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Available at: http://www.pmf.ni.ac.rs/filomat

On Pseudo-Slant Submanifolds of a Sasakian Space Form
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Abstract. In this paper, we study the geometry of the pseudo-slant submanifolds of a Sasakian space
form. Necessary and sufficient conditions are given for a submanifold to be pseudo-slant submanifolds,
pseudo-slant product, mixed geodesic and totally geodesic in Sasakian manifolds. Finally, we give some
results for totally umbilical pseudo-slant submanifolds of Sasakian manifolds and Sasakian space forms.

1. Introduction

The differential geometry of slant submanifolds has shown an increasing development since B.-Y. Chen
defined slant submanifolds in complex manifolds as a natural generalization of both holomorphic and
totally real submanifolds [5, 6]. Many research articles have been appeared on the existence of these sub-
manifolds in different knows spaces. The slant submanifols of an almost contact metric manifolds were
defined and studied by Lotta [10]. After, such submanifolds were studied by Cabrerizo et al. of Sasakian
manifolds [3]. Recently, in [2, 7, 8], Atçeken et al. studied slant and pseudo-slant submanifold in various
manifolds. The notion of semi-slant submanifolds of an almost Hermitian manifold was introduced by
Papagiuc [11]. Cabrerizo [4] defined and studied bi-slant immersions in almost contact metric manifolds
and simultaneously gave the notion of pseudo-slant submanifolds. Pseudo-slant submanifolds also have
been studied by Khan et al. in [9]. The present paper is organized as follows.

In this paper, we study pseudo-slant submanifolds of a Sasakian manifold. In Section 2, we review basic
formulas and definitions for a Sasakian manifold and their submanifolds. In Section 3, we have recalled the
definition and some basic results of a pseudo-slant submanifold of an almost contact metric manifold. In
Section 4, we give some new results for totally umbilical pseudo-slant submanifolds in a Sasakian manifold
and a Sasakian space form M̃(c).

2. Preliminaries

In this section, we give some notations used throughout this paper. We recall some necessary fact and
formulas from the theory of Sasakian manifolds and their submanifolds.

2010 Mathematics Subject Classification. 53C15; 53C44, 53D10
Keywords. Sasakian manifold, Sasakian space form, Slant submanifold, Pseudo-slant submanifold.
Received: 23 September 2016; Accepted: 01 December 2016
Communicated by Mića Stanković
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Given an odd-dimensional Riemannian manifold (M̃, 1), let ϕ be a (1, 1)-type tensor field, ξ is a unit
vector field and η is a 1-form on M̃. If we have

ϕ2X = −X + η(X)ξ, 1(X, ξ) = η(X), (1)

1(ϕX, ϕY) = 1(X,Y) − η(X)η(Y) (2)

for any vector fields on M̃, then M̃ is said to be have an almost contact metric structure (ϕ, ξ, η, 1) and it is
called an almost contact metric manifold.

Let Φ denotes the fundamental 2-form in M̃, given by Φ(X,Y) = 1(X, ϕY), for any vector fields X,Y on
M̃. If Φ = dη, then M̃ is said to be a contact metric manifold. Furthermore, a contact metric structure is
called a K-contact structure if ξ is a Killing vector field, that is, ∇̃Xξ = −ϕX, for any vector field X on M̃,
where ∇̃ denotes the Levi-Civita connection on M̃.

The structure (ϕ, ξ, η, 1) is said to be normal if [ϕ,ϕ]+2dη⊗ξ = 0, where [ϕ,ϕ] is the Nijenhuis torsion of
ϕ. A normal contact metric manifold is called Sasakian manifold. So every Sasakian manifold is a K-contact
manifold. It is well-know that an almost contact metric manifold is a Sasakian if and only if

(∇̃Xϕ)Y = 1(X,Y)ξ − η(Y)X, (3)

for any vector fields X,Y on M̃.

