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Abstract. In this paper, a Galerkin-like approach is presented to numerically solve multi-pantograph type
delay differential equations. The method includes taking inner product of a set of monomials with a vector
obtained from the equation under consideration. The resulting linear system is then solved, yielding a
polynomial as the approximate solution. We also provide an error analysis and discuss the technique of
residual correction, which aims to increase the accuracy of the approximate solution. Lastly, the method,
error analysis and the residual correction technique are illustrated with several examples. The results are
also compared with numerous existing methods from the literature.

1. Introduction

Basically, delay differential equations (DDEs) arise whenever a phenomenon has a delayed effect in
a differential equation. Since this happens quite frequently, DDEs are ubiquitous in nature. Their most
common applications include models on population dynamics [19, 20], control theory [31], dynamics of
neural networks [5], models on the spread of diseases [6] and applications on feedback problems in electrical
and electronics engineering [18, 23]. Among other applications are modelling problems in material science
[15, 24], applications in quantum dot lasers [25], and topics in climate science [1]. Interested reader can
refer to [12] for an extensive survey on the uses of DDEs in mathematical biology and a monograph on the
numerical solutions of DDEs can be found in [32].

The first order linear DDE with constant coefficients and proportional delay

u′(x) = au(x) + bu(qx), x ∈ I = [0,T], 0 < q < 1

is called the pantograph equation and first arose in the mathematical modelling of the wave motion in the
current line between an electric locomotive and an overhead catenary wire [22, 33]. For any u0 ∈ R, it
has a unique (continuously differentiable) solution u(x) over I satisfying u(0) = u0. More generally, if the
coefficients a and b are not constants but functions from Cm(I), then there is a unique solution u(x) from
Cm+1(I) satisfying the same initial condition [3]. Additional remarks on the analytical and approximate
solutions of DDEs can be found in [8, 10].
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The pantograph equation is an important kind of DDE which plays a role in a wide range of applications.
Over the last two decades, there has been an increasing interest in the numerical solutions of DDEs of
pantograph type and researchers have made use of numerous methods. To name a few, Dehghan et al.
used Adomian decomposition method for this purpose and they also established the convergence of their
approach in [7]. Ishiwata and Muroya proposed two kinds of collocation methods employing special mesh
distributions [16]. Other collocation methods were presented by the authors of [17] using Bernstein series
in conjunction with polynomial interpolation and by the authors of [38] making use of Bessel series. In
[28], shifted Chebyshev polynomials were utilized to solve pantograph type DDEs and an applicable error
analysis was provided. For a demonstration of how a set of exponential functions are used as a basis rather
than polynomials, the reader is referred to [36]. Popular methods such as the variational iteration method
[14] have been used to solve a generalized pantograph equation [27] and the homotopy perturbation method
[13] was used by Feng [11], where sufficient conditions for convergence were also given.

In this paper, we consider the first-order multi-pantograph equation with (possibly) a nonhomogeneous
term, given by

u′(x) = f (x) + α(x)u(x) +

r∑
i=1

βi(x)u(qix), a ≤ x ≤ b, 0 < qi < 1 for i = 1, 2, . . . , r (1)

with the initial condition u(a) = ua, where all the given functions are smooth in their domains. By using a
numerical scheme reminiscent of the discrete Galerkin method, our aim is to obtain approximate solutions
of Eq. (1) that outperform those obtained by other methods which were also interested in solving it.

The organization of the paper is as follows: The solution method is explained in Section 2. Section 3
describes the technique of residual correction as a means of deriving better approximations from a known
one. Section 4 contains numerical examples, where comparisons with other methods are also made. Finally,
a summary of the paper is given in Section 5.

2. Solution Method

In this section, we outline the Galerkin-like procedure we will use in order to solve Eq. (1). The method,
which relies on taking inner product of an expression with monomials, was employed in [34] to obtain
approximate solutions of high-order Fredholm integro-differential equations. In addition, a similar scheme
was applied to high-order integro-differential equations with singular kernel functions in [35].

To begin with, we assume that the unique solution u(x) of Eq. (1) can be expressed as a power series of
the form

u(x) =

∞∑
k=0

akxk.

