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Abstract. In this paper, we introduce two new general theorems on ϕ −
∣∣∣A, pn

∣∣∣
k

summability factors of
infinite and Fourier series. By using these theorems, we obtain some new results regarding other important
summability methods and investigate conversions between them.

1. Introduction

Let
∑

an be a given infinite series with the partial sums (sn) and (pn) be a sequence of positive numbers such
that

Pn =

n∑
v=0

pv →∞ as n→∞, (P−i = p−i = 0, i ≥ 1). (1)

The sequence-to-sequence transformation

tn =
1

Pn

n∑
v=0

pvsv (2)

defines the sequence (tn) of the Riesz mean or simply the (N̄, pn) mean of the sequence (sn), generated by
the sequence of coefficients (pn) (see [17]).
The series

∑
an is said to be summable | N̄, pn |k, k ≥ 1, if (see [3])

∞∑
n=1

(
Pn

pn

)k−1

| tn − tn−1 |
k< ∞. (3)

In the special case when pn = 1 for all values of n (resp. k = 1), | N̄, pn |k summability is the same as |C, 1|k
(resp. | N̄, pn |) summability.
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2. Known Results

In [23], Özarslan has proved following theorem dealing with Riesz summability of infinite series.

Theorem 2.1. Let k ≥ 1. If the sequence (sn) is bounded and the sequences (λn) and (pn) satisfy the following
conditions

m∑
n=1

pn|λn| = O(1) as m→∞, (4)

m∑
n=1

Pn|∆λn| = O(1) as m→∞, (5)

pn+1 = O(pn), (6)

then the series
∑

anλnPn is summable | N̄, pn |k.

Definition 2.2. Let A = (anv) be a normal matrix, i.e., a lower triangular matrix of nonzero diagonal entries. Then
A defines the sequence-to-sequence transformation, mapping the sequence s = (sn) to As = (An(s)), where

An(s) =

n∑
v=0

anvsv n = 0, 1, ... (7)

Let (ϕn) be any sequence of positive real numbers. The series
∑

an is said to be summable ϕ −
∣∣∣A, pn

∣∣∣
k, k ≥ 1, if (see

[26])
∞∑

n=1

ϕk−1
n

∣∣∣∆̄An(s)
∣∣∣k < ∞, (8)

where

∆̄An(s) = An(s) − An−1(s). (9)

If we take ϕn = Pn
pn

, then ϕ −
∣∣∣A, pn

∣∣∣
k summability reduces to

∣∣∣A, pn

∣∣∣
k summability (see [29]). Also, if we take

ϕn = Pn
pn

and anv =
pv

Pn
, then we get

∣∣∣N̄, pn

∣∣∣
k summability. Furthermore, if we take ϕn = n, anv =

pv

Pn
and pn = 1

for all values of n, ϕ−
∣∣∣A, pn

∣∣∣
k reduces to |C, 1|k summability (see [16]). Finally, if we take ϕn = n and anv =

pv

Pn
,

then we get
∣∣∣R, pn

∣∣∣
k summability (see [6]).

3. On the Summability Factors of Fourier Series

Let f (t) be a periodic function with period 2π and Lebesgue integrable over (−π, π).
The Fourier series of f (t) is

f (t) ∼
1
2

a0 +

∞∑
n=1

(ancosnt + bnsinnt) =

∞∑
n=0

Cn(t), (10)

where (an) and (bn) denote the Fourier coefficients. It is familiar that the convergence of the Fourier series at
t = x is a local property of f (i.e., it depends only on the behaviour of f in an arbitrarily small neighbourhood
of x, it is not affected by the values it takes outside the interval), also it is known that the convergence of the
Fourier series can be ensured by local hypothesis, that is to say, the behavior of the convergence of Fourier
series for a particular value of x depends on the behavior of the function in the immediate neighborhood
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of this point only. Hence the summability of the Fourier series at t = x by any regular linear summability
method is also a local property of f .
On the other hand it is known that absolute convergence of a Fourier series is not a local property. Also
Bosanquet and Kestelman [15] showed that even summability |C, 1| of a Fourier series a given point is not
a local property of the generating function.
Mohanty [22] demonstrated that the |R, lo1n, 1| summability of the factored Fourier series∑ Cn(t)

lo1(n + 1)
(11)

at t = x, is a local property of the generating function of
∑

Cn(t). Later on Matsumoto [20] improved this
result by replacing the series (11) by∑ Cn(t)

{lo1lo1(n + 1)}1+ε
, ε > 0. (12)

Generalizing the above result Bhatt [2] proved the following theorem.

Theorem 3.1. If (λn) is a convex sequence such that
∑

n−1λn is convergent, then the summability |R, lo1n, 1| of the
series

∑
Cn(t)λnlo1n at a point can be ensured by a local property.

