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Abstract. In this paper, we consider a new system of extended general quasi variational inequalities
involving six nonlinear operators. Using projection operator technique, we show that system of extended
general quasi variational inequalities is equivalent to a system of fixed point problems. Using this alternative
equivalent formulation, we propose and analyze Gauss-Seidel type algorithms for solving a system of
extended general quasi variational inequalities. Convergence of new method is discussed under some
suitable conditions. Several special cases are discussed. Results obtained in this paper continue to hold for
these problems.

1. Introduction

Variational inequalities introduced in the early sixties have played a critical and significant part in
the study of several unrelated problems arising in finance, economics, network analysis, transportation,
elasticity and optimization. Variational inequalities theory has witnessed an explosive growth in theoretical
advances, algorithmic development and applications across all disciplines of pure and applied sciences,
see [1-38]. It combines novel theoretical and algorithmic advances with new domain of applications. As a
result of interaction between different branches of mathematical and engineering sciences, we now have a
variety of techniques to suggest and analyze various iterative algorithms for solving variational inequalities
and related optimization problems. Analysis of these problems requires a blend of techniques from convex
analysis, functional analysis and numerical analysis.

In this paper, we introduce a new system of extended general quasi variational inequalities. Using
projection technique, we prove that system of extended general quasi variational inequalities is equivalent
to a system of nonlinear implicit projection equations. This alternative equivalent formulation help us to
propose some new Gauss-Seidel type numerical schemes for solving a system of extended general quasi
variational inequalities and its variant forms. We discuss the convergence of these methods under some
mild conditions. Several special cases are also discussed. The comparison of these methods with other
methods is a subject of future research.
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2. Preliminaries and Basic Results

Let H be a real Hilbert space, whose norm and inner product are denoted by ||-|| and (-, -), respectively.
Let Ky, K> be two closed and convex sets in H.

For given nonlinear operators T1, T2, g1, 92, 11, h> : H — H and two point-to-set mappings K; : ¥ — Ki(y)
and Kj : x = Kj(x), which associate two closed and convex valued sets K;(y) and K;(x) with any elements
X,y € H, consider a problem of finding x, y € H : I (y) € K1 (y), h2 (x) € Kz (x) such that

(piTix+hi (y)—g1(x),91(v) =h1 (y)) =20, YoeH: g (v)eKi(y) } 1)

(P2Tay +ha(x) =92 (y), 92 (v) —h2 (x)) 20, YveH: g (v) € Ky (x)

where p; > 0 and p, > 0 are constants. The system (1) is called a system of extended general quasi varia-
tional inequalities with six nonlinear operators.

We now list some special cases of the system of extended general quasi variational inequalities (1).

L.

II.

III.

IV.

Ifg1 =g2=9,m =hy=h, Ky (y) = K(y) and K; (x) = K(x), then problem (1) reduces to find x,y € H :
h(y) € K(y),h(x) € K(x) such that

(p1Tix+h(y)—gx),g@) —-h(y)) =0, YoeH:g(v)eK(y) )
(p2Tay +h(x)—g(y),g(@)—h(x)) >0, YveH:g(@v)eK(x) [

The problem of type (2) is called a system of extended general quasi variational inequalities with four
nonlinear operators.

If K1 (y) = K1 and K; (x) = Ky, then problem (1) collapse to find x,y € H : Iy (y) € Ky, hp (x) € K; such
that

(p1Tix+hi (y)—g1(x), 91 (©) —h1 (y)) 20, YoeH:q (v) €Ky } 3)

(p2Toy +ha(x) = g2 (y), 92 ) —hp (x)) 20, YoeH:g,(v) € Ky

is a system of extended general variational inequalities involving six nonlinear operators. Recently,
this problem was considered by Noor et al [35, 36].
If h = g, then problem (2) reduces to find x, y € H : g(y) € K(y), g (x) € K(x) such that