Let M̃(c) be a Sasakian space form with constantϕ-holomorphic sectional curvature c. Then the curvature
tensor R̃ of M̃(c) is given by

R̃(X,Y)Z = (
c + 3

4
)
{
1(Y,Z)X − 1(X,Z)Y

}
+ (

c − 1
4

){η(X)η(Z)Y − η(Y)η(Z)X + 1(X,Z)η(Y)ξ

−1(Y,Z)η(X)ξ + Φ(Y,Z)ϕX −Φ(X,Z)ϕY + 2Φ(X,Y)ϕZ} (4)

for any vector fields X,Y,Z on M̃(c).

Now, let M be a submanifold of a contact metric manifold M̃ with the induced metric 1. Also, let ∇ and
∇
⊥ be the induced connections on the tangent bundle TM and the normal bundle T⊥M of M, respectively.

Then the Gauss and Weingarten formulas are, respectively, given by

∇̃XY = ∇XY + h(X,Y), (5)

∇̃XV = −AVX + ∇
⊥

XV (6)

for any vector fields X,Y on M, where h and AV are the second fundamental form and the shape operator
(corresponding to the normal vector field V), respectively, for the immersion of M into M̃. The second
fundamental form h and shape operator AV are related by

1(AVX,Y) = 1(h(X,Y),V), (7)

for all X,Y ∈ Γ(TM) and V ∈ Γ(T⊥M).

The mean curvature vector H of M is given by H = 1
m

∑m
i=1 h(ei, ei), where m is the dimension of M and

{e1, e2, ..., em} is a local orthonormal frame of M. A submanifold M of an contact metric manifold M̃ is said
to be totally umbilical if

h(X,Y) = 1(X,Y)H, (8)
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for any X,Y ∈ Γ(TM). A submanifold M is said to be totally geodesic if h = 0 and M is said to be minimal
if H = 0.

For any submanifold M of a Riemannian manifold M̃, the equation of Gauss is given by

R̃(X,Y)Z = R(X,Y)Z + Ah(X,Z)Y − Ah(Y,Z)X + (∇̃Xh)(Y,Z) − (∇̃Yh)(X,Z), (9)

for any X,Y,Z ∈ Γ(TM), where R̃ and R denote the Riemannian curvature tensor of M̃ and M, respectively.
The covariant derivative ∇̃h of h is defined by

(∇̃Xh)(Y,Z) = ∇
⊥

Xh(Y,Z) − h(∇XY,Z) − h(∇XZ,Y). (10)

The normal component of (9) is said to be the Codazzi equation and it is given by

(R̃(X,Y)Z)
⊥

= (∇̃Xh)(Y,Z) − (∇̃Yh)(X,Z), (11)

where (R̃(X,Y)Z)
⊥

denotes the normal part of R̃(X,Y)Z. If (R̃(X,Y)Z)
⊥

= 0, then M is said to be curvature-
invariant submanifold of M̃. The Ricci equation is given by

1(R̃(X,Y)V,U) = 1(R̃
⊥

(X,Y)V,U) + 1([AU,AV] X,Y), (12)

for any X,Y ∈ Γ(TM) and V,U ∈ Γ(T⊥M), where R̃
⊥

denotes the Riemannian curvature tensor of the normal
T⊥M. If R̃

⊥

= 0, then the normal connection of the submanifold M is called flat.

A Sasakian manifold M̃ is said to be η-Einstein if its Ricci tensor S of type (0, 2) is of the from
S(X,Y) = a1(X,Y) + bη(X)η(Y), where a, b are smooth functions on M̃.

Let M be a submanifold of an almost contact metric manifold M̃. Then for any X ∈ Γ(TM), we can write

ϕX = PX + FX, (13)

where PX is the tangential component and FX is the normal component of ϕX. Similarly for V ∈ Γ(T⊥M),
we can write

ϕV = BV + CV, (14)

where BV is the tangential component and CV is also the normal component of ϕV. A submanifold M is
said to be invariant if F is identically zero, that is, ϕX ∈ Γ(TM), for all X ∈ Γ(TM). On the other hand, M is
said to be anti-invariant if P is identically zero, that is, ϕX ∈ Γ(T⊥M), for all X ∈ Γ(TM).