Many works have been done dealing with Fourier series (see [1], [4]-[5], [7]-[14], [18]-[25], [27]-[28], [30]-
[31]). Among them, the following theorem has been given in [23] as the result of Theorem 2.1.

Theorem 3.2. Let k ≥ 1. The summability | N̄, pn |k of the series
∑

Cn(t)λnPn at a point is a local property of the
generating function if the conditions (4) and (5) are satisfied.

4. Main Results

The aim of this paper is to generalize Theorem 2.1 and Theorem 3.2 for ϕ − |A, pn|k summability methods
under different conditions by using general summability factors by applicating to Fourier series.
Before stating the main theorem, we must first introduce some further notations.
Given a normal matrix A = (anv), we associate two lower semimatrices Ā = (ānv) and Â = (ânv) as follows:

ānv =

n∑
i=v

ani, n, v = 0, 1, ... (13)

and

â00 = ā00 = a00, ânv = ānv − ān−1,v, n = 1, 2, ... (14)

It may be noted that Ā and Â are the well-known matrices of series-to-sequence and series-to-series trans-
formations, respectively. Then, we have

An(s) =

n∑
v=0

anvsv =

n∑
v=0

ānvav (15)

and

∆̄An(s) =

n∑
v=0

ânvav. (16)

Now, we shall prove the following theorems.
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Theorem 4.1. If A = (anv) is a positive normal matrix such that

ano = 1, n = 0, 1, ..., (17)

an−1,v ≥ anv, f or n ≥ v + 1, (18)

ann = O(
pn

Pn
), (19)

and
(
ϕnpn

Pn

)
be a non-increasing sequence. If all the conditions of Theorem 2.1 are satisfied and (ϕn) is any sequence of

positive constants such that

m∑
v=1

(ϕvpv

Pv

)k−1
pv|λv| = O(1) as m→∞, (20)

m∑
v=1

(ϕvpv

Pv

)k−1
Pv|∆λv| = O(1) as m→∞, (21)

then the series
∑

anλnPn is summable ϕ −
∣∣∣A, pn

∣∣∣
k, k ≥ 1.

It should be noted that if we take ϕn = Pn
pn

and anv =
pv

Pn
, then we get Theorem 2.1.

Theorem 4.2. Let k ≥ 1. The summability ϕ −
∣∣∣A, pn

∣∣∣
k of the series

∑
Cn(t)λnPn at a point is a local property of the

generating function if all conditions of Theorem 4.1 are satisfied.

We need the following lemma for the proof of Theorem 4.1.

Lemma 4.3. ([23]) If the sequences (λn) and (pn) satisfy the conditions (4) and (5) of Theorem 2.1, then Pm|λm| =
O(1) as m→∞.

Proof of Theorem 4.1
Without any loss of generality we may assume that a0 = s0 = 0.
Let (In) denote the A-transform of the series

∑
∞

n=1 anPnλn. Then, by (15) and (16), we have

∆̄In =

n∑
v=1

ânvavPvλv.

Applying Abel’s transformation to this sum, we get that

∆̄In =

n∑
v=1

ânvavPvλv =

n−1∑
v=1

∆v(ânvλvPv)
v∑

r=1

ar + ânnλnPn

n∑
v=1

av

=

n−1∑
v=1

∆v(ânvλvPv)sv + annλnPnsn

=

n−1∑
v=1

∆v(ânv)λvPvsv +

n−1∑
v=1

ân,v+1∆λvPvsv −

n−1∑
v=1

ân,v+1pv+1λv+1sv + annλnPnsn

= In,1 + In,2 + In,3 + In,4.

To complete the proof of Theorem 4.1, by Minkowski inequality, it is sufficient to show that
∞∑

n=1

ϕk−1
n | In,r |

k< ∞, f or r = 1, 2, 3, 4. (22)
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First, by applying Hölder’s inequality with indices k and k′, where k > 1 and 1
k + 1

k′ = 1, we have

m+1∑
n=2

ϕk−1
n | In,1 |

k
≤

m+1∑
n=2

ϕk−1
n

n−1∑
v=1

| ∆v(ânv) | |λv|Pv | sv |


k

≤

m+1∑
n=2

ϕk−1
n

n−1∑
v=1

| ∆v(ânv) | |λv|
kPk

v | sv |
k

 ×
n−1∑

v=1

| ∆v(ânv) |


k−1

= O(1)
m+1∑
n=2

ϕk−1
n ak−1

nn

n−1∑
v=1

| ∆v(ânv) | |λv|
kPk

v

= O(1)
m∑

v=1

|λv|
kPk

v

m+1∑
n=v+1

(ϕnpn

Pn

)k−1
| ∆v(ânv) |

= O(1)
m∑

v=1

(ϕvpv

Pv

)k−1
|λv|

kPk
vavv = O(1)

