely, let y(t) be as in (3). Taking the delta derivative of y(t) gives

y∆(t) = ϕ−1


∞∫

t

x(s)∇s

 ,
i.e. ϕ

(
y∆(t)

)
=

∞∫
t

x(s)∇s.

It is easy to see that y(t) satisfy (2). Furthermore, from β ≥ 0, αi ≥ 0 (1 ≤ i ≤ m − 2), x ∈ C ([a,∞)T, [0,∞)),
∞∫
a

x(t)∇t < ∞ and (H3), it is clear that y(t) ≥ 0 for t ∈ [a,∞)T. So, the proof of lemma is completed.

By Lemma 2.1, the solutions of the BVP (1) are the fixed points of the operator A defined by

Ay(t) =

m−2∑
i=1

αiϕ
−1


∞∫
ηi

h(s) f
(
s, y(s), y∆(s)

)
∇s

 + βϕ−1


∞∫

a

h(s) f
(
s, y(s), y∆(s)

)
∇s


+

t∫
a

ϕ−1


∞∫
ξ

h(s) f
(
s, y(s), y∆(s)

)
∇s

∆ξ +
∑

a<tk<t

Ik(y(tk)).

Let B be the Banach space defined by

B =
{

y ∈ C∆ ([a,∞)) : sup
t∈[a,∞)T

y(t)
1 + t

< ∞, lim
t→∞

y∆(t) = 0
}

(5)

with the norm ‖y‖ = max
{
‖y‖1, ‖y∆

‖∞

}
, where

‖y‖1 = sup
t∈[a,∞)T

|y(t)|
1 + t

, ‖y∆
‖∞ = sup

t∈[a,∞)T
|y∆(t)|

and define the cone P ⊂ B by

P =
{

y ∈ B : y(a) − βy∆(a) =

m−2∑
i=1

αiy∆(ηi), y is concave, non-decreasing and

nonnegative on [a,∞)T
}
. (6)
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Lemma 2.2. If y ∈ P, then we have ‖y‖1 ≤M‖y∆
‖∞, where

M = max
{
β − a +

m−2∑
i=1

αi, 1
}
. (7)

Proof. For y ∈ P and t ∈ [a,∞)T, we have

y(t)
1 + t

=
1

1 + t


t∫

a

y∆(s)∆s + βy∆(a) +

m−2∑
i=1

αiy∆(ηi)

 ≤
t − a + β +

m−2∑
i=1
αi

1 + t
‖y∆
‖∞

≤ M‖y∆
‖∞.

Hence, the proof is complete.

Lemma 2.3. If (H1)-(H3) hold, then the operator A : P→ P is completely continuous.

Proof. We divide the proof into three steps.
Step 1: We show that A : P→ P.
In fact, for y ∈ P, we have
(Ay)∆(∞) = 0,
(ϕ((Ay)∆))∇(t) = −h(t) f

(
t, y(t), y∆(t)

)
≤ 0,

(Ay)∆(t) = ϕ−1

(
∞∫
t

h(s) f
(
s, y(s), y∆(s)

)
∇s

)
≥ 0,

(Ay)(a) =
m−2∑
i=1
αi(Ay)∆(ηi) + β(Ay)∆(a) ≥ 0.

Hence A : P→ P.
Step 2: We show that A : P→ P is continuous.
If yn → y as n → ∞ in P, then there exists τ such that sup

n∈N
‖yn‖ < τ. From (H2), for all t ∈ [a,∞)T we

have f
(
t, yn(t), y∆

n (t)
)
≤ ω

(
max

{
|yn(t)|
1+t , |y

∆
n (t)|

})
≤ ω

(
‖yn‖

)
< ω(τ) and f

(
t, y(t), y∆(t)

)
≤ ω

(
‖y‖

)
< ω(τ) by the

continuity of norm function. Since
∞∫

t

h(s)| f
(
s, yn(s), y∆

n (s)
)
− f

(
s, y(s), y∆(s)