(prTix+g(y) -9 (x),9(©) —g(y)) 20, VveH:g(v)EK(y)} @)
(p2Toy+9(x)—g(y),9(©) —g(x)) >0, YveH:g(w)eK(x) [’

which is called a system of general quasi variational inequalities with three nonlinear operators.
If g1 = go = h1 = hy = I, identity operator, then system (1) reduces to find y € K; (y) and x € K; (x)
such that

(piTix+y—-xv-y)>0, YveK(y) }

(p2Tay+x—y,v—x)>0, Yvek;(x) ()

is called a system of quasi variational inequalities. This problem was introduced by Noor and Noor
[33].
If K1 (y) = Kz (x) = K, then system (5) collapse to find x, y € K such that

(pTix+y-xv-y)y=0, YoekK
(pToy+y—-x,v—x)>0, YoeK [’

which is a system of variational inequalities and has been studied extensively in recent years.
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If Ty =T, = T and K (x) = K(y) = K, then problem (2) reduces to find u € H : h (u) € K such that
(pTu+h(u)—gWw),g@)—h(u) >0, YveH:g(@) €k (7)

which is called extended general variational inequality, introduced and studied by Noor [27].
If Ty = T, = T, then problem (4) reduces to find u € H : g (1) € K (1) such that

(Tu,g(w)—gW)) =0, YoeH:g()eK(u)), 8)

which is called general quasi variational inequality. This problem was introduced and studied by
Noor [19].
If K (u) = K, then problem (8) reduces to find u € H : g (1) € K such that

(Tu,g(v) —gm)) >0, YveH:g(w) ek 9)

This problem is called general variational inequality. This problem was introduced and studied by
Noor [18], in 1988. It turned out that odd order and nonsymmetric obstacle, free, moving, unilateral
and equilibrium problems arising in various branches of pure and applied sciences can be studied via
general variational inequalities.

For suitable and appropriate choice of operators and spaces, one can obtain several new and known
classes of variational inequalities.

We now summarize some basic properties and related definitions which are essential in the following
discussions.

Definition 2.1. A nonlinear operator T : H — H is said to be:

@)

(i)

strongly monotone, if there exists a constant o > 0 such that
(Tu—-To,u—v) > alu —vIIZ, Yu,v € H.
Lipschitz continuous if there exists a constant > 0 such that

[[Tu—To|| < Bllu—-7vll, Yu,v€H.

Note that, if T satisfies (/) and (ii), then a < B.

Lemma 2.2. [30]Let K(u) be a closed convex set in H. Then, for a given z € H,u € K(u) satisfies the inequality

(u—z,v—uy>0 Vove K(u),

if and only if

u = Pxq (2],

where Py is the projection of H onto the closed convex valued set K(u) in H.

We would like to point out that the implicit projection operator Pk, is not nonexpansive. We shall
assume that the implicit projection operator P, satisfies the Lipschitz type continuity condition. This
condition plays an important and fundamental role in the existence theory and in developing numerical
methods for solving problem (1) and its variant forms.
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Assumption 2.3. [34] The implicit projection operator P, satisfies the condition
I P [w] = Pxy [@] IS v Il u—oll, Yu,o,weH, (10)
where v > 0 is a constant.
In many important applications [16, 17] the convex-valued set K (1) can be written as
K@) =mu)+K, (11
where m (u) is a point-to-point mapping and K is a convex set. In this case, we have
Pxay [w] = Pk [w] = m (u) + Px [w —m(u)], VYu,v € H. (12)

We note that if K (1) is as, defined by (11), and m (u) is a Lipschitz continuous mapping with constant y > 0,
then using the relation (12), we have

[Pk [w] = Py [

llm (u) + P [w —m ()] — m (v) — Px [w — m (0)]]]
llm (1) — m (V)| + [|Px [w — m ()] — Pk [w —m (0)]]
2|m (u) —m (v)|

2y|lu —=oll, Yu,v,w € H,

IAIA A

which shows that Assumption 2.3 holds with v = 2y > 0.
Lemma 2.4. [7] If {0}, is a nonnegative sequence satisfying the following inequality:

Ons1 (1 =A,) 6, + 0, foralln >0,

with0< A, <1, Y, A, =00, and o, = 0(A,), then lim6,, = 0.

n=0

3. Main Results

In this section, we show that system of extended general quasi variational inequalities (1) is equivalent
to a system of fixed point problems. This alternative equivalent formulation is used to suggest algorithms
for solving problem (1), using the technique of Noor and Noor [33].