m∑
v=1

(ϕvpv

Pv

)k−1
|λv|

kPk
v

pv

Pv

= O(1)
m∑

v=1

(ϕvpv

Pv

)k−1
(|λv|Pv)k−1 pv|λv| = O(1)

m∑
v=1

(ϕvpv

Pv

)k−1
pv|λv|

= O(1) as m→∞,

by virtue of the hypotheses of Theorem 4.1 and Lemma 4.3.
Now, again using Hölder’s inequality, we have that

m+1∑
n=2

ϕk−1
n | In,2 |

k
≤

m+1∑
n=2

ϕk−1
n

n−1∑
v=1

| ân,v+1 | |∆λv|Pv | sv |


k

≤

m+1∑
n=2

ϕk−1
n

n−1∑
v=1

| ân,v+1 |
k
|∆λv|Pv | sv |

k

 ×
n−1∑

v=1

|∆λv|Pv


k−1

= O(1)
m+1∑
n=2

ϕk−1
n

n−1∑
v=1

| ân,v+1 || ân,v+1 |
k−1
|∆λv|Pv


= O(1)

m+1∑
n=2

ϕk−1
n ak−1

nn

n−1∑
v=1

| ân,v+1 | |∆λv|Pv

= O(1)
m∑

v=1

|∆λv|Pv

m+1∑
n=v+1

(ϕnpn

Pn

)k−1
| ân,v+1 |

= O(1)
m∑

v=1

(ϕvpv

Pv

)k−1
|∆λv|Pv

m+1∑
n=v+1

| ân,v+1 |= O(1)
m∑

v=1

(ϕvpv

Pv

)k−1
|∆λv|Pv

= O(1) as m→∞,

by virtue of the hypotheses of Theorem 4.1.
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Again, we have that

m+1∑
n=2

ϕk−1
n | In,3 |

k
≤

m+1∑
n=2

ϕk−1
n

n−1∑
v=1

| ân,v+1 | pv+1|λv+1| |sv|


k

= O(1)
m+1∑
n=2

ϕk−1
n

n−1∑
v=1

| ân,v+1 |
k pv|λv|

 ×
n−1∑

v=1

pv|λv|


k−1

= O(1)
m+1∑
n=2

ϕk−1
n

n−1∑
v=1

| ân,v+1 |
k−1
| ân,v+1 | pv|λv|


= O(1)

m+1∑
n=2

ϕk−1
n ak−1

nn

n−1∑
v=1

| ân,v+1 | pv|λv|


= O(1)

m∑
v=1

pv|λv|

m+1∑
n=v+1

(ϕnpn

Pn

)k−1
| ân,v+1 |

= O(1)
m∑

v=1

(ϕvpv

Pv

)k−1
pv|λv|

m+1∑
n=v+1

| ân,v+1 |

= O(1)
m∑

v=1

(ϕvpv

Pv

)k−1
pv|λv| = O(1) as m→∞,

by virtue of the hypotheses of Theorem 4.1.
Finally, since Pn|λn| = O(1) as n→∞, we have that

m∑
n=1

ϕk−1
n | In,4 |

k =

m∑
n=1

ϕk−1
n ak

nn|λn|
kPk

n | sn |
k

= O(1)
m∑

n=1

ϕk−1
n ak−1

nn |λn|
k−1
|λn|Pk

n
pn

Pn

= O(1)
m∑

n=1

(ϕnpn

Pn

)k−1
pn|λn| = O(1) as m→∞,

by virtue of the hypotheses of Theorem 4.1. This completes the proof of Theorem 4.1.

Proof of Theorem 4.2
Since the behavior of the Fourier series for a particular value of x, as far as convergence is concerned,
depends on the behavior of the function in the immediate neighbourhood of this point only, Theorem 4.2 is
an immediate consequence of Theorem 4.1.

5. Conclusions

If we take ϕn = Pn
pn

, then we get a theorem dealing with |A, pn|k summability. If we set ϕn = n and

anv =
pv

Pn
, then we obtain a new result dealing with

∣∣∣R, pn

∣∣∣
k summability method. Additionally, if we take

anv =
pv

Pn
and pn = 1 for all values of n, then we get a result for dealing with ϕ − |C, 1|k summability. Fur-

thermore, if we takeϕn = n, anv =
pv

Pn
and pn = 1 for all values of n, then we get a result for |C, 1|k summability.
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[26] H. S. Özarslan and A. Keten, A new application of almost increasing sequences, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 61
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