We then truncate this power series after the (N + 1)st term so that

uN(x) =

N∑
k=0

akxk = X(x) ·A

where

X(x) = [ 1 x x2 . . . xN ], A = [ a0 a1 a2 . . . aN ]T.

Here, the coefficients ai will be obtained as the output of the procedure. The derivative u′N(x) of the
approximate solution can also be expressed as a product of matrices. Namely, if B is the (N + 1) × (N + 1)
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matrix defined by Bi,i+1 = i for i = 1, 2, . . . ,N and Bi, j = 0 elsewhere, explicitly given by

B =


0 1 0 . . . 0
0 0 2 . . . 0
...

...
...

. . .
...

0 0 0 . . . N
0 0 0 . . . 0


then the equality u

′

N(x) = X(x)BA holds. The delayed terms in Eq. (1) can be expressed in a similar manner.
If we denote by ΛN(x) the (N + 1) × (N + 1) diagonal matrix with ΛN(x)i,i = xi−1, or explicitly by

ΛN(q) =


1 0 0 . . . 0
0 q 0 . . . 0
0 0 q2 . . . 0
...

...
...

. . .
...

0 0 0 . . . qN


then the corresponding matricial expression is uN(qx) = X(x)ΛN(q)A. Now, substituting the matricial
expressions for uN(x), u′N(x) and uN(qix), which have already been established, into Eq. (1) and rearranging
yieldsX(x)B − α(x)X(x) −

r∑
i=1

βi(x)X(x)ΛN(qi)

 A = f (x). (2)

Now, since we are basically trying to calculate the approximate solution uN(x) in terms of the elements
of the basis set Φ = {1, x, x2, . . . , xN

} of all polynomials having degree at most N, the coefficients ai can be
determined by taking inner product of the elements ofΦ with the vector of length N + 1 on the left-hand
side of Eq. (2). More precisely, if we define G(x) by

G(x) := X(x)B − α(x)X(x) −
r∑

i=1

βi(x)X(x)ΛN(qi),

then taking the inner product of each element of Φ with G(x) results in N + 1 linear equations in the
unknowns a0, a1, . . . , aN. Explicitly, the coefficient matrix W and the column vector F on the right-hand side
of this system are given by

Wi, j =< xi−1,G(x)1, j >, Fi,1 =< xi−1, f (x) >,

where the inner product < ·, · > is defined by

< f , 1 >=

∫ b

a
f (x)1(x)dx.

Here, f and 1 are functions from the Hilbert space L2[a, b]. Since the initial condition u(a) = ua should also
be satisfied, one of the rows of W and the corresponding entry of F should be modified accordingly. For the
sake of being deterministic, let us fix the modified entries to be the first row of W and the first entry of F. If

X(a) = [ 1 a a2 . . . aN ]

denotes the vector resulting from replacing x by a in X(x), then the initial condition corresponds to the
matricial equation given by

X(a)A = [ 1 a a2 . . . aN ] · [ a0 a1 a2 . . . aN ]T = ua.
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Therefore, in order to feed the initial condition to our system, we replace the first row of W by X(a) and the
first entry of F by ua. After performing this step, we are left with the modified system W̃A = F̃ explicitly
given by

W̃ =


1 a . . . aN

< x,G(x)1,1 > < x,G(x)1,2 > . . . < x,G(x)1,N+1 >
< x2,G(x)1,1 > < x2,G(x)1,2 > . . . < x2,G(x)1,N+1 >

...
...

...
...

< xN,G(x)1,1 > < xN,G(x)1,2 > . . . < xN,G(x)1,N+1 >


,

F̃ =
[

ua < x, f (x) > < x2, f (x) > . . . < xN, f (x) >
]T
,

from which we obtain the matrix A = W̃−1F̃ and the approximate solution

uN(x) = a0 + a1x + . . . + aNxN.

3. Error Analysis and Residual Correction

In this section, the error estimation of our method is carried out based on the residual function of the
multi-pantograph equation given by Eq. (1). Then, we show how this estimation is used to obtain a better
approximate solution, called the corrected solution for the equation. Lastly, we use Taylor’s Theorem to
obtain an upper bound for the error of this corrected solution.