Taking into account (4) and (12), we have

1(R̃
⊥

(X,Y)V,U) = 1([AV,AU] X,Y) + (
c − 1

4
){1(X, ϕV)1(U, ϕY) − 1(Y, ϕV)1(ϕX,U)

+21(X, ϕY)1(ϕV,U)}, (15)

for any X,Y ∈ Γ(TM) and V,U ∈ Γ(T⊥M). By using (4) and (9), the Riemannian curvature tensor R of an
immersed submanifold M of a Sasakian space form M̃(c) is given by

R(X,Y)Z = (
c + 3

4
){1(Y,Z)X − 1(X,Z)Y} + (

c − 1
4

){η(X)η(Z)Y − η(Y)η(Z)X + η(Y)1(X,Z)ξ

−η(X)1(Y,Z)ξ + 1(X, ϕZ)ϕY − 1(Y, ϕZ)ϕX + 21(X, ϕY)ϕZ}

+Ah(Y,Z)X − Ah(X,Z)Y + (∇̃Yh)(X,Z) − (∇̃Xh)(Y,Z). (16)

The normal part of (16), we have

(∇̃Xh)(Y,Z) − (∇̃Yh)(X,Z) = (
c − 1

4
){1(X,PZ)FY − 1(Y,PZ)FX + 21(X,PY)FZ} (17)
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Thus by using (1), (13) and (14), we obtain

P2 = −I + η ⊗ ξ − BF and FP + CF = 0, (18)

PB + BC = 0 and FB + C2 = −I. (19)

Furthermore, for any X,Y ∈ Γ(TM), we have 1(FX,Y) = −1(X,FY) and V,U ∈ Γ(T⊥M), we get 1(U,CV) =
−1(CU,V). These relations show that P and C are also skew-symmetric tensor fields. Moreover, for any
X ∈ Γ(TM) and V ∈ Γ(T⊥M), we have 1(FX,V) = −1(X,BV),which gives the relation between F and B.

On the other hand, the covariant derivatives of the tensor fields P, F, B and C, respectively, defined by

(∇XP)Y = ∇XPY − P∇XY, (20)

(∇XF)Y = ∇⊥XFY − F∇XY, (21)

(∇XB)V = ∇XBV − B∇⊥XV (22)

and

(∇XC)V = ∇⊥XCV − C∇⊥XV (23)

for all V ∈ Γ(T⊥M) and X,Y ∈ Γ(TM).

By an easy computation, we obtain the following formulas

(∇XP)Y = AFYX + Bh(X,Y) + 1(X,Y)ξ − η(Y)X, (24)

(∇XF)Y = Ch(X,Y) − h(X,PY), (25)

(∇XB)V = ACVX − PAVX (26)

and

(∇XC)V = −h(BV,X) − FAVX (27)

for any V ∈ Γ(T⊥M) and X,Y ∈ Γ(TM).

Since ξ is tangent to M, making use of (3), (5), (7) and (13), we infer that

∇Xξ = −PX, h(X, ξ) = −FX, AVξ = BV, (28)

for all V ∈ Γ(T⊥M) and X ∈ Γ(TM).

3. Pseudo-Slant Submanifolds of a Sasakian Manifold

In this section, we study pseudo-slant submanifolds in a Sasakian manifold and we give some charac-
terization results.

A submanifold M of an almost contact metric manifold M̃ is said to be slant if for any x ∈ M and
X ∈ TxM− ξ, the angle between TxM and ϕX is constant. The constant angle [0, π2 ] is then called slant angle
of M. If θ = 0, than M is invariant and if θ = π

2 then, it is anti-invariant. On the other hand, if θ ∈ (0, π2 )
then M is a proper slant submanifold [10]. The tangent bundle TM of M is decomposed as TM = D ⊕ ξ,
where the orthogonal complementary distribution D of ξ is know as the slant distribution on M. We have
the following result in the setting of almost contact manifolds given by Cabrerizo et.al.
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Theorem 3.1. Let M be a slant submanifold of an almost contact metric manifold M̃ such that ξ ∈ Γ(TM). Then M
is slant submanifold if and only if there exists a constant λ ∈ [0, 1] such that

P2 = −λ(I − η ⊗ ξ). (29)

In this case, if θ is the slant angle of M, then it satisfies λ = cos2 θ[4].