Lemma 3.1. The system of extended general quasi variational inequalities (1) has a solution, x,y € H : I (y) €
Ki(y),ha (x) € Ky (x), if and only if, x,y € H : 1 (y) € Ky (y) , h2 (x) € K, (x) satisfies the relations

h(y) = Pyl ) —piThx] (13)
ha(x) = Pioy[92 () = p2Tayl, (14)
where p1 > 0 and py > 0 are constants.

Lemma 3.1 implies that the system (1) is equivalent to the fixed point problems (13) and (14). This
alternative equivalent formulation is very useful from numerical and theoretical point of view. Using the
fixed point formulations (13) and (14), we suggest and analyze some iterative algorithms.

We can rewrite (13) and (14) in the following equivalent forms:

(1 =Bu)y +Pn {y = I () + Py [91 (00) = plTlx]} (15)
x = (I-ay)x+anfx—h () + P [92(v) - paTayl), (16)

where 0 < a, f < 1foralln > 0.
This alternative equivalent formulation is used to suggest following algorithms for solving system of
extended general quasi variational inequalities (1) and its variant forms.

y
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Algorithm 3.2. For given xo,yo € H : hi (yo) € K1 (y) and hy (xo) € Kz (x) find X1 and y,.1 by the iterative
schemes

Yn+1 (1 - ﬁn) Yn + ,Bn {yn - hl (yn) + PK1(yn) [91 (xn) - PlTlxn]} (17)
Yot = (U= @)X, + ay (%0 = b (6) + Piygey) [92 (Yn1) = paTayusa ), (18)
where 0 < ay, fr <1 foralln > 0.

Algorithm 3.2 can be viewed as a Gauss-Seidel method for solving a system of extended general quasi
variational inequalities. This is an implicit type method which is quite different from the Algorithm 3.2 of
Noor et al [36].

We now discuss some special cases of Algorithm 3.2.

LIfgi=g2=9h =hy=h K (y) = K(y) and K, (x) = K(x), then Algorithm 3.2 reduces to following
projection algorithm for solving the system (2).

Algorithm 3.3. For given xo,yo € H : h(xo) € K(x),h (yo) € K(y) find x,.1 and y,.1 by the iterative schemes

(1= Bu) Yu + Pu {yn —h(yn) + PK(y,,) [g (xu) — plTlxn]}

Yot = (U= )X, + ay {50 = B () + Picey [9 (Y1) = p2Toyun ]},

Yn+1

where 0 < ay, B < 1 foralln > 0.
II. If h = g, then Algorithm 3.3 reduces to the following algorithm for solving system (4).

Algorithm 3.4. For given xo,yo € H : g(x) € K(x),9(yo) € K(y), compute sequences {x,} and {y,} by the
iterative schemes

Y1 = (L=Ba) Yn + B {yn =9 () + Py, L9 (ea) = plTlxn]}
Xn+1 = (1 - an)xn +ay {xn - !7 (xn) + PK(x,,) [!] (]/n+1) - pZTZyrHl]} ’
where 0 < ay, B <1 foralln = 0.

II. IfK; (y) = Ky and K; (x) = Ky, then Algorithm 3.2 collapse to the following iterative method for solving
system (3).

Algorithm 3.5. [36]For arbitrary chosen initial points xo,yo € H : h1 (yo) € Ky, ha (x0) € Ky, sequences {x,} and
{yn} are computed by

Ynrr = (1=Bu) Yn + Bu{yn — 1 (yn) + P, [91 (i) — p1Trxa]}
Xue1 = (I—ay)x, +ay {xn — hy (x,) + Px, [92 (yn+1) - PZTZyn+1]}/

where 0 < ay, B <1 foralln > 0.