)
|∇s ≤ 2ω(τ)

∞∫
a

h(s)∇s < ∞

by using (H1), we obtain∣∣∣∣ϕ (
(Ayn)∆(t)

)
− ϕ

(
(Ay)∆(t)

)∣∣∣∣ ≤

∞∫
t

h(s)| f
(
s, yn(s), y∆

n (s)
)
− f

(
s, y(s), y∆(s)

)
|∇s

→ 0, n→∞

by the Lebesgue dominated convergence theorem. Hence, we get ‖(Ayn)∆
− (Ay)∆

‖∞ → 0, as n→∞. Since
‖Ayn − Ay‖ ≤M‖(Ayn)∆

− (Ay)∆
‖∞ → 0, A : P→ P is continuous.

Step 3: We show that the image of any bounded subset of P under A is relatively compact in P.
If Ω is any bounded subset of P, then there exists K > 0 such that ‖y‖ ≤ K for ∀y ∈ Ω. By (H1) and (H2),

for ∀y ∈ Ω, we have

‖(Ay)∆
‖∞ = ϕ−1


∞∫

a

h(s) f
(
s, y(s), y∆(s)

)
∇s

 ≤ ϕ−1 (ω(K))ϕ−1


∞∫

a

h(s)∇s

 < ∞.



İ. Yaslan, Z. Haznedar / Filomat 28:10 (2014), 2163–2173 2167

Since ‖AΩ‖ ≤M‖(AΩ)∆
‖∞ < ∞, AΩ is uniformly bounded.

Now, we show that AΩ is equicontinuous on [a,∞)T. For any R > 0, t, p ∈ [a,R]T, and for all y ∈ Ω,
without loss of generality we may assume that t < p. By (H2), we have

∣∣∣∣ϕ (
(Ay)∆(t)

)
− ϕ

(
(Ay)∆(p)

)∣∣∣∣ =

∣∣∣∣∣∣∣∣
p∫

t

h(s) f
(
s, y(s), y∆(s)

)
∇s

∣∣∣∣∣∣∣∣ ≤ ω(K)

p∫
t

h(s)∇s→ 0,

uniformly as t→ p. Since ‖(Ay)∆(t)− (Ay)∆(p)‖∞ → 0, uniformly as t→ p, we obtain ‖(Ay)(t)− (Ay)(p)‖ → 0,
uniformly as t→ p, by Lemma 2.2. Hence AΩ is equicontinuous on any compact interval of [a,∞)T.

Now, we show that AΩ is equiconvergent on [a,∞)T. For any y ∈ Ω, by using (H1)-(H3), we have

lim
t→∞

∣∣∣∣∣ (Ay)(t)
1 + t

∣∣∣∣∣ = lim
t→∞

 t∫
a
ϕ−1

∞∫
ξ

h(s) f
(
s, y(s), y∆(s)

)
∇s

∆ξ +
∑

a<tk<t
Ik(y(tk))


1 + t

≤ ϕ−1 (ω(K))

∞∫
a

ϕ−1


∞∫
ξ

h(s)∇s

∆ξ lim
t→∞

1
1 + t

= 0

and

lim
t→∞

(Ay)∆(t) ≤ ϕ−1 (ω(K)) lim
t→∞

ϕ−1


∞∫

t

h(s)∇s

 = 0.

Since ‖(Ay)∆(t) − (Ay)∆(∞)‖∞ → 0, as t → ∞, we obtain ‖(Ay)(t) − (Ay)(∞)‖ → 0, as t → ∞, by Lemma 2.2.
Therefore AΩ is equiconvergent on [a,∞)T.

From steps 1 − 3, the operator A : P→ P is completely continuous.

3. Existence of Positive Solutions

To prove the existence of at least one positive solution for the BVP (1), we will apply the following
Leray-Schauder Fixed Point Theorem.