Thus, one has the following consequences of above formulae

1(PX,PY) = cos2 θ
{
1(X,Y) − η(X)η(Y)

}
(30)

and

1(FX,FY) = sin2 θ
{
1(X,Y) − η(X)η(Y)

}
(31)

for any X,Y ∈ Γ(TM).

Let M be a submanifold of an almost contact metric manifold M̃. M is said to be a pseudo-slant of M̃ if
there exist two orthogonal distributions D⊥ and Dθ on M such that:
i) TM = D⊥ ⊕Dθ, ξ ∈ Γ(Dθ).
ii) The distribution D⊥ is anti-invariant, that is, ϕD⊥ ⊂ T⊥M.
iii) The distribution Dθ is slant, that is, the slant angle θ between Dθ and ϕ(X) is a constant, for any
X ∈ Γ(Dθ)[9].

Let m1 =dim(D⊥) and m2=dim(Dθ). We distinguish the following six cases.
i) If m2 = 0, then M is an anti-invariant submanifold.
ii) If m1 = 0 and θ = 0, then M is an invariant submanifold.
iii) If m1 = 0 and θ , {0, π2 }, then M is a proper slant submanifold.
iv)If θ = π

2 then, M is an anti-invariant submanifold.
v) If m2m1 , 0 and θ = 0, then M is a semi-invariant submanifold.
vi) If m2m1 , 0 and θ , {0, π2 }, then M is a pseudo-slant submanifold.

If µ is the invariant subspace of the bundle T⊥M then in the case of pseudo-slant submanifold T⊥M can
be decomposed as follows T⊥M = F(D⊥) ⊕ F(Dθ) ⊕ µ.

Now we construct an example of a pseudo-slant submanifold in an almost contact metric manifold.

Example 3.2. Let M be a submanifold of R9 defined by the following equation

M = χ(u, v, s, t, z) = (3u sinα,−v cosα,−4u sinα, v cosα, s cos t,− cos t, s sin t,− sin t, z).

We can easily to see that the tangent bundle of M is spanned by the tangent vectors

e1 = 3 sinα
∂
∂x1
− 4 sinα

∂
∂x2

, e2 = − cosα
∂
∂y1

+ cosα
∂
∂y2

,

e3 = cos t
∂
∂x3

+ sin t
∂
∂x4

, e4 = −s sin t
∂
∂x3

+ sin t
∂
∂y3

+ s cos t
∂
∂x4
− cos t

∂
∂y4

and

e5 = ξ =
∂
∂z
.

For the almost contact metric structure ϕ of R9, whose coordinate systems (x1, y1, x2, y2, x3, y3, x4, y4, z),
choosing

ϕ(
∂
∂xi

) =
∂
∂yi

, ϕ(
∂
∂y j

) = −
∂
∂x j

, ϕ(
∂
∂z

) = 0, 1 ≤ i, j ≤ 4
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then we have

ϕe1 = 3 sinα
∂
∂y1
− 4 sinα

∂
∂y2

, ϕe2 = cosα
∂
∂x1
− cosα

∂
∂x2

, ϕe3 = cos t
∂
∂y3

+ sin t
∂
∂y4

,

and

ϕe4 = −s sin t
∂
∂y3
− sin t

∂
∂x3

+ s cos t
∂
∂y4

+ cos t
∂
∂x4

, ϕe5 = 0.