3.1. Error Estimation and Improving Solutions Using Residual Function

Let us consider the residual function

R(x) = u′(x) − α(x)u(x) −
r∑

i=1

βi(x)u(qix) − f (x) = 0 (3)

of Eq. (1). We now replace u(x) by the approximate solution uN(x) and obtain

RN(x) = u
′

N(x) − α(x)uN(x) −
r∑

i=1

βi(x)uN(qix) − f (x). (4)

Subtracting Eq. (3) from Eq. (4) and rearranging yields

e
′

N(x) = −RN(x) + α(x)eN(x) +

r∑
i=1

βi(x)eN(qix), (5)

which is just Eq. (1) with nonhomogeneous term −RN(x) and u(x) replaced by eN(x) = u(x) − uN(x). Since
the approximate solution satisfies the initial condition, we have

eN(a) = u(a) − uN(a) = ua − ua = 0

as the initial condition of Eq. (5). The next step is to employ the method of Section 2 to obtain an approximate
solution eN,M(x) to Eq. (5) for some choice of M. Lastly, we use this approximation to obtain a corrected
solution

uN,M(x) = uN(x) + eN,M(x)

of Eq. (1). In what follows, EN,M(x) will denote the actual error of uN,M(x) given by EN,M(x) = u(x) − uN,M(x).
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3.2. An Upper Bound on the Error
For any natural number M, the well-known Taylor truncation error can be utilized in a straightforward

manner to give an upper bound for the absolute error |EN,M(x)| of the corrected solution, which depends on
the first M + 1 derivatives of the exact solution u(x) and the first M derivatives of EN,M(x). In the following
result, which appears also in [37], uT,M(x) denotes the M-th degree truncated Taylor polynomial of u(x)

around a point c ∈ [a, b] and RT,M(x) denotes its truncation error given by
(x − c)M+1

(M + 1)!
u(M+1)(ξ) for some

ξ ∈ (c, x).

Theorem 3.1. If the exact solution u(x) of Eq. (1) is of class CM+1[a, b], then we have the following upper bound for
the absolute error of the corrected solution uN,M(x):

|EN,M(x)| = |u(x) − uN,M(x)| ≤ |RT,M(x)| + |uT,M(x) − uN,M(x)|. (6)

Proof. Taylor’s Theorem with Lagrange-type remainder term states that

u(x) = u(c) + u′(c)(x − c) + . . . +
u(M)(c)

M!
(x − c)M +

(x − c)M+1

(M + 1)!
u(M+1)(ξ)

= uT,M(x) + RT,M(x)

for some ξ ∈ (a, b). Thus we have u(x) − uT,M(x) = RT,M(x). Using this equality and the triangle inequality
for |EN,M(x)|we get

|EN,M(x)| = |u(x) − uN,M(x)| = |u(x) − uT,M(x) + uT,M(x) − uN,M(x)|
≤ |RT,M(x)| + |uT,M(x) − uN,M(x)|,

which is the desired result.

The above result can be interpreted as follows: Since uN,M is a known polynomial of degree M for a fixed
M, we can write it as

uN,M(x) = aN,0 + aN,1x + . . . + aN,MxM,

where aN,i are constants; or alternatively as

uN,M(x) = ãN,0 + ãN,1(x − c) + . . . + ãN,M(x − c)M.

After this adjustment, Eq. (6) can be expressed as

|u(x) − uN,M(x)| ≤
(x − c)M+1

(M + 1)!
u(M+1)(ξ) +

M∑
k=0

(
u(k)(c)

k!
− ãN,k

)
(x − c)k . (7)

Then, in order to express this bound in a more compact form, we introduce a notation to denote the
maximum absolute values of the derivatives of u(x). Namely, we let Sk = sup

a≤x≤b
u(k)(x) . Since c ∈ [a, b],

assuming x ∈ [a, b] we also have (x − c)k
≤ (b − a)k. Combining these, Eq. (7) takes the following form:

Corollary 3.2. The absolute error |EN,M(x)| of uN,M(x) satisfies

|u(x) − uN,M(x)| ≤
SM+1

(M + 1)!
(b − a)M+1 +

M∑
k=0

(Sk

k!
+ |ãN,k|

)
(b − a)k.