IV.IfT) =T, =T, g1 = g» = hi = hy = I, identity operator, then Algorithm 3.2 reduces to the following
algorithm.

Algorithm 3.6. For given x € Ky (x), yo € K1 (v) find the approximate solution x,, y, by the iterative schemes
Y1 = (1 - ﬁn) Yn + ﬁnpkl(y”) [xn - plTxn]
Xn+l = (1 - an) Xp + anpKz(x,l) []/n+1 - PZTyn+1] ’

where 0 < ay, By < 1 foralln > 0.



M.A. Noor et al. / Filomat 32:2 (2018), 395—407 400

V. If g1 = g2 = by = hy = I, identity operator, then Algorithm 3.2 reduces to:

Algorithm 3.7. For given xq € Ky (x), yo € K1 (v) find the approximate solution x,, y, by the iterative schemes

Yn+1 (1 - ﬁn) Yn t ,Bnpkl(yn) [xn - plTlxn]

Xne1 = (1 =an) Xy + auPry,) [Yns1 — p2T2Yns1],

where 0 < ay, B < 1 foralln > 0.

h=g
) | Algorithm 3.4

9:=9,=9, h1=h2=h
K,(y)=K(y), K,(x)=K(x)

K,(y)=K,, K,(x)=K,
—

Algorithm 3.7 | (= | Algorithm 3.2

9,=9,=h;=h, =I

T,=T,=T, 9,=9,=h, =h,=I|

Algorithm 3.6

For suitable and appropriate choice of operators and spaces, one can obtain several new and known
iterative methods for solving system of extended general quasi variational inequalities and related problems.

We now investigate the convergence analysis of Algorithm 3.2. This is the main motivation of our next
result.

Theorem 3.8. Let operators T1, T2, g1, 92, h1,hy : H — H be strongly monotone with constants ar, > 0, at, > 0,
ag >0, a4 >0, ay >0, ay, > 0and Lipschitz continuous with constants pr, > 0, fr, > 0, By, > 0, By, > 0,
Br, > 0, B, > 0 respectively. If Assumption 2.3 and following conditions hold:

(i) Or, = \/1 ~2piar, +p2p2 <1.

(ii) O, = \/1 ~2psar, + P22, < 1.
(ii)) 0 < ay, By < 1foralln >0,

an (1=v=04) = pu (05, +07,) 20
Bu(1-=v—0y) 20
a, (0, +60r,) 20
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such that
3 ay (1 =v—=04,)—Bul0y +0Or, = o0
=0
i n (1 -V - 6;11 = o
n=0
Z&n ng + QTZ = o9,

n=0

= \J1-2a, +ﬁ§l, 0y, = J1 - 20y, +ﬁ§z,
= 1/1—20(;11 +ﬁi1, Ghz = 1[1—20[;12 +‘Biz,

then sequences {x,} and {y,} obtained from Algorithm 3.2 converge to x and y respectively.

where

and

Proof. Let x,y € H : h1(y) € Ki(y),h2(x) € K; (x) be a solution of (1). Then from (16), (18) and using
Assumption 2.3, we have

IIxp1 — x| 1A= ay)x, +ay {xn — ha (%) + Pryen) [92 (Y1) — pszym]}

—-1-ay)x—ay {x —ho (%) + Py [92 (v) — Pszy]} [
(1 = ap) e = xll + ap lIx, = x = (h2 (x4) = B2 (x))]]

+ay ||Pro,) [92 (Yns1) = paTayner] = P [92 (¥) = poTay|
(1= ) llcw = Xl + ey llcy = x = (2 (x) = B2 ()|

+ ||Prya) [72 (Y1) = p2T2¥nse1] = Prowy [92 (Yns1) = p2 Ty ]|

0ty |[Piyy [92 (Y1) = p2T2yus1] = Py [92 () = pa Ty
(1 = an) llxy — x|l + vay llx, — x| + a llx, — x = (h2 (xn) = B2 )|

tan [yner = v = (92 () = 92 )|
+y ||yme1 =y = p2 (Toyner — Toy)||- 19)