Theorem 3.1. Let E be a Banach space, A : E → E is a completely continuous operator. If the set {x ∈ E : x =
λAx, 0 < λ < 1} is bounded, then A has at least one fixed point in the closed set T ⊂ E, where

T = {x ∈ E : ‖x‖ ≤ R}, R = sup{‖x‖ : x = λAx, 0 < λ < 1}.

Theorem 3.2. If (H1)-(H3) hold, then the BVP (1) has at least one positive solution.

Proof. Define the cone P as in (6). From Lemma 2.3, A : P→ P is completely continuous.

Since ‖y‖ = max
{
‖y‖1, ‖y∆

‖∞

}
, we have ‖y‖ = ‖y‖1 or ‖y‖ = ‖y∆

‖∞. If ‖y‖ = ‖y‖1, then we get ‖y‖ ≤

M‖y∆
‖∞ from Lemma 2.2. If ‖y‖ = ‖y∆

‖∞, then we find ‖y‖ ≤M‖y∆
‖∞ by using M ≥ 1. Hence, we obtain

‖y‖ ≤M‖y∆
‖∞ (8)

for all y ∈ P.
We denote

N(A) := {y ∈ P : y = λAy, 0 < λ < 1}.
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Now we show that the set N(A) is bounded. Let T = {y ∈ P : ‖y‖ ≤ R} and R = sup{‖y‖ : y = λAy, 0 <
λ < 1}. Then for all y ∈ N(A), we have

‖y‖ ≤ Mλ‖(Ay)∆
‖∞

≤ Mλϕ−1


∞∫

a

h(s) f
(
s, y(s), y∆(s)

)
∇s


≤ Mλϕ−1 (ω(R))ϕ−1


∞∫

a

h(s)∇s

 < ∞
by (8), (H1) and (H2).

Then we obtain N(A) is bounded. By Theorem 3.1, the BVP (1) has at least one positive solution.

We will need also the following (Avery-Henderson) fixed point theorem [1] to prove the existence of at
least two positive solutions for the BVP (1).

Theorem 3.3. [1] Let P be a cone in a real Banach space E. Set

P(φ, r) = {u ∈ P : φ(u) < r}.

If η and φ are increasing, nonnegative continuous functionals on P, let θ be a nonnegative continuous functional on
P with θ(0) = 0 such that, for some positive constants r and M,

φ(u) ≤ θ(u) ≤ η(u) and ‖u‖ ≤Mφ(u)

for all u ∈ P(φ, r). Suppose that there exist positive numbers p < q < r such that

θ(λu) ≤ λθ(u), for all 0 ≤ λ ≤ 1 and u ∈ ∂P(θ, q).

If A : P(φ, r)→ P is a completely continuous operator satisfying
(i) φ(Au) > r for all u ∈ ∂P(φ, r),
(ii) θ(Au) < q for all u ∈ ∂P(θ, q),
(iii) P(η, p) , ∅ and η(Au) > p for all u ∈ ∂P(η, p),

then A has at least two fixed points u1 and u2 such that

p < η(u1) with θ(u1) < q and q < θ(u2) with φ(u2) < r.

Define the constant

N :=

ϕ−1


∞∫

a

h(s)∇s



−1

. (9)

Theorem 3.4. Assume (H1)-(H3) hold. Suppose there exist numbers 0 < p < q < r such that the function f satisfies
the following conditions:

(i) f (t, (1 + t)u, v) > ϕ(rN) for (t,u, v) ∈ [a,∞)T × [0,Mr] × [0, r],
(ii) f (t, (1 + t)u, v) < ϕ( qN

M ) for (t,u, v) ∈ [a,∞)T × [0, q] × [0, q],
(iii) f (t, (1 + t)u, v) > ϕ(pN) for (t,u, v) ∈ [a,∞)T × [0, p] × [0, p],

where N and M are defined in (9) and (7), respectively. Then the BVP (1) has at least two positive solutions y1 and
y2 such that

‖y1‖ > p with ‖y1‖ < q and ‖y2‖ > q with y∆
2 (a) < r.
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Proof. Define the cone P as in (6). From Lemma 2.3, A : P→ P is completely continuous. Let the nonnegative
increasing continuous functionals φ, θ and η be defined on the cone P by

φ(y) := y∆(a), θ(y) := ‖y‖, η(y) := ‖y‖.