Thus, the error of our method is closely related to the magnitude of the first M derivatives of the exact
solution u(x). Note, however, having the knowledge of Si for i = 0, 1, . . . ,M + 1, this form of the upper
bound is not really appropriate for computation since it will yield unnecessarily big values. This comes
from the fact that the coefficient of (x − c)k in uT,M(x), which is equal to u(k)(c)

k! , will almost always have the

same sign with ãN,k in practice, causing u(k)(c)
k! − ãN,k to be much smaller than Sk

k! + |ãN,k|. Therefore, Eq. (7) is
the form of the upper bound to be used in computations; the aim of Corollary 3.2 is just to emphasize the
dependence of the error on the first M + 1 derivatives of the exact solution u(x).
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Table 1: Absolute errors at some points for Example 1.

x Muroya [21] Taylor method [29] Present method

N = 10 N = 12 N = 5 N = 8 N = 10

2−1 2.19E − 5 2.00E − 10 1.24E − 10 6.40E − 7 3.77E − 11 1.96E − 11
2−2 1.08E − 6 1.00E − 10 9.74E − 11 5.34E − 7 6.95E − 11 3.03E − 11
2−3 3.81E − 8 1.00E − 10 7.00E − 11 9.09E − 8 4.68E − 11 2.08E − 11
2−4 1.26E − 9 1.00E − 10 9.14E − 11 3.67E − 8 9.04E − 11 3.83E − 11
2−5 4.09E − 11 1.00E − 11 5.28E − 11 3.71E − 7 9.28E − 11 4.11E − 11
2−6 1.20E − 12 0 1.95E − 11 2.46E − 7 6.51E − 11 2.96E − 11

CPU time(s) 0.0625 0.3750 0.4219

4. Illustrative Examples

In this section, we apply the method of Section 2 to several pantograph equations and compare the
resulting approximate solutions with some other methods present in the literature. To each equation, we
apply residual correction to obtain better approximate solutions using the existing ones. Having the exact
solution at hand, we also use Theorem 3.1 to compute upper bounds for the error of the corrected solutions.
Although not usable as an a priori error estimate, in this way we aim to make an evaluation of the precision
of the bound in question.

Example 1. Let us consider the following pantograph equation with a nonhomogeneous term first
studied in [21] and later solved in [28, 29]:

u′(x) = −u(x) + (q/2)u(qx) − (q/2)e−qx, u(0) = 1, 0 ≤ x ≤ 1.

The exact solution of this problem is u(x) = e−x. For q = 0.2, Table 1 and Figure 1 show the absolute error
values for different methods. It is seen that the absolute errors of the present method with N = 5 are greater
than the errors obtained with Taylor method. When we increase N to 8, the errors become close to the
errors of Taylor method with N = 12. The solutions obtained with N = 10 are even better. Therefore, the
present scheme outperforms Muroya’s method [21] and Taylor method [29] for this example problem. We
also included in Table 1 the CPU times (in seconds) needed to compute the approximate solutions in a
computer with a 2.80 GHz processor.

We now illustrate the technique of residual correction for this example:

u′(x) = −u(x) + 0.1u(0.2x) − 0.1e−0.2x, u(0) = 1, 0 ≤ x ≤ 1. (8)

Taking N = 4 and employing our method results in the approximate solution

u4(x) = 0.0242846452x4
− 0.1510973316x3 + 0.4937451715x2

− 0.9990362373x + 1.

Substituting this into Eq. (8) yields the residual function

R4(x) = 0.1e−0.2x + 0.0242807x4
− 0.0538378x3 + 0.0384781x2

− 0.0084348x − 0.0990362.

Now, subtracting from this the residual expression corresponding to Eq. (8) gives the following multi-
pantograph equation:

e
′

4(x) = −e4(x) + 0.1e4(0.2x) − R4(x), e4(0) = 0, 0 ≤ x ≤ 1.
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Figure 1: Graphics of the absolute error functions of Muroya method, Taylor method and the present method for different values of
N in Example 1.