IN

IA

IA

Since operator T is strongly monotone and Lipschitz continuous with constants ar, > 0 and fr, > 0,
respectively. Then it follows that

||yn+1 - y||2 = 202(Tayn+1 — T2y, Yns1 — Y)
+ ”szn+1 - Tz]/”z
(1 - 2poar, + P%ﬁi) [[Yne1 = J/||2 . (20)

Vi1t = v = p2 (Taymer - Tz}/)Hz

IA

In a similar way, we have

s = x = (a2 () = iy I < (1 = 200, + B3, ) s — 2, (21)
and

(22)

||yn+1 -y- (92 (yn+1) -2 (]/))”2 < (1 - Zaﬂz + ﬁ;z) ||y”+1 -
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where we have used the strong monotonicity and Lipschitz continuity of operators g,, h, with constants

ag, >0, ap, > 0and B, >0, B, > 0, respectively.
Combining (19) — (22), we obtain

Iper —xll < (1= an)llx, = xl| + vay llx, — x| + a, \[1 —2ap, + ,Biz [l — x|
+ay /1 - 2a,, + B> || - ||+oc 1-2paar, + p2p3? || - ”
n 72 7 Yn+1 y n P20, p2 T, Yn+1 y

(1= ay (1 =v = 04,)) llxn = 21l + @ (65, + 01, ) [ynir — ] . (23)

Similarly, using strong monotonicity and Lipschitz continuity of operators T, g1, 1 with constants ar, >
0,a4, > 0,a, > 0and pr, > 0,B,, > 0,pp, > 0, respectively. From (15), (17) and using Assumption 2.3, we
have

“ (1 - ﬁn) Yn + ﬁn {yn - hl (yn) + PK1(yn) [!]1 (xn) - plTlxn]}

(I

=By = Bufy = () + Py [ 09— paTux
< (1= B) [y = | + Bu [y =y = (11 () = 10 W)

B ([P (y) [91 (en) = p1T12a] = Py [91 (%) = PlTlx]”
< (=B [y = | + B |y = v = (11 () = 1n W)

+Bu ||Pru(y,) [91 () = prToxa] = P () [91 () = pr T ]

+a [Pro ) [91 G = pr il = P [ () = T
< (=B [[yn =yl + B llyn =y = (11 () =1 )|

B0 [[yn = ]| + B [0 = x = (91 () = 91 @)
+Bu ||pen = x = p1 (T1xy — Tyv)|
= (1-.(1-v=-06n)) ”]/n - y” + Bn <9y1 + QTl) Il — xI[. (24)

Adding (23) and (24), we have
s = xIl + ||y = 9

IA

(1= ay (1= v = 63,)) Iy — xll + t (8, + 6, [y — v

+ (1= Bu (1 =v=01) [yn = y]| + Bu (64, + O1,) llxs — I
(1= ctn (1= v = 0h,) + Bu (65, + 01, )) I — x|

+n (05, + 01, [lymsr =y + (1= Bu (1 =v = 0)) |y — ¥

From which, we have
s =l + (1 = (O, + 01,)) s — |

< (1= an (@ =v=04) +Bu (05, +0r,)) s = 2l + (1 = B (1 = v = 03)) [y = ],

which implies that

IA

max (vq,v2) (len — x|l + ||ya - y“)
6 (Il — a1l + [y — v]). (25)

xe1 = 2+ V3 ||y — v
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where

0 = max(vy,1y)

vi = 1= (an(1=v=04)=pu(0y +01,))

v, = 1-B,(1-v—06y)

v3 = 1—ay, (ng + GTZ).
Using assumption (iii), we have 0 < 1. Thus from (25), it follows that

V}LH; [”xn+1 - XH +v3 ||yn+1 - y”] =0.
This implies that

lim 1 =2l =0 and  lim ||yn+1 - yH =0.