By direct calculations, we infer that Dθ = span{e1, e2} is a slant distribution with slant angle cosθ =
1(e1,ϕe2)
‖e1‖‖ϕe2‖

= 7
√

2
10 ,

θ = cos−1( 7
√

2
10 ). Since 1(ϕe3, ei) = 0, i = 1, 2, 4, 5 and 1(ϕe4, e j) = 0, j = 1, 2, 3, 5, e3, e4 are orthogonal to M,

D⊥ = span{e3, e4} is an anti-invariant distribution. Thus M is a 5-dimensional proper pseudo-slant submanifold of
R9 with it’s usual almost contact metric structure.

A pseudo-slant submanifold M of a Sasakian manifold M̃ is said to be Dθ-totally geodesic (resp. D⊥-
totally geodesic) if h(X,Y) = 0 for any X,Y ∈ Γ(Dθ) (resp. h(Z,W) = 0 for any Z,W ∈ Γ(D⊥). If for any
X ∈ Γ(Dθ) and Z ∈ Γ(D⊥), h(X,Z) = 0, then M is called a mixed totally geodesic.

Theorem 3.3. Let M be a proper pseudo-slant submanifold of a Sasakian manifold M̃. Then, either M is a mixed-
totally geodesic or an anti-invariant submanifold.

Proof. By using (2), (3), (5), (6), (13) and (14), we have

1(AVX,Y) = 1(∇̃XY,V) = −1(∇̃XV,Y)

= −1(ϕ∇̃XV, ϕY) = 1((∇̃Xϕ)V − ∇̃XϕV, ϕY)

= −1(∇̃XBV + ∇̃XCV,FY)
= −1(h(X,BV),FY) − 1(∇⊥XCV,FY),

for any X ∈ Γ(Dθ), Y ∈ Γ(D⊥) and V ∈ Γ(T⊥M). Taking into account (23), (27) and (30), we get

1(AVX,Y) = −1(h(X,BV),FY) − 1((∇XC)V + C∇⊥XV,FY)
= −1(h(X,BV),FY) − 1(−h(X,BV) − FAVX,FY)
= 1(FAVX,FY) = −1(BFAVX,Y).

By using (18), we obtain

1(AVX,Y) = −1(−AVX + η(AVX)ξ − P2AVX,Y)
= 1(AVX,Y) − η(AVX)η(Y) + 1(P2AVX,Y),

that is,

− cos2 θ1(AVX − η(AVX)ξ,Y) = − cos2 θ1(AVX,Y) = 0.

This tells us that either M is mixed-totally geodesic or it is an anti-invariant submanifold.

Theorem 3.4. Let M be a proper pseudo-slant submanifold of a Sasakian manifold M̃. Then, either M is D⊥-totally
geodesic or an anti-invariant submanifold of M̃.

Proof. By using (2), (3), (5), (6), (13) and (14), we obtain

1(h(Z,W),V) = −1(∇̃WV,Z) = −1(ϕ∇̃WV, ϕZ)

= 1((∇̃Wϕ)V − ∇̃WϕV, ϕZ)
= 1(1(W,V)ξ − η(V)W,FZ)

−1(∇̃WBV,FZ) − 1(∇̃WCV,FZ)
= −1(h(W,BV),FZ) − 1(∇⊥WCV,FZ),
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for any Z,W ∈ Γ(D⊥) and V ∈ Γ(T⊥M). Hence, by using (23), (27) and (30), we reach

1(h(Z,W),V) = −1(h(W,BV),FZ) − 1((∇WC)V,FZ)
= −1(h(W,BV),FZ) + 1(h(BV,W) + FAVW,FZ)
= 1(FAVW,FZ) = −1(BFAVW,Z) = −1(−AVW + η(AVW)ξ − P2AVW,Z)
= 1(AVW,Z) + 1(P2AVW,Z),

or

− cos2 θ1(AVW − η(AVW)ξ,Z) = − cos2 θ1(AVW,Z) = 0.

The last relation yields cos2 θ1(h(Z,W),V) = 0, which means that either M is D⊥-totaly geodesic or it is an
anti-invariant submanifold.

Given a proper pseudo-slant submanifold M of a Sasakian manifold M̃, if the distributions Dθ and D⊥

are totally geodesic in M, then M is said to be contact pseudo-slant product.