Applying our method with M = 5, we obtain the approximate solution

e4,5(x)=−0.0048905037x5 + 0.0135052502x4
− 0.0133984972x3 + 0.0056679576x2

−0.0009002485x.

The last step is to correct the approximate solution u4(x) by adding e4,5(x) to it, yielding the corrected
approximate solution

u4,5(x)=−0.0048905037x5 + 0.0377898954x4
− 0.1644958289x3 + 0.4994131291x2

−0.9999364858x + 1.

The corrected solutions for any other (N,M) pair can be calculated similarly. Table 2 compares the absolute
error values for the first approximate solution uN(x), the estimated absolute errors eN,M(x) and the absolute
errors of the corrected approximate solution uN,M(x) for the parameter values N = 4,M = 5 and N = 7,M = 8.
Figure 2 graphically illustrates the significant improvement in the absolute error function as a result of the
procedure. The CPU times included in Table 2 reveal that residual correction does not bring about too
much computational burden.

As an illustration of the error bound given in Theorem 3.1, let us consider the Maclaurin polynomial of
the exact solution u(x) = e−x truncated after the fifth term:

e−x = 1 − x +
x2

2
−

x3

6
+

x4

24
−

x5

120
+

e−ξ

720
x6.

Subtracting u4,5(x) from this then yields the following:

|u(x) − u4,5(x)| ≤ | − 0.0000635142x + 0.0005868709x2
− 0.0021708377x3

+0.0038767712x4
− 0.0034428296x5

| +
e−ξ

720
x6.
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Table 2: Actual, estimated and corrected errors at some points for Example 1 with parameter values N = 4,M = 5 and N = 7,M = 8.

x Actual error for u4(x) Estimated error e4,5(x) Actual error for u4,5(x)
N = 4 N = 4,M = 5 N = 4,M = 5

0.2 4.18E − 5 4.04E − 5 1.40E − 6
0.4 1.61E − 5 1.50E − 5 1.06E − 6
0.6 2.51E − 5 2.37E − 5 1.38E − 6
0.8 2.41E − 5 2.35E − 5 6.06E − 7
1 1.68E − 5 1.60E − 5 7.64E − 7
CPU time(s) 0.0469 0.1250
x Actual error for u7(x) Estimated error e7,8(x) Actual error for u7,8(x)

N = 7 N = 7,M = 8 N = 7,M = 8
0.2 1.30E − 9 1.25E − 9 5.14E − 11
0.4 1.97E − 9 1.93E − 9 3.99E − 11
0.6 1.09E − 9 1.04E − 9 4.99E − 11
0.8 1.25E − 9 1.23E − 9 2.47E − 11
1 9.60E − 10 9.31E − 10 2.81E − 11
CPU time(s) 0.3438 0.5157
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Figure 2: Comparison of the actual absolute error function |eN(x)|, the estimated absolute error function |eN,M(x)| and the actual absolute
error function |EN,M(x)| of the corrected result uN,M(x) for N = 4,M = 5 and N = 7,M = 8 in Example 1.
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Table 3: Absolute errors at some points for Example 2.

x Spline [9] Taylor method [29] Present method
N = 7 N = 9 N = 7 N = 9

0.2 1.980E − 8 2.560E − 11 7.050E − 15 6.261E − 9 1.082E − 11
0.4 4.730E − 8 3.330E − 9 1.060E − 11 1.089E − 8 1.615E − 11
0.6 8.470E − 8 5.770E − 8 2.940E − 10 1.081E − 8 2.074E − 11
0.8 1.350E − 7 4.380E − 7 3.860E − 9 1.497E − 8 2.230E − 11
1 2.010E − 7 2.120E − 6 2.900E − 8 1.788E − 8 2.931E − 11
CPU time(s) 0.1406 0.1719

Taking supremum of the absolute value of the above 5-th degree polynomial over the interval [0, 1] yields
the value 0.0000023114 attained at x ≈ 0.0914. The remainder term is clearly bounded from above by 1

720 .
Adding these two values together, we get |E4,5(x)| ≤ 0.0013912003, which is consistent with the values given
in Table 2.

