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On IA-Density of Points and Some of its Consequences
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Abstract. In this note, continuing in the line of [2] we further consider a more general approach and for
y ∈ R and a sequence x = (xn) ∈ `∞ we define the more general notion of IA-density of indices of those xn’s
which are close to y, denoted by IδA(y) where A is a non-negative regular matrix. Connections are drawn
between IδA(y) and particular limit points of ((Ax)n). Our main result states that if x = (xn) is a bounded
sequence, IδA(y) exists for every y ∈ R and

∑
y∈D
IδA(y) = 1 then I− limn→∞(Ax)n =

∑
y∈D IδA(y) · y provided

both finitely exists. This is an improvement of the alternative version of famous Osikiewicz Theorem given
in [2].

1. Introduction

Before we assert what we have done in this paper it is necessary to understand the history behind this
investigation. For n,m ∈Nwith n < m, let [n,m] denote the set {n,n + 1,n + 2, . . . ,m}. Let A ⊂N. Define

d(A) = lim sup
n→∞

|A ∩ [1,n]|
n

and d(A) = lim inf
n→∞

|A ∩ [1,n]|
n

.

The numbers d(A) and d(A) are called the upper natural density and the lower natural density of A, re-
spectively. If d(A) = d(A), then this common value is called the natural density of A and we denote it by
d(A). Let Id be the family of all subsets ofN which have natural density 0. Then Id is a proper nontrivial
admissible ideal of subsets ofN. The notion of natural density was used by Fast [7] and Scoenberg [23] to
define the notion of statistical convergence.

Osikiewicz had developed the ideas of finite and infinite splices in [20]. Let E1,E2,E3, . . . ,Ek, . . . be a
partition of N into countable number of sequences. Let y1, y2, y3, . . . , yk, . . . be distinct real numbers. Let
(xn) be such that

lim
n→∞,n∈Ei

xn = yi.

2010 Mathematics Subject Classification. Primary 40G05 ; Secondary 40A35 , 40D05
Keywords. matrix summability method; ideal; IA-density; IA-limit; ideal convergence
Received: 22 July 2016; Revised: 08 November 2016, 25 December 2016, 03 February 2017; Accepted: 12 March 2017
Communicated by Eberhard Malkowsky
The first author is thankful to SERB, DST, New Delhi for granting a research project No. SR/S4/MS:813/13 during the tenure of

which this work was done. The second author is thankful to UGC for granting Junior Research Fellowships during the tenure of
which this work was done. The third author is thankful to CSIR for granting Junior Research Fellowship during the tenure of which
this work was done.

Email addresses: pratulananda@yahoo.co.in (Pratulananda Das), gabuaktafaltu6ele@hotmail.com (Kumardipta Bose),
mathematics.sayan1729@gmail.com (Sayan Sengupta)



P. Das et al. / Filomat 31:20 (2017), 6585–6595 6586

Then (xn) is called an infinite-splice (In the same way Osikiewicz defined an finite splice taking finite
number of sequences and finite number of distinct real numbers). Osikiewicz then considered a regular
matrix summability method A and the notion of A-density the details of which are presented in the next
section. He proved the following result.

Theorem 1.1 (Osikiewicz[20]). Assume that A is non-negative regular summability matrix. Assume that (xn) ∈
`∞ is a splice over a partition {Ei}. Let yi = lim

n→∞,n∈Ei
xn. Assume that δA(Ei) exists for each i and∑
i

δA(Ei) = 1.

Then

lim
n→∞

∞∑
k=1

an,kxk =
∑

i

yiδA(Ei).

Very recently in [2] a new approach was made to study the Osikiewicz Theorem by defining the notion
of the A-density of a point and an alternative version of the same result was established. In fact it was
shown that the assumptions of Osikiewicz Theorem imply those of the following Theorem

Theorem 1.2. [2] Suppose that x = (xn) is a bounded sequence, δA(y) exists for every y ∈ R and
∑

y∈D
δA(y) = 1.

Then
lim
n→∞

(Ax)n =
∑
y∈D

δA(y) · y.