For any X,Y ∈ Γ(Dθ < ξ >) and Z ∈ Γ(D⊥), by using (3), (5), (6), (21), (25) and (30), we have

1(∇XY,Z) = 1(ϕ∇̃XY, ϕZ) = 1(∇̃XϕY − (∇̃Xϕ)Y, ϕZ)
= 1(h(X,PY),FZ) + 1(∇⊥XFY,FZ)
= 1(h(X,PY),FZ) + 1((∇XF)Y + F∇XY,FZ)
= 1(h(X,PY),FZ) + 1(Ch(X,Y),FZ)
− 1(h(X,PY),FZ) + 1(F∇XY,FZ) = 1(F∇XY,FZ) = −1(BF∇XY,Z)
= −1(−∇XY + η(∇XY)ξ − P2

∇XY,Z),

which implies that

1(P2
∇XY,Z) = − cos2 θ1(∇XY − η(∇XY)ξ,Z) = − cos2 θ1(∇XY,Z) = 0. (32)

and

1(∇WZ,X) = −1(∇̃WX,Z) = −1(ϕ∇̃WX, ϕZ)

= 1((∇̃Wϕ)X, φZ) − 1(∇̃WϕX, ϕZ)
= −1(h(PX,W),FZ) − 1(∇⊥WFX,FZ)
= −1(h(PX,W),FZ) − 1((∇WF)X + F∇WX,FZ)
= −1(h(PX,W),FZ) − 1(Ch(X,W),FZ)
+ 1(h(W,PX),FZ) − 1(F∇WX,FZ) = 1(BF∇WX,Z)
= −1(−∇WX + η(∇WX)ξ − P2

∇WX,Z)
= 1(∇WX,X) + 1(P2

∇WX,Z),

that is,

cos2 θ1(∇WX − η(∇WX)ξ,Z) = cos2 θ1(∇WX,Z) = − cos2 θ1(∇WZ,X) = 0. (33)

for any Z,W ∈ Γ(D⊥) and X ∈ Γ(Dθ). Thus from (32) and (33), we have the following Theorem.

Theorem 3.5. Every proper pseudo-slant submanifold M of a Sasakian manifold M̃ is a contact pseudo-slant product.
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4. Pseudo-Slant Submanifolds of a Sasakian Space Form

In this section, we study pseudo-slant submanifolds in a Sasakian space form M̃(c) with constant ϕ-
sectional curvature c. We obtain some results for such submanifolds in terms of curvature tensor.

Theorem 4.1. Let M be a pseudo-slant submanifold of a Sasakian space form M̃(c) such that c , 1. If M is a
pseudo-slant curvature-invariant submanifold, then

(i) either M is invariant,
(ii) or M anti-invariant
(iii) or dim(M) = 1.

Proof. Suppose that M is a pseudo-slant curvature-invariant submanifold of a Sasakian space form M̃(c)
such that c , 1. Then from (11) and (17), we have

1(X,PZ)FY − 1(Y,PZ)FX + 21(X,PY)FZ = 0, (34)

for any X,Y,Z ∈ Γ(TM). If we put, than X = Z and Y = PZ we have, 1(PZ,PZ)FZ = 0. Here, by using (30),
we obtain

cos2 θ
{
1(Z,Z) − η2(Z)

}2
FZ = 0,

which implies that, either M is invariant or anti-invariant submanifold or dim(M) = 1.

Theorem 4.2. Let M be a pseudo-slant submanifold of a Sasakian space form M̃(c) with flat normal connection such
that c , 1. If PAV = AVP for any vector V normal to M, then M is either anti- invariant or it is a generic submanifold
of M̃(c).