The same analysis can be carried out for the corrected solution u7,8(x) corresponding to N = 7,M = 8.
Since

u7(x) = −0.0001174389x7 + 0.0012605197x6
− 0.0082208034x5 + 0.0416099371x4

−0.1666505469x3 + 0.4999976284x2
− 0.9999998539x + 1

and

e7,8(x) = 0.0000147213x8
− 0.0000626809x7 + 0.0001094299x6

− 0.0001007312x5

+0.0000522907x4
− 0.0000151501x3 + 0.0000022598x2

− 0.0000001405x,

summing u7(x) and e7,8(x) we obtain

u7,8(x)=0.0000147213x8
− 0.0001801198x7 + 0.0013699496x6

− 0.0083215346x5

+0.0416622278x4
− 0.1666656970x3 + 0.4999998882x2

− 0.9999999944x + 1.

Then, expanding the exact solution u(x) = e−x as before, this time to nine terms, we find that sup
0≤x≤1

|uT,8(x) −

u7,8(x)| = 2.14 × 10−9 and |RT,8(x)| =
e−ξ

362880
≤

1
362880

. Therefore, in view of Theorem 3.1, we have

|E7,8(x)| = |u(x) − u7,8(x)| ≤ 2.14 × 10−9 +
1

362880
≈ 2.857 × 10−6.

The upper bounds we have found for the errors of both u4,5(x) and u7,8(x) reveal that the bound provided
by Theorem 3.1 is a loose one. This comes from the fact that the residual term RT,M(x) dominates the
calculations, partly due to taking supremum on ξ over the entire interval [a, b] even though the real value
of | f (M+1)(ξ)|might be much smaller in reality.

Example 2. Our second example is the following homogeneous equation first studied in [30]:

u′(x) =
u(x)

2
+

1
2

ex/2u(x/2), u(0) = 1, 0 ≤ x ≤ 1.

The exact solution is u(x) = ex. Table 3 and Figure 3 compare our method with two older methods for
different values of N. It is revealed that our method slightly outperforms Taylor method with the same N
values, especially for greater values of x. In addition, the error in our method does not change significantly
throughout the interval [0, 1].

We applied residual correction to the approximate solution u7(x) for various values of M. The actual
error values after the application of residual correction are shown in Table 4. The data in the table are
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Figure 3: Graphics of the absolute error functions of Spline function method, Taylor method and the present method for different
values of N in Example 2.

illustrated graphically in Figure 4. It is obvious from the table and the graph that increasing M brings about
a significant improvement in the approximate solution. As for the upper bounds given by Theorem 3.1, we
have |E7,8(x)| ≤ 1.055 × 10−5, |E7,9(x)| ≤ 1.052 × 10−6 and |E7,10(x)| ≤ 3.708 × 10−7.

Example 3. Let us next consider the following nonhomogeneous equation investigated by the authors
of [4]:

u′(x) = au(x) + bu(qx) + cos(x) − a sin(x) − b sin(qx), u(0) = 0, 0 ≤ x ≤ 1.

The exact solution is u(x) = sin(x). Table 5 compares the maximum absolute errors of the present method
and the methods of [4] on the interval [0, 1], for the parameter values a = −1, b = 0.5, q = 0.5. It can
be commented from Table 5 that our method with N = 5 gives a better result than the methods of [4].
Employing residual error correction with N = 6 and N = 8 greatly improves the result, as also depicted in
Figure 5. As for the error bounds of Theorem 3.1, we have |E5,6(x)| ≤ 0.000394 and |E5,8(x)| ≤ 5.485 × 10−6.

Example 4. Our last example is the following problem:

u′(x) = u(x) + (x2 + 1)u(0.2x) −
3 + 25x(2 + 3x + 25x3)

(1 + 25x2)2 , u(0) = 1, 0 ≤ x ≤ 1. (9)