For each y ∈ P, we have

φ(y) ≤ θ(y) = η(y)

and from (8) we have

‖y‖ ≤M‖y∆
‖∞ = My∆(a) = Mφ(y).

In addition, θ(0) = 0 and for all y ∈ P, λ ∈ [0, 1] we get θ(λy) = λθ(y). We now verify that all of the
conditions of Theorem 3.3 are satisfied.

If y ∈ ∂P(φ, r), for s ∈ [a,∞)T we have 0 ≤ y∆(s) ≤ r and 0 ≤ y(s)
1+s ≤ Mr from Lemma 2.2. Then, from the

hypothesis (i) and (9), we find

φ(Ay) = ϕ−1


∞∫

a

h(s) f
(
s, y(s), y∆(s)

)
∇s


> rNϕ−1


∞∫

a

h(s)∇s


= r.

Thus the condition (i) of Theorem 3.3 holds.
If y ∈ ∂P(θ, q), we have 0 ≤ y(s)

1+s ≤ q and 0 ≤ y∆(s) ≤ q for s ∈ [a,∞)T. Then, we obtain

θ(Ay) ≤ Mϕ−1


∞∫

a

h(s) f
(
s, y(s), y∆(s)

)
∇s


< q

by hypothesis (ii), (8) and (9). Hence the condition (ii) of Theorem 3.3 is satisfied.
Since 0 ∈ P and p > 0, P(η, p) , ∅. If y ∈ ∂P(η, p), we have 0 ≤ y(s)

1+s ≤ p and 0 ≤ y∆(s) ≤ p for s ∈ [a,∞)T.
Then, we get

η(Ay) ≥

∥∥∥(Ay)∆
∥∥∥
∞

= ϕ−1


∞∫

a

h(s) f
(
s, y(s), y∆(s)

)
∇s


> p

using hypothesis (iii) and (9). Since all the conditions of Theorem 3.3 are fulfilled, the BVP (1) has at least
two positive solutions y1 and y2 such that

‖y1‖ > p with ‖y1‖ < q and ‖y2‖ > q with y∆
2 (a) < r.

Now, we will present the five functionals fixed point theorem. Let γ, φ, θ be nonnegative continuous
convex functionals on the cone P, and α,Ψ nonnegative continuous concave functionals on the cone P. For
nonnegative numbers b, d,m, l and c, define the following convex sets:
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
P(γ, c) = {y ∈ P : γ(y) < c},

P(γ, α,m, c) = {y ∈ P : m ≤ α(y), γ(y) ≤ c},
Q(γ, φ, d, c) = {y ∈ P : φ(y) ≤ d, γ(y) ≤ c},

P(γ, θ, α,m, b, c) = {y ∈ P : m ≤ α(y), θ(y) ≤ b, γ(y) ≤ c},
Q(γ, φ,Ψ, l, d, c) = {y ∈ P : l ≤ Ψ(y), φ(y) ≤ d, γ(y) ≤ c}.

(10)

The following theorem can be found in [2].

Theorem 3.5. (Five Functionals Fixed Point Theorem) Let P be a cone in a real Banach space E. Suppose that there
exist nonnegative numbers c and r, nonnegative continuous concave functionals α and Ψ on P, and nonnegative
continuous convex functionals γ, φ and θ on P, with

α(y) ≤ φ(y), ‖y‖ ≤ rγ(y),∀y ∈ P(γ, c).