Proof. If the normal connection of M is flat, then from (15), we have

1([AU,AV]X,Y) = (
c − 1

4
){1(X, ϕV)1(U, ϕY) − 1(Y, ϕV)1(ϕX,U)

+21(X, ϕY)1(ϕV,U)}

for any X,Y ∈ Γ(TM) and U,V ∈ Γ(T⊥M). Here, choosing U = CV and Y = PX, by direct calculations, we
can state

1([AV,ACV]X,PX) = −(
c − 1

2
){1(PX,PX)1(CV,CV)},

that is,

1(ACVAVPX − AVACVPX,X) = −(
c − 1

2
)
{
1(PX,PX)1(CV,CV)

}
,

from which

tr(ACVAVP) − tr(AVACVP) = (
c − 1

2
)tr(P2)1(CV,CV).

If PAV = AVP, then we conclude that tr(ACVAVP) = tr(AVACVP) and thus

(
c − 1

2
)tr(P2)1(CV,CV) = 0,

from here dim(M) = 2p + q + 1, then we can easily to see that (2p + q + 1)cos2θ1(CV,CV) = 0. Thus θ is either
π
2 or C = 0. This implies that M is either anti-invariant or it is a generic submanifold.
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Theorem 4.3. Let M be a pseudo-slant submanifold of a Sasakian space form M̃(c). Then the Ricci tensor S of M is
given by

S(X,W) =
{
(
c + 3

4
)(2p + q) + (

c − 1
4

)(3 cos2 θ − 1)
}
1(X,W)

+(
c − 1

4
)(1 − q − 2p − 3 cos2 θ)η(X)η(W)

+(2p + q + 1)1(h(X,W),H) −
2p+q+1∑

m=1

1(h(em,W), h(X, em)) (35)

for any X,W ∈ Γ(TM).

Proof. For any X,Y,Z,W ∈ Γ(TM), by using (16), we have

1(R(X,Y)Z,W) = (
c + 3

4
){1(Y,Z)1(X,W) − 1(X,Z)1(Y,W)} + (

c − 1
4

){η(X)η(Z)1(Y,W)

−η(Y)η(Z)1(X,W) + η(Y)η(W)1(X,Z) − η(X)η(W)1(Y,Z) + 1(X, ϕZ)1(ϕY,W)
−1(Y, ϕZ)1(ϕX,W) + 21(X, ϕY)1(ϕZ,W)} + 1(h(X,W), h(Y,Z)) − 1(h(Y,W), h(X,Z)).

Now, let e1, e2, ..., ep, ep+1 = secθPe1, ep+2 = secθPe2, ..., e2p = secθPep, e2p+1 = ξ, e2p+2, e2p+3, ..., e2p+q+1 be an
orthonormal basis of Γ(TM) such that e1, e2, ..., ep, ep+1 = secθPe1, ep+2 = secθPe2, ..., e2p = secθPep, e2p+1 = ξ
are tangent to Γ(Dθ) and e2p+2, e2p+3, ..., e2p+q+1 are tangent to Γ(D⊥). Hence, taking Y = Z = ei, e j, ek and
1 ≤ i ≤ p, 1 ≤ j ≤ p, ξ, 2p + 2 ≤ k ≤ 2p + q + 1 then we obtain

S(X,W) =

p∑
i=1

1(R(X, ei)ei,W) +

2p∑
j=p+1

1(R(X, secθPe j) secθPe j,W)

+1(R(X, ξ)ξ,W) +

2p+q+1∑
k=2p+2

1(R(X, ek)ek,W).

It follows that

S(X,W) = (
c + 3

4
){(2p + q)1(X,W)} + (

c − 1
4

){−(2p + q − 1)η(X)η(W)

+3 cos2 θ{1(X,W) − η(X)η(W)} − 1(X,W)} + (2p + q + 1)1(h(X,W),H)

−

p∑
i=1

1(h(ei,W), h(X, ei)) −
2p∑

j=p+1

1(h(secθPe j,W), h(X, secθPe j))

−1(h(ξ,W), h(X, ξ)) −
2p+q+1∑
k=2p+2

1(h(ek,W), h(X, ek)).

Hence, the proof follows from the above relation.