On the other hand recently the notion of A density was further generalized to the notion of IA density
in [21, 22] using a nontrivial proper admissible ideal I ofN. Continuing the investigation from [2], in this
note we define for y ∈ R and a sequence x = (xn) ∈ `∞ the more general notion of IA-density of indices of
those xn’s which are close to y, denoted by IδA(y) where A is a non-negative regular matrix and establish a
more general version of Theorem 2.

2. Basic Definitions and Results

We first present the necessary definitions and notations which will form the background of this article.
We will also establish some important results which will be used later to prove the main results of the paper.

If x = (xn) is a sequence and A = (an,k) is a summability matrix, then by Ax we denote the sequence

((Ax)1, (Ax)2, (Ax)3, . . . ) where (Ax)n =
∞∑

k=1
an,kxk. The matrix A is called regular if lim

n→∞
xn = L implies

lim
n→∞

(Ax)n = L. The well-known Silverman-Töeplitz theorem characterizes regular matrices in the following
way. A matrix A is regular if and only if

(i) lim
n→∞

an,k = 0,

(ii) lim
n→∞

∞∑
k=1

an,k = 1,

(iii) sup
n∈N

∞∑
k=1
|an,k| < ∞.

For a non-negative regular matrix A and E ⊂N, following Freedman and Sember [11], the A-density of
E, denoted by δA(E), is defined as follows

δA(E) = lim sup
n→∞

∑
k∈E

an,k = lim sup
n→∞

∞∑
k=1

an,k1E(k) = lim sup
n→∞

(A1E)n,
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δA(E) = lim inf
n→∞

∑
k∈E

an,k = lim inf
n→∞

∞∑
k=1

an,k1E(k) = lim inf
n→∞

(A1E)n

where 1E is a 0-1 sequence such that 1E(k) = 1 ⇐⇒ k ∈ E. If δA(E) = δA(E) then we say that the A-density
of E exists and it is denoted by δA(E). Clearly, if A is the Cesàro matrix i.e.

an,k =
{ 1

n if n ≥ k
0 otherwise

then δA coincides with the natural density.
Throughout by `∞ we denote the set of all bounded sequences of reals.

We have already stated The original Osikiewicz Theorem in the introduction, namely Theorem 1.

In [2] another version was proved which has also been stated, namely Theorem 2, which was based on
a new approach where the authors had defined for a sequence (xn) a density δA(y) of indices of those xn
which are close to y which was not dealt with till then in the literature. This was a more general approach
than that of Osikiewicz.

Fix (xn) ∈ `∞. For y ∈ R let
δA(y) = lim

ε→0+
δA({n : |xn − y| ≤ ε})

and
δA(y) = lim

ε→0+
δA({n : |xn − y| ≤ ε}).

If δA(y) = δA(y), then the common value is denoted by δA(y).

Now recall that a non-empty family I of subsets of N is an ideal in N if for A,B ⊂ N, (i)A,B ∈ I ⇒
A ∪ B ∈ I; (ii)A ∈ I,B ⊂ A ⇒ B ∈ I. Further if

⋃
A∈I

A = N i.e. {n} ∈ I ∀ n ∈ N, then I is called

admissible or free. A non-empty family F of subsets ofN is a filter if (i) φ < F ; (ii) A,B ∈ F ⇒ A ∩ B ∈ F ;
(iii)A ∈ F ,B ⊃ A ⇒ B ∈ F . We can construct the filter F (I) associated with an ideal I as follows:
F (I) = {N \ B : B ∈ I}. Throughout Iwill stand for a proper admissible ideal ofN.

An ideal I is said to be a P-ideal if for any sequence of sets (Dn) from I, there is another sequence of
sets (Cn) in I such that Dn M Cn is finite for all n and

⋃
n

Cn ∈ I. Equivalently I is a P-ideal if and only if for

each sequence (An) of sets from I there exists A∞ ∈ I such that An \ A∞ is finite for all n ∈N.

We now recall the following definitions.