Suppose that A : P(γ, c) → P(γ, c) is a completely continuous and there exist nonnegative numbers b, d,m, l with
0 < d < m such that

(i) {y ∈ P(γ, θ, α,m, b, c) : α(y) > m} , ∅ and α(Ay) > m for y ∈ P(γ, θ, α,m, b, c),
(ii) {y ∈ Q(γ, φ,Ψ, l, d, c) : φ(y) < d} , ∅ and φ(Ay) < d for y ∈ Q(γ, φ,Ψ, l, d, c),

(iii) α(Ay) > b, for y ∈ P(γ, α,m, c), with θ(Ay) > b,
(iv) φ(Ay) < d, for y ∈ Q(γ, φ, d, c), with Ψ(Ay) < l,

then A has at least three fixed points y1, y2, y3 ∈ P(γ, c) such that

φ(y1) < d, α(y2) > m, φ(y3) > d with α(y3) < m.

Define the constant

λ = ϕ−1


k∫

1
k

h(s)∇s

 . (11)

Now, we will apply the five functionals fixed point theorem to investigate the existence of at least three
positive solutions to the nonlinear BVP (1).

Theorem 3.6. Assume (H1)-(H3) hold and 1
k ∈ T for each k ∈ {1, 2, · · · n}. Suppose that there exist constants

0 < d < m < c such that the function f satisfies the following conditions:
(i) f (t, (1 + t)u, v) > ϕ

(
(k+1)m
(1−ak)λ

)
for (t,u, v) ∈ [ 1

k , k]T × [ m
k , c] × [0, c],

(ii) f (t, (1 + t)u, v) < ϕ( dN
M ) for (t,u, v) ∈ [a,∞)T × [0, d] × [0, d],

(iii) f (t, (1 + t)u, v) ≤ ϕ( cN
M ) for (t,u, v) ∈ [a,∞)T × [0, c] × [0, c],

Then the BVP (1) has at least three positive solutions y1, y2 and y3 satisfying

‖y1‖ < d < ‖y3‖, and
k

k + 1
min

t∈[ 1
k ,∞)T

y3(t) < m <
k

k + 1
min

t∈[ 1
k ,∞)T

y2(t).

Proof. Define the cone P as in (6). Let l = 0, r = 1 and define the nonnegative, continuous, concave
functionals α, ψ and the nonnegative, continuous, convex functionals γ, φ, θ on P by

α(y) =
k

k + 1
min

t∈[ 1
k ,∞)T

y(t), γ(y) = φ(y) = θ(y) = ‖y‖, ψ(y) = 0.
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Let P(γ, c), P(γ, α,m, c), Q(γ, φ, d, c), P(γ, θ, α,m, b, c) and Q(γ, φ,Ψ, l, d, c) be defined by (10). It is clear
that

α(y) < φ(y), ‖y‖ = γ(y), ∀y ∈ P(γ, c).

If y ∈ P(γ, c), then we have 0 ≤ y(t)
1+t ≤ c and 0 ≤ y∆(t) ≤ c for all t ∈ [a,∞)T. By (8), (9) and the hypothesis

(iii), we get

γ(Ay) ≤ M‖(Ay)∆
‖∞

≤ Mϕ−1


∞∫

a

h(s) f
(
s, y(s), y∆(s)

)
∇s


≤ c.

This proves that A : P(γ, c)→ P(γ, c). From Lemma 2.3, A : P(γ, c)→ P(γ, c) is completely continuous.
Now we verify that the remaining conditions of Theorem 3.5.
If we take y(t) = c+m

2 (t + 1) for t ∈ [a,∞)T, we obtain y ∈ P, α(y) = c+m
2 > m and ‖y‖ = c+m

2 < c = b. That
is, {y ∈ P(γ, θ, α,m, b, c) : α(y) > m} , ∅.