This is the desired result. [

Using Lemma 3.1, one can easily show that x,y € H : Iy (y) € K1 (y), h2 (x) € Kz (x) is a solution of (1) if
and only if, x,y € H : iy (y) € K1 (y), h2 (x) € K; (x) satisfies

hi(y) = Pyl (26)
hy(x) = Pry [w] (27)
z = g1 (@) -piTix (28)
w = g2(y) - p2Toy. (29)

This alternative formulation can be used to suggest and analyze the following iterative methods for solving
the system (1).

Algorithm 3.9. For given xo,yo € H : h1 (yo) € K1 (v), ha (xo) € Kz (x) find x,,41 and y,.1 by the iterative schemes

Yn+y1 = (]- - ,Bn) Yn + ,Bn {yn - hl (]/n) + PKl(y”) [Zn]} (30)
uir = (1= ) Xy + {0 = B2 (%) + Py, [0 ] (31)
zn = g1(xn) = p1T1xy (32)
wy = g2 (Yns1) — p2T2Yn+1, (33)

where 0 < ay, fr <1 foralln > 0.

We now discuss some special cases of Algorithm 3.9.
LIfgi=go=9h =h =h Ki(y) = K(y) and K; (x) = K (x), then Algorithm 3.9 reduces to:

Algorithm 3.10. For given xo,yo € H : h(xo),h(yo) € K find the approximate solutions x,.1 and Y41 by the
iterative schemes

Yny1 = (1 - ,Bn) Yn t ,Bn {yn - h(yn) + PK(yn) [Zn]}

Xpe1 = (1- an)xn +ay {xn -h (xn) + PK(x,,) [wn]}
Zy = g (xn) - PlTlxn
Wy = g(Yur1) = p2T2Yns1,

where 0 < ay, B <1 foralln = 0.



M_.A. Noor et al. / Filomat 32:2 (2018), 395—407 404
IL. If g1 = 9o = hy = hp = I, identity operator, and a, = §, = 1, then Algorithm 3.9 reduces to:

Algorithm 3.11. For given yy € Ky (y),x0 € Kz (x), find the approximate solutions x,.41 and y,+1 by the iterative
schemes

Yny1 = PK1(yn) [z4]

Xn+1 = PKZ(XH) [wn]
Zn = Xp—p1T1x,
Wy = Yne1 — P212Yn+1,
foralln > 0.

For appropriate and suitable choice of operators and spaces, one can obtain several new and known iter-
ative methods for solving system of extended general quasi variational inequalities and related optimization
problems.

We now consider the convergence analysis of Algorithm 3.9, using the technique of Theorem 3.8. For
the sake of completeness and to convey an idea, we include all the details.

Theorem 3.12. Let operators T1,Ts, g1, 92,1, hy : H — H be strongly monotone with constants ar, > 0, art, > 0,
ag, >0, a4 >0, ap, >0, ay, > 0 and Lipschitz continuous with constants pr, > 0, fr, > 0, B, > 0, B, > 0,
Br, > 0, B, > 0 respectively. If Assumption 2.3 and following conditions hold:

(i) Or, = \/1 ~2piar, +p2p2 <1.

(ii) O, = \/1 ~2psar, + p22, < 1.
(iii) 0 < ay,Bu < 1foralln >0,

an (1=v=01,) = pu (05, +01,) 20
ﬁfl(l _V_th) >0
ay (0, +6r,) 20
such that
(0s(@=v=00,) = u (05 +01,)) = o
n=0
Zﬁ"(]‘_v_ghl) = ®
n=0
Zan <6y2 + QTZ) = oo,
n=0
where

0y, = J1-2a, +ﬁ§l, 0, = J1 - 20y, +ﬁ§2,
th = ,/1 —20(;,1 +ﬁi1, 9)12 = 1 —Zahz +ﬁiz,

then sequences {x,} and {y,} obtained from Algorithm 3.9 converge to x and y respectively.

and
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Proof. Letx,y € H : hi (y) € K1 (y),h2 (x) € K (x) be a solution of (1). Then from (21),(27), (31) and using
Assumption 2.3, we have

lxpe1 = xll < (1= an) llxn =Xl + an llxy —x = (ha (x) = b2 (x))l]