The exact solution of this problem is u(x) = 1
1+25x2 . The function 1

1+25x2 was originally given by Runge [26] as
an example to functions for which polynomial interpolation with equidistant nodes does not converge. This
situation, known as “Runge phenomenon”, has been addressed in many studies, see [2] for an example.
It can be interesting to apply the present scheme to Eq. (9) and observe the change in the error as we
increase N. With this in mind, we obtained its approximate solutions corresponding to several N values
and collected the results in Table 6. Looking at the values in the table, we see that the approximate solutions
exhibit a general improvement as we increase the parameter N, although the decrease in the error is not
as fast as in the case of previous problems. This situation is also apparent from Figure 6. Still, the steady
decrease in errors suggests that the present method yields reasonable results when applied to a class of
more challenging problems like this one.
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Table 4: Comparison of the actual absolute errors for u7(x) and its three improvements for M = 8, 9, 10 in Example 2.

x Actual error for u7(x) Actual error for u7,8(x) Actual error for u7,9(x) Actual error for u7,10(x)
N = 7 N = 7,M = 8 N = 7,M = 9 N = 7,M = 10

0.2 6.26E − 9 2.17E − 10 6.83E − 12 2.08E − 13
0.4 1.08E − 8 2.63E − 10 6.45E − 12 2.15E − 13
0.6 1.08E − 8 3.75E − 10 9.50E − 12 2.49E − 13
0.8 1.49E − 8 4.02E − 10 1.15E − 12 3.24E − 13
1 1.78E − 8 5.16E − 10 1.35E − 12 3.96E − 13

CPU time(s) 2.0000 2.3750 2.7656
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Figure 4: Illustration of the actual absolute error function |e7(x)| for u7(x) and actual absolute error functions |E7,8(x)|, |E7,9(x)|, |E7,10(x)|
of its three improvements in Example 2.

Table 5: Maximum errors for solutions of Example 3 with a = −1, b = q = 0.5.

Piecewise linear DG Piecewise quadratic DG Present method Present method Present method
with m = 64 [4] with m = 16 [4] with N = 5 with N = 5,M = 6 with N = 5,M = 8

—Error— 2.142 × 10−5 1.464 × 10−6 1.398 × 10−6 1.018 × 10−7 8.891 × 10−11

CPU time(s) 0.0781 0.1719 0.2344

Table 6: Absolute errors at some points corresponding to several N values in Example 4.

x N = 4 N = 5 N = 6 N = 9 N = 12 N = 14

0.2 3.71E − 2 3.12E − 2 1.04E − 2 1.60E − 3 1.52E − 4 4.68E − 5
0.4 1.01E − 2 3.35E − 2 1.48E − 2 4.07E − 4 9.12E − 5 4.28E − 5
0.6 7.15E − 2 1.73E − 2 7.89E − 3 1.34E − 3 8.20E − 5 2.44E − 5
0.8 4.62E − 2 2.14E − 3 8.27E − 3 8.49E − 4 1.43E − 4 2.35E − 6
1 4.71E − 2 3.27E − 3 4.75E − 3 8.97E − 4 3.56E − 5 1.41E − 5

CPU time(s) 0.0625 0.0781 0.0938 0.1406 0.2031 0.2813
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Figure 5: Illustration of the actual absolute error function |e5(x)| for u5(x) and actual absolute error functions |E5,6(x)|, |E5,8(x)| of its
improvements in Example 3.
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Figure 6: Illustration of the actual absolute error functions corresponding to solutions obtained by N = 4, 6, 8, 10, 12, 14 in Example 4.
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5. Conclusions

In this paper, we have presented a Galerkin-like approach for the approximate solution of multi-
pantograph equations. In brief, the method comprises taking inner product of an expression obtained
from the equation with a set of N + 1 monomials. The result, then, is a polynomial of degree N, which is
taken as the approximate solution. The method has been tested on some problems taken from other works
and the results have been compared with several popular methods present in the literature. The related
tables and figures reveal that our approach gives better results compared to the methods in question. In
addition, results of the last problem suggest that the present numerical scheme can be expected to yield
acceptable results when applied to more problematic examples. Residual error correction technique, which
uses the residual function of an approximate solution to estimate its error and thus to reduce it, has also
been discussed. Simulation results show that substantial improvements in the approximate solutions can be
achieved as a result of residual correction with negligible computational cost. On the whole, the numerical
scheme presented in this paper is a fast and easy-to-implement method that can be relied on when one
needs to solve multi-pantograph equations with a high degree of accuracy.
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