(i) (xn) is I-convergent to y if for any ε > 0, {n : |xn − y| ≥ ε} ∈ I [16].
(ii) A point y is called an I-cluster point of (xn) if {n : |xn − y| ≤ ε} < I for any ε > 0 [16].
(iii) y is called an I-limit point of (xn) if there is a set B ⊂N, B < I, such that lim

n∈B
xn = y [16].

Recall that an I-limit point is an I-cluster point of a sequence which is again a general limit point but
the converses are not generally true.
(iv) We define the I-limit superior and I-limit inferior of a sequence (xn) as follows (see [5, 17]):

Let Bx = {β ∈ R : {k ∈N : xk > β} < I} and Cx = {α ∈ R : {k ∈N : xk < α} < I}. Then

I − lim sup xn =
{ sup Bx if Bx , φ
−∞ if Bx = φ

Similarly

I − lim inf xn =
{ inf Cx if Cx , φ
∞ if Cx = φ
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For a set E ⊂Nwe define the IA upper density of E by

IδA(E) = I − lim sup
n→∞

∑
k∈E

an,k.

Similarly the I-A lower density is defined (see [21, 22]). Then it is easy to show that the family

JI,A = {E ⊂N : IδA(E) = 0}

forms a proper admissible ideal ofN.

Definition 2.1. [22] A sequence (xn) of real numbers is said to converge IA−statistically to x if for any given ε > 0,
IδA(Eε) = 0 where

Eε = {n ∈N : |xn − x| ≥ ε} .

The first thing we do in this note is to introduce the following two notions in line of (iv) above (which
can be called IA-limit superior and limit inferior for convenience):

Let Bx = {β ∈ R : {k ∈N :
∞∑
j=1

ak, jx j > β} < I} and Cx = {α ∈ R : {k ∈N :
∞∑
j=1

ak, jx j < α} < I}. Then

IA − lim sup xn =
{ sup Bx if Bx , φ
−∞ if Bx = φ

Similarly

IA − lim inf xn =
{ inf Cx if Cx , φ
∞ if Cx = φ

Remark 2.2. There is no connection between the notion of IA−statistical convergence considered in [21, 22] and
the notions of IA− limit superior and inferior because of which we do away with the term ”statistical” in the above
definitions.

Below we obtain a characterisation for IA-limit superior and limit inferior.

Lemma 2.3. For a regular non-negative matrix A = (ak, j) and a sequence (xn) of real numbers, IA − lim sup(x)n =
β(finite) if and only if for arbitrary ε > 0

{k :
∞∑
j=1

ak, jx j > β − ε} < I and {k :
∞∑
j=1

ak, jx j > β + ε} ∈ I.

Similarly IA − lim inf(x)n = α(finite) if and only if for arbitrary ε > 0

{k :
∞∑
j=1

ak, jx j < α + ε} < I and {k :
∞∑
j=1

ak, jx j < α − ε} ∈ I.

Proof. Let I − lim sup(Ax)n = β. Then β = sup{y ∈ R : {k :
∞∑
j=1

ak, jx j > y} < I}. So β + ε < {y ∈ R : {k :

∞∑
j=1

ak, jx j > y} < I}. So clearly {k :
∞∑
j=1

ak, jx j > β + ε} ∈ I. Again, as β = sup{y ∈ R : {k :
∞∑
j=1

ak, jx j > y} < I},
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so for ε > 0 ∃ y0 ∈ {y ∈ R : {k :
∞∑
j=1

ak, jx j > y} < I} such that β − ε < y0 ≤ β. That means that

there is a y0 ∈ R with β − ε < y0 ≤ β such that {k :
∞∑
j=1

ak, jx j > y0} < I. Subsequently it follows that

{k :
∞∑
j=1

ak, jx j > β − ε} ⊇ {k :
∞∑
j=1

ak, jx j > y0} < I.

Conversely suppose that the stated conditions hold. Choose y0 ∈ {y ∈ R : {k :
∞∑
j=1

ak, jx j > y} < I}.