If y ∈ P(γ, θ, α,m, b, c), then for all t ∈ [ 1
k , k]T we have m

k ≤
y(t)
1+t ≤ c and 0 ≤ y∆(t) ≤ c. By using (11) and

the hypothesis (i), we get

α(Ay) =
k

k + 1

[ m−2∑
i=1

αiϕ
−1


∞∫
ηi

h(s) f
(
s, y(s), y∆(s)

)
∇s

 + βϕ−1


∞∫

a

h(s) f
(
s, y(s), y∆(s)

)
∇s


+

1
k∫

a

ϕ−1


∞∫
ξ

h(s) f
(
s, y(s), y∆(s)

)
∇s

∆ξ +
∑

a<tk<
1
k

Ik(y(tk))
]

≥
k

k + 1

1
k∫

a

ϕ−1


k∫

1
k

h(s) f
(
s, y(s), y∆(s)

)
∇s

∆ξ

=
1 − ak
k + 1

ϕ−1


k∫

1
k

h(s) f
(
s, y(s), y∆(s)

)
∇s


> m.

Then, we have

α(Ay) > m. (12)

Thus, the condition (i) of Theorem 3.5 holds.
If we take y(t) = d

2 for t ∈ [a,∞)T, we obtain y ∈ P, l = 0 = ψ(y) and ‖y‖ = d
2 < d < c. That is,

{y ∈ Q(γ, φ,Ψ, l, d, c) : φ(y) < d} , ∅.
If y ∈ Q(γ, φ, ψ, l, d, c), then for all t ∈ [a,∞)T we obtain 0 ≤ y(t)

1+t ≤ d and 0 ≤ y∆(t) ≤ d. Hence,

φ(Ay) ≤ M‖(Ay)∆
‖∞

≤ Mϕ−1


∞∫

a

h(s) f
(
s, y(s), y∆(s)

)
∇s


< d
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by (8), (9) and the hypothesis (ii). It follows that the condition (ii) of Theorem 3.5 is fulfilled.
Now, we shall show that the condition (iii) of Theorem 3.5 is satisfied. If y ∈ P(γ, α,m, c), then for all

t ∈ [ 1
k , k]T we have m

k ≤
y(t)
1+t ≤ c and 0 ≤ y∆(t) ≤ c. According to (12), we have α(Ay) > m. Thus, the condition

(iii) of Theorem 3.5 holds.
Finally, we shall verify that the condition (iv) of Theorem 3.5 holds. Since ψ(Ay) < l = 0 is impossible,

we omit the condition (iv) of Theorem 3.5.
Since all the conditions of Theorem 3.5 are satisfied, the BVP (1) has at least three positive solutions

y1, y2 and y3 satisfying

‖y1‖ < d < ‖y3‖, and
k

k + 1
min

t∈[ 1
k ,∞)T

y3(t) < m <
k

k + 1
min

t∈[ 1
k ,∞)T

y2(t).

This completes the proof.

Example 3.7. Let T = [0, 3] ∪ [8,∞). Consider the following boundary value problem:
y∆∇(t) + e−t 100t2

1+t2

(
y2(t)

(1+t)2

(
y∆(t)

)2
)

= 0, t , 2, t ∈ [0,∞) ⊂ T

y(2+) − y(2−) = 4,
y(0) − 2y∆(0) = 1

2 y∆
(

1
2

)
+ y∆(1), lim

t→∞
y∆(t) = 0.

Taking ϕ(x) = x, h(x) = e−x, a = 0, t1 = β = k = 2, α1 = η1 = 1
2 and α2 = η2 = 1, we have M = 7

2 , N = e8

e8−e5+6

and λ = e3/2
−1

e2 . If we take d = 0.001,m = 0.0013 and c = 0.0015, then all the conditions in Theorem 3.6 are verified.
Thus, the BVP has at least three positive solutions y1, y2 and y3 satisfying

‖y1‖ < d < ‖y3‖, and
2
3

min
t∈[ 1

2 ,∞)T
y3(t) < m <

2
3

min
t∈[ 1

2 ,∞)T
y2(t).
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