0y || Py, [wn] = Pryy []|
< (=) by = xll + an llxn — x = (ha (xn) — B2 ()|

+y || Py ) [wn] = Proywy [wl|| + et ||Procoy [00] = Proyeoy [20])
(1 = an) llxn = xIl + anOh, [1xn — x| + v 1y — x|l + oy lwn — wl|
(1 =an (1 =v=0,)) llxn = xll + an llw, —wll. (34)

I IA

Similarly, from (24),(26), (30) and using Assumption 2.3, we have

g =yl = =B [l = vl + Bl =y = 011 () = 1 (W)
1 [Pe ) o] = Prg o
< (=B v = vl + Bu v = v = (12 () = 10 ()]
+Bn || (3,) [20] = Py () Zal|| + B ||Pro ) [20] = Pro) [Z]H
< (U= Ba) ||y = v]| + BuO ||y = vl| + Bav |[yn = yl| + B llzn — =l

= (1=Bu(1=v=00)) |y — vl| + +Bu llzu — 2II. (35)
From (20), (22),(29) and (33), we have

“gz (Yns1) = p2T2Yps1 — 92 (v) + pszyH

1 =y = (92 Wus1) = G2 )| + [[ynsr = y = p2 (Taynar — Tay)|

(Qaz + 9Tz) s = v (36)
Similarly, from (24), (28) and (32), we have

|, — wl|

IA

IA

llzn —zll = ”91 (xn) = p1T1xn — g1 (%) + P1T1x“
< e = x = (91 ) = 1 Q)| + |xa = x = p1 (Taxy = Ta)
< (O, + Or,) lxn = 2. (37)

Combining (34), (36) and (35), (37), we have

Pener = xll < (1= (1= v = 03,)) [1n = 21| + 2 (8, + 01, ) lymer = 3], (38)
and

e =yl < @ = Bu (L= v = 00)) |y = Y]] + Bu (65, + O, ) 1 — I (39)

Adding (38) and (39), we have
xe1 = 2l + |[yns1 — 9

A

< (1=, (1=v=64,)) Iota = xll + s (6, + Or,) [[ynsr =

+ (1= Bu (1 =v=0)) [y = ]| + Bu (65, + O1,) 1w — x|
(1-an(@=v=04,)+Bu (0 + 0r,))llxs — x|

tatn (05, + 01,) [ymer =y + (1= Bu (1= v = O)) [l — 9] -

From which, we have
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s =l + (1 = (O, + 01,)) s — |

7

< (1=an (1= v=04) + Bu (6 +01,)) llvs = xll + (1= B (1 =v = 6)) [y —

which implies that
Pnsr = 2l +v3 lyner — yl| < max vy, v2) (1w = Il + ||y — )
= O(lx =l + [lya — ). (40)
where
0 = max (v, 1)

vy = 1- (a,, (1=v—="064)—Pnu (691 + QTI))
o= 1-p(-v-6,)
vy = 1—an(9g2+9Tz)-

Using assumption (i), we have 6 < 1. Thus from (40), it follows that
lim [”xn+1 = x|l + v ||y - y||] =0.

This implies that
lim [l — 2l =0,

and

lim |[yas1 — y/| = 0.

n—oo

This is the required result. O

4. Conclusion

In this paper, we have considered a new system of extended general quasi variational inequalities. It
has been shown that system of extended general quasi variational inequalities is equivalent to a system
of fixed point problems. These equivalent formulations have been used to propose and analyze several
Gauss-Seidel type algorithms for solving system of extended general quasi variational inequalities and
their variant forms. Several special cases are also discussed. The idea and technique of this paper may
motivate for further research in this area. The researchers are encouraged to explore the novel and innova-
tive applications of the system of extended general quasi variational inequalities and their variant forms in
pure and applied sciences.

Acknowledgement: The authors are grateful to the referees and the Editor for their valuable comments
and suggestions.
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