Now if y0 > β, then from the given condition it follows that {k :
∞∑
j=1

ak, jx j > y0} ∈ I} which is not true. So

y0 ≤ β which consequently implies that β is an upper bound to the set {y ∈ R : {k :
∞∑
j=1

ak, jx j > y} < I}.

Again let y1 be any upper bound of the set {y ∈ R : {k :
∞∑
j=1

ak, jx j > y} < I}. If β > y1 then we can choose

a η > 0 such that β > y1 + η > y1. Now the given condition implies that {k :
∞∑
j=1

ak, jx j > y1 + η} < I.

Consequently y1 + η ∈ {y ∈ R : {k :
∞∑
j=1

ak, jx j > y} < I}, which shows that y1 can not be an upper bound of

{y ∈ R : {k :
∞∑
j=1

ak, jx j > y} < I}which is a contradiction. Therefore β = sup{y ∈ R : {k :
∞∑
j=1

ak, jx j > y} < I}.

The proof for IA − lim inf is similar and so is omitted.

3. Main Results

In this section we introduce the main notion of this paper and establish some of its interesting conse-
quences including the general version of Osikiewicz Theorem. It is important to note that all these results
can be proved without any additional assumption on the ideal.

We first define the main concepts of IA-densities at a point where the upper IA-density is defined by

IδA(y) = lim
ε→0+
IδA{n : |xn − y| ≤ ε}

and the lower IA-density is defined by

IδA(y) = lim
ε→0+
IδA{n : |xn − y| ≤ ε}.

If IδA(y) = IδA(y), then the common value is denoted by IδA(y).

We start with the following observation.

Lemma 3.1. Suppose that IδA(y) exists for any y ∈ R. Then the set D = {y ∈ R : IδA(y) > 0} is countable and∑
y∈D
IδA(y) ≤ 1.

Proof. Let (rn) be a strictly monotonically decreasing sequence converging to 1. For fixed m ∈ N let

Dm = {y ∈ R : IδA(y) ≥ 1
m }. Let y1, . . . , yl ∈ Dm be distinct. Then for ε = min

i, j

|yi − y j|

3
> 0 the sets

Ei = {n : |xn − yi| ≤ ε} are pairwise disjoint and IδA(Ei) ≥ 1
m . Since A is also regular so we can choose a n0

such that
∞∑

k=1

an,k ≤ rp
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for n ≥ n0 and for all i = 1, . . . , l where p is fixed. Again for a fixed τ > 0 (such that mτ < 1)

{n :
∑
k∈Ei

an,k <
1
m
− τ} ∈ I.

So
l⋃

j=1

{n :
∑
k∈E j

an,k <
1
m
− τ} ∈ I.

As Ei’s are pairwise disjoint we get

{n :
∑

k∈E1∪...∪El

an,k <
l
m
− lτ} = {n :

l∑
j=1

∑
k∈E j

an,k <
l
m
− lτ} ⊂

l⋃
j=1

{n :
∑
k∈E j

an,k <
1
m
− τ} ∈ I.

Note that as I is proper and free hence {n :
∑

k∈E1∪...∪El

an,k ≥
l

m − lτ} ∈ F (I) and so {n :
∑

k∈E1∪...∪El

an,k ≥

l
m − lτ} ∩ {n0 + 1,n0 + 2, ...} ∈ F (I). Consequently we can find a n1 > n0 such that∑

k∈
l⋃

j=1
E j

an1,k ≥
l
m
− lτ

and simultaneously
∞∑

k=1

an1,k ≤ rp.

Hence we must have l ≤ mrp

1−mτ which shows that Dm must be finite. Clearly then D =
⋃
m

Dm is countable.

Again for arbitrary ε0 > 0 we get B ∈ F (I) and for n ∈ B∑
y∈Dm

IδA(y) =

l∑
j=1

IδA(y j) =

l∑
j=1

[ lim
ε→0+
IδA(E j)]

≤

l∑
j=1

IδA(E j) =

l∑
j=1

[I − lim inf
n

∑
k∈E j

an,k] ≤
l∑

j=1

[
∑
k∈E j

an,k +
ε0

l
] =

∑
k∈

l⋃
j=1

E j

an,k + ε0 ≤ rp + ε0

Letting ε0 → 0 we get
∑

y∈Dm

IδA(y) ≤ rp. So∑
y∈D

IδA(y) = lim
m→∞

∑
y∈Dm

IδA(y) ≤ rp.

Finally letting p→∞we have
∑

y∈D
IδA(y) ≤ 1.

Note that in general, one cannot prove that D = {y ∈ R : IδA(y) > 0} is nonempty. Also the above lemma
would not remain true if one would change IδA(y) to IδA(y), that is D := {y ∈ R : IδA(y) > 0} need not be
countable. An example in this respect is given in [2] for I = I f in, the ideal of all finite subsets ofN.

The next result extends Theorem 6 [2] which simultaneously presents a more general version of a slight
improvement of The Osikiewicz Theorem. The method which we use in our proof is similar to that of
Osikiewicz, but not analogous as we use essentially new arguments in line of [2] with necessary nontrivial
modifications which arise due to presence of ideals.
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Theorem 3.2. Suppose that x = (xn) is a bounded sequence, IδA(y) exists for every y ∈ R and
∑

y∈D
IδA(y) = 1.

Then
I − lim

n→∞
(Ax)n =

∑
y∈D

IδA(y) · y

provided both finitely exist.

Proof. Since (xn) is bounded, there is M > 0 such that |xn| ≤ M for every n ∈ N. Let D = {yi}i where yi’s are

distinct. Let ε > 0 be given and let r ∈N be such that
r∑

i=1
IδA(yi) > 1−ε and |

∞∑
i=r+1
IδA(yi) · yi| < ε. Let N ∈N

be such that 1/N < min{ min
1≤i, j≤r

|yi − y j|, ε/r} and such that the set Ei := { j : |x j − yi| < 1/N} have the following

property
IδA(yi) −

ε
r(M + 1)

≤ IδA(Ei) ≤ IδA(Ei) ≤ IδA(yi) +
ε

r(M + 1)

for i = 1, . . . , r. Observe that E1, . . . ,Er are pairwise disjoint. Now let Bi ∈ F (I) be such that

IδA(Ei) −
1
N
<

∑
k∈Ei

an,k < IδA(Ei) +
1
N

for every n ∈ Bi for all i = 1, . . . , r. Let B =
r⋂

i=1
Bi ∈ F (I). Therefore for all n ∈ B and i = 1, . . . , r

IδA(yi) −
1
N
−

ε
r(M + 1)

<
∑
k∈Ei

an,k < IδA(yi) +
1
N

+
ε

r(M + 1)

and consequently

|

∑
k∈Ei

an,k − IδA(yi)| <
1
N

+
ε

r(M + 1)
. (1)

Then for these n we have

(Ax)n =

∞∑
k=1

an,kxk ≤
∑
k∈E1

an,k ·
(
y1 +

1
N

)
+ · · · +

∑
k∈Er

an,k ·
(
yr +

1
N

)
+

∑
k∈(E1∪···∪Er)c

an,k ·M.

Since A is regular, we can choose a m1 ∈N such that for all n ≥ m1

∞∑
k=1

an,k < 1 + ε.

Now observe that

1 + ε >
∞∑

k=1

an,k =
∑

k∈E1∪···∪Er

an,k +
∑

k∈(E1∪···∪Er)c

an,k

where from above we have∑
k∈(E1∪···∪Er)

an,k =

r∑
j=1

∑
k∈E j

an,k >
r∑

j=1

IδA(y j) −
r
N
−

ε
M + 1

> 1 −
r
N
− (1 +

1
M + 1

) · ε.

Now let B1 = B ∩ {m1,m1 + 1,m1 + 2, ...}. Then B1 ∈ F (I). Therefore for n ∈ B1 we have∑
k∈(E1∪···∪Er)c

an,k ≤ (1 + ε) − (1 −
r
N
− (1 +

1
M + 1

)ε) =
r
N

+ (2 +
1

M + 1
)ε.
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Consequently we get for n ∈ B1,

(Ax)n ≤
∑
k∈E1

an,k ·
(
y1 +

1
N

)
+ · · · +

∑
k∈Er

an,k ·
(
yr +

1
N

)
+

Mr
N

+ (2 +
1

M + 1
)Mε

and analogously

(Ax)n ≥
∑
k∈E1

an,k ·
(
y1 −

1
N

)
+ · · · +

∑
k∈Er

an,k ·
(
yr −

1
N

)
−

Mr
N
− (2 +

1
M + 1

)Mε.

Thus

(Ax)n −

r∑
i=1

∑
k∈Ei

an,k ·
(
yi +

1
N

)
≤

Mr
N

+ (2 +
1

M + 1
)Mε (2)

(Ax)n −

r∑
i=1

∑
k∈Ei

an,k ·
(
yi −

1
N

)
≥ −

Mr
N
− (2 +

1
M + 1

)Mε (3)

Hence using (1) and (2), for n ∈ B1 we get

(Ax)n −
∑

i

IδA(yi) · yi = (Ax)n −

r∑
i

IδA(yi) · yi −

∞∑
r+1

IδA(yi) · yi

≤ (Ax)n −

r∑
i

IδA(yi) · yi +

∣∣∣∣∣∣∣
∞∑

r+1

IδA(yi) · yi

∣∣∣∣∣∣∣ ≤ (Ax)n −

r∑
i=1

IδA(yi) · yi + ε

≤

(
(Ax)n −

∑
k∈Ei

an,k

r∑
i=1

(yi +
1
N

)
)

+

r∑
i=1

(∑
k∈Ei

an,k · (yi +
1
N

) − IδA(yi) · yi

)
+ ε

≤

r∑
i=1

(∑
k∈Ei

an,k − IδA(yi)
)
·

(
yi +

1
N

) +

r∑
i=1

IδA(yi) +
Mr
N

+ (2M +
M

M + 1
+ 1)ε

≤

r∑
i=1

(∑
k∈Ei

an,k − IδA(yi)
)
·

(
|yi| +

1
N

) +
r
N

+
Mr
N

+ (2M +
M

M + 1
+ 1)ε

≤ r ·
( 1
N

+
ε

r(M + 1)

)
· (M + 1 +

1
N

) +
r
N

+
Mr
N

+ (2M +
M

M + 1
+ 1)ε

≤ ε.(M + 2 + M + 1 + 2M +
M

M + 1
+ 1) + ε2.(

M + 2
M + 1

)

≤ (4M + 6) · ε [without any loss of generality taking ε < 1]

Analogously from (1) and (3) for n ∈ B1 we get

(Ax)n −
∑

i

IδA(yi) · yi ≥ −r ·
( 1
N

+
ε

r(M + 1)

)
· (M + 1 +

1
N

) −
r
N
−

Mr
N
− (2M +

M
M + 1

+ 1)ε

≤ (4M + 6) · ε

So we obtain for any ε > 0 ∃ B1 ∈ F (I) such that∣∣∣∣∣∣∣(Ax)n −
∑

i

IδA(yi) · yi

∣∣∣∣∣∣∣ ≤ (4M + 6) · ε
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for all n ∈ B1. Therefore {
n : |(Ax)n −

∑
i

IδA(yi) · yi| > (4M + 6) · ε
}
∈ I.

Hence I − lim
n

(Ax)n =
∑
i
IδA(yi) · yi.

In Proposition 8 [2] it was observed that for a bounded sequence (xn) and for y ∈ R, δA(y) = 1 implies
that y is a limit point of the sequence ((Ax)n). Now a natural question arises what can we conclude if for
y ∈ R, IδA(y) = 1. The following example shows that the condition IδA(y) = 1 is not sufficient for y to be
an I-limit point of ((Ax)n).

Example 3.3. Let {Pk} be a partition ofN into infinite sets. Let I be an ideal defined by

B ∈ I ⇔ B ∩ Pk is finite for all but finitely many k.

We define a bounded sequence by

xn =
1
k
⇔ n ∈ Pk.

Note that for every ε > 0 there is k0 ∈N such that

Bε = {n ∈N : |xn − 0| ≤ ε} =
⋃
k>k0

Pk.

Thus, Bε ∈ F (I) and consequently I − lim sup
n

χBε (n) = 1. Again for A be the identity matrix

IδA(0) = lim
ε→0
IδA(Bε) = lim

ε→0
(I − lim sup

n

∑
k∈Bε

an,k) = lim
ε→0

(I − lim sup
n

χBε (n)) = lim
ε→0

1 = 1

Now we show that 0 is not an I-limit point of (Ax)n. Suppose to the contrary that 0 is an I-limit point
of (Ax)n. Then there is B < I such that lim

n∈B
(Ax)n = 0. Since B < I, there is infinitely many k such that

B ∩ Pk is infinite. Take any of them, say k0 is such that B ∩ Pk0 is infinite. Then for every n ∈ B ∩ Pk0 ,

(Ax)n =
∞∑

k=1
an,kxk = an,nxn = 1. 1

k0
= 1

k0
. Thus the sequence (Ax)n∈B contains infinitely many values 1

k0
, hence it

cannot be convergent to 0, a contradiction.

However we can derive the following conclusion which is interesting.

Proposition 3.4. Assume that x = (xn) is bounded. If IδA(y) = 1, then y is an I-cluster point of the sequence(
(Ax)n

)
.

Proof. Since (xn) is bounded, there is M > 0 such that |xn| ≤ M for every n ∈ N. Let y ∈ R be such
that IδA(y) = 1. Let N ∈ N. Let EN = { j ∈ N : |x j − y| < 1/N}. Note that IδA(EN) = 1. Then
BN = {k :

∑
j∈EN

ak, j > IδA(EN) − 1
N } < I. Again from regularity of A we can find a k0 ∈ N such that

∞∑
j=1

ak, j ≤ 1 + 1
N holds for k ≥ k0. Let AN = BN ∩ {k0 + 1, k0 + 2, ...}. Then AN < I and clearly for k ∈ AN

∞∑
j=1

ak, j < 1 +
1
N
.
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alongwith ∑
j∈EN

ak, j > 1 −
1
N
.

Let ε > 0 be arbitrarily chosen. Choose N0 ∈ N such that N0 > 1 and |y|+2+2M
N0

< ε. Also for N ∈ N, we note
that y − 1

N < xk < y + 1
N for k ∈ EN and −M ≤ xk ≤M for k < EN. So for n ∈ AN0 , we have∑

k∈EN0

an,k ·
(
y −

1
N0

)
−

∑
k<EN0

an,k ·M

≤

∞∑
k=1

an,k · xk =
∑

k∈EN0

an,k · xk +
∑

k<EN0

an,k · xk

≤

∑
k∈EN0

an,k ·
(
y +

1
N0

)
+

∑
k<EN0

an,k ·M.

Observe that for n ∈ AN0∑
k<EN0

an,k =

∞∑
k=1

an,k −
∑

k∈EN0

an,k < 1 +
1

N0
− (1 −

1
N0

) =
2

N0
.

Therefore we get

−
2M + 2 + |y|

N0
≤

(
1 −

1
N0

)
·

(
y −

1
N0

)
−

2
N0
·M − y

≤

∞∑
k=1

an,k · xk − y

≤

(
1 +

1
N0

)
·

(
y +

1
N0

)
+

2
N0
·M − y ≤

2M + 2 + |y|
N0

.

Hence for n ∈ AN0

|

∞∑
k=1

an,k · xk − y| ≤
2M + 2 + |y|

N0
< ε.

This shows that {n : |(Ax)n− y| < ε} ⊃ AN0 < I. Since this is true for any ε > 0, it follows that y is an I-cluster
point of

(
(Ax)n

)
.
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[15] J. Jasiński, I. Recław, On spaces with the ideal convergence property, Colloq. Math., 111 (1) (2008), 43–50
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