Theorem 4.4. Let M be a pseudo-slant submanifold of a Sasakian space form M̃(c). Then the scalar curvature ρ of
M is given by

ρ = {(
c + 3

4
)(2p + q) + (

c − 1
4

)(3 cos2 θ − 1)}(2p + q + 1)

+(
c − 1

4
)(3 cos2 θ + 2p + q − 1) + (2p + q + 1)2

‖H)‖2 − ‖h‖2 (36)

.



S. Dirik et al. / Filomat 31:19 (2017), 5909–5919 5918

Proof. From (35) by using X = W = em, we have ρ =
2p+q+1∑

m=1
S(em, em) which gives (36). Thus, the proof is

complete.

Theorem 4.5. Let M be a totally umbilical proper pseudo-slant submanifold of a Sasakian space form M̃(c) such that
c , 1. Then,

(i) either M is semi-invariant,
(ii) or M anti-invariant
(iii) or dim(Dθ) = 1.

Proof. Suppose that M is a totally umbilical pseudo-slant submanifold in Sasakian space form M̃. From (28),
we have h(ξ, ξ) = 0. If M is a totally umbilical submanifold of a Sasakian manifold M̃, h(X,Y) = 1(X,Y)H,
for any X,Y ∈ Γ(TM). For X = Y = ξ, we get H = 0. This tells us that every totally umbilical submanifold
in Sasakian manifold is totally geodesic. So we have

1(R̃(X,Y)Z, ϕZ) = 1((∇̃Xh)(Y,Z) − (∇̃Yh)(X,Z), ϕZ) = 0 (37)

for any X,Y ∈ Γ(Dθ < ξ >) and Z ∈ Γ(D⊥). Since the ambient space is a Sasakian space form, then from (4)
we infer

1(R̃(X,Y)Z, ϕZ) = (
c − 1

2
)1(X, ϕY)1(FZ,FZ) = 0. (38)

Taking Y = PX in equation (38), we have

(
c − 1

2
)1(X, ϕPX)1(FZ,FZ) = 0.

Here, by using, (30) and (31), we obtain

cos2 θ sin2 θ1(Z,Z)1(X,X) − η2(X) = 0,

thus, sin2 2θ1(Z,Z)1(X,X) − η2(X) = 0, which implies that, either M is semi-invariant or anti-invariant
submanifold or dim(Dθ) = 1.

Theorem 4.6. Let M be a totally umbilical pseudo-slant submanifold of a Sasakian space form M̃(c). Then the Ricci
tensor S of M is given by

S(X,W) =
{
(
c + 3

4
)(2p + q) + (

c − 1
4

)(3 cos2 θ − 1)
}
1(X,W)

+(
c − 1

4
)(1 − q − 2p − 3 cos2 θ)η(X)η(W) (39)

for any X,W ∈ Γ(TM).

Proof. From (35) by using (8), we obtain

S(X,W) =
{
(
c + 3

4
)(2p + q) + (

c − 1
4

)(3 cos2 θ − 1)
}
1(X,W)

+(
c − 1

4
)(1 − q − 2p − 3 cos2 θ)η(X)η(W)

+(2p + q + 1)1(X,W) ‖H‖2 −
2p+q+1∑

m=1

1(1(em,W)H, 1(X, em)H).

Thus, the proof follows from the above relations, which proves the theorem completely.



S. Dirik et al. / Filomat 31:19 (2017), 5909–5919 5919

Thus we have the following corollary.

Corollary 4.7. Every totally umbilical pseudo-slant submanifold M of a Sasakian space form M̃(c) is an η-Einstein
submanifold.

Theorem 4.8. Let M be a totally umbilical pseudo-slant submanifold of a Sasakian space form M̃(c). Then the scalar
curvature ρ of M is given by

ρ =
{
(
c + 3

4
)(2p + q) + (

c − 1
4

)(3 cos2 θ − 1)
}

(2p + q + 1)

+(
c − 1

4
)(1 − q − 2p − 3 cos2 θ). (40)

Proof. From (39), by using X = W = em, we have ρ =
2p+q+1∑

m=1
S(em, em) which gives (40). Thus the proof is

complete.
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