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On Product of Spaces of Quasicomponents

Gjorgji Markoskia, Abdulla Bukllaa

aSs. Cyril and Methodius University, Faculty of Natural Sciences and Mathematics, Skopje, R. Macedonia

Abstract. We use a characterization of quasicomponents by continuous functions to obtain the well known
theorem which states that product of quasicomponents Qx,Qy of topological spaces X,Y, respectively, gives
quasicomponent in the product space X×Y. If spaces X,Y are locally-compact, paracompact and Haussdorf,
then we prove that the space of quasicomponents of the product Q(X×Y) is homeomorphic with the product
space Q(X) ×Q(Y), so these two spaces have the same topological properties.

1. Introduction

First, we repeat some basic definitions and well known facts about quasicomponents and space of
quasicomponents.

The set O is clopen in the topological space X if it is open and closed subset of X.
The quasicomponent Qx of a point x in a space X is the intersection of all clopen subsets of X which contain

the point x.
Quasicomponents are closed subsets of X. The quasicomponents of two distinct points of a topological

space X either coincide or are disjoint, so all quasicomponents constitute a decomposition of the space X
into pairwise disjoint closed subsets. The component Cx of a point x in a topological space X is contained
in the quasicomponent Qx of the point x ([6], page 356).

For compact Hausdorff spaces, components and quasicomponents coincide ([6], Theorem 6.1.23.). Also,
if the space is locally connected then components and quasicomponents coincide ([3] Prop. 2.4). Every
open quasicomponent is a component ([3] Prop. 1.3).

Let QX be the set of all quasicomponents of X.
The quasicomponent space (or space of quasicomponents) of X is the space QX whose points are the quasi-

components of X and whose topology has a base consisting of sets of the form QF = {A |A ∈ QX, A ⊆ F },
where F is clopen subset of X. The space QX has a base of clopen sets (i.e., QX is 0-dimensional) and hence
is regular and totally disconnected (see [1]).

For more details about quasicomponents, quasicompactification, space of quasicomponents, see [1, 3–
5, 7–9].
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2. Product of Quasicomponents

In [9] quasicomponents are defined in terms of continuous functions.
Let X be a topological space and let {0, 1} be two element space with discrete topology.

Definition 2.1. Two points x, y ∈ X are continuously separated if there exists a continuous function f : X →
{0, 1} such that f (x) = 0 and f (y) = 1.

Lemma 2.2. The quasicomponent Qx of a point x in a space X is the set of all points of X that could not be continuously
separated from x.

Proof. Let a ∈ X and Fa be the set of all points of X that cannot be functionally separated from a.
We will show that Fa = Qa, where Qa is the quasicomponent of the point a.
Let b ∈ Qa and let suppose the contrary, that there exists a continuous function f : X → {0, 1} such that

f (a) = 0, f (b) = 1. We have f−1 ({0}) is clopen subset of X that contains the point a and doesn’t contain b.
This is contradiction with b ∈ Qa, so we have b ∈ Fa.

For the opposite, let b ∈ Fa. If we suppose that b < Qa, then there exists clopen subset O of X such that

a ∈ O and b < O. If we define 1 : X → {0, 1} by 1(x) =

{
0, x ∈ O
1, x < O , then f is continuous and it separates a

from b. The last argument contradicts with b ∈ Fa, so Qa must contain the point b.
We proved that Fa = Qa.

This definition of quasicomponents is used in [9] for proving Borsuk’s theorem about mapping between
spaces of quasicomponents, induced from shape morphism between topological spaces.

In [7] (Ch.V, Theorem 2) it is shown that by taking product of quasicomponents we obtain quasicom-
ponent of product space. In this section we prove the same property using characterization by continuous
functions.

Theorem 2.3. Let X and Y be topological spaces and x ∈ X, y ∈ Y. If Qx, Qy are the quasicomponents of x, y,
respectively, and Q(x,y) the quasicomponent of (x, y), then

Q(x,y) = Qx ×Qy.

Proof. 1) First we will prove the inclusion Q(x,y) ⊆ Qx ×Qy :
Let (a, b) ∈ Q(x,y) be arbitrary. There is no continuous function from X × Y to {0, 1} which separates the

points (a, b), (x, y).
Suppose that (a, b) < Qx × Qy. Let a < Qx. There exists continuous function f : X → {0, 1} such that

f (a) = 0, f (x) = 1.
Then, the function F : X × Y → {0, 1} defined by F = f ◦ pX is continuous, where pX : X × Y → X is the

projection on X.
We have F(a, b) = f

(
pX(a, b)

)
= f (a) = 0 and F(x, y) = f

(
pX(x, y)

)
= f (x) = 1, but this is not possible since

(a, b) ∈ Q(x,y).
It follows that (a, b) ∈ Qx ×Qy.
In a similar way we prove the case when b < Qy.
2) Q(x,y) ⊇ Qx ×Qy:
Let (c, d) ∈ Qx × Qy i.e., c ∈ Qx and d ∈ Qy. Suppose to the contrary, (c, d) < Q(x,y). There exists a

continuous function H : X × Y → {0, 1} such that H(c, d) = 0 and H(x, y) = 1. The space Y = {x} × Y is
subspace of X ×Y and (x, y), (x, d) ∈ Y. If we take the projection pY : X ×Y→ Y, then the restriction pY

∣∣∣Y is
homeomorphism from Y to Y.

We define h : Y→ {0, 1}by h = H
∣∣∣Y ◦ (pY

∣∣∣Y )−1
. The function h is continuous and h(y) = H

∣∣∣Y ((
pY

∣∣∣Y )−1
(y)

)
=

H
∣∣∣Y (

x, y
)

= H
(
x, y

)
= 1. If we suppose that h(d) = 1, we obtain H(x, d) = 1.

The function α = H
∣∣∣X×{d} ◦ (pX

∣∣∣X×{d} )−1
: X→ {0, 1} is continuous and α(x) = 1, α(c) = H(c, d) = 0 which

is not possible. So we have h(d) = 0, but this is a contradiction with the fact that d ∈ Qy.
We proved that (c, d) ∈ Q(x,y), so Qx ×Qy ⊆ Q(x,y).
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3. Product of Spaces of Quasicomponents

In this section we prove that for locally compact, Hausdorff and paracompact X and Y the spaces
Q (X × Y) and QX × QY are homeomorphic. At the end we show that paracompactness and locally-
compactness of spaces in our theorem are important.

Definition 3.1. A clopen box in a space X×Y is a clopen subset of the form U×V, where U and V are clopen
subsets of X and Y, respectively.

We use the following theorem ([2], Theorem 3) for our proof:

Theorem 3.2 (Keneth Kunen). Suppose X and Y are both locally compact, Hausdorff and paracompact. Then any
clopen subset of X × Y is a union of clopen boxes.

Proposition 3.3. Let F be clopen subset of X and G is clopen subset of Y. Then F × G is clopen subset of X × Y.

Proof. It is obvious that F×G is open. The complement of the set F×G in the space X×Y is (X×GC)∪(FC
×Y).

FC is open in X and GC is open in Y so (X × GC) ∪ (FC
× Y) is open in X × Y. Hence F × G is closed.

We can easily prove the following proposition.

Proposition 3.4. Let Ai, i ∈ I and
⋃
i∈I

Ai be clopen subsets of X and x ∈
⋃
i∈I

Ai. Then Qx ∈ Q
(⋃

i∈I
Ai

)
if and only if

there exists i ∈ I such that Qx ∈ Q (Ai).

Proof. Let the requirements of the proposition be fulfilled and let Qx ∈ Q
(⋃

i∈I
Ai

)
. Then Qx ∈ QX and

Qx ⊆
⋃
i∈I

Ai. From the last inclusion there exists a i0 ∈ I such that x ∈ Ai0 . The set Ai0 is clopen subset of X

and it contains the point x, so Qx ⊆ Ai0 . For the opposite, let j ∈ I and Qx ∈ Q
(
A j

)
where x ∈

⋃
i∈I

Ai. It implies

that Qx ∈ QX and Qx ⊆ A j. From the last condition we have Qx ⊆
⋃
i∈I

Ai, so Qx ∈ Q
(⋃

i∈I
Ai

)
. �

Theorem 3.5. Suppose X and Y are both locally compact, Hausdorff and paracompact. Then the spaces Q (X × Y)
and QX ×QY are homeomorphic.

Proof. We will prove that QX ×QY � Q (X × Y).
We define a function f : Q (X × Y)→ QX ×QY by f

(
Q(x,y)

)
=

(
Qx,Qy

)
.

1) From Theorem 2.3 we obtain that the function f is well defined.
2) Again, from Theorem 2.3 it follows that f is a bijection.

We will prove the following statements:

3) f is open function.
Let C be arbitrary element from the base of Q (X × Y). Then C = Q

(
M

)
where M is clopen subset of

X × Y. From Theorem 3.2 it follows that
M =

⋃
i∈I

Ui × Vi,

where Ui is clopen in X and Vi is clopen in Y for every i ∈ I.
Using Proposition 3.4 we obtain

Q
(⋃

i∈I
Ui × Vi

)
=

{
Q(x,y)

∣∣∣∣∣ Q(x,y) ∈ Q (X × Y) , Q(x,y) ⊆
⋃
i∈I

Ui × Vi

}
=

=
⋃
i∈I

{
Q(x,y)

∣∣∣ Q(x,y) ∈ Q (X × Y) , Q(x,y) ⊆ Ui × Vi

}
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If we denote by Ai =
{
Q(x,y)

∣∣∣ Q(x,y) ∈ Q (X × Y) , Q(x,y) ⊆ Ui × Vi

}
we could simplify the previous notation

as

Q
(⋃

i∈I
Ui × Vi

)
=

⋃
i∈I

⋃
Q(x,y)∈Ai

{
Q(x,y)

}
and we have

f
(
C
)

= f
(
Q

(
M

))
= f

(
Q

(⋃
i∈I

Ui × Vi

))
= f

⋃
i∈I

⋃
Q(x,y)∈Ai

{
Q(x,y)

} =

=
⋃
i∈I

⋃
Q(x,y)∈Ai

f
({

Q(x,y)

})
=

⋃
i∈I

⋃
Q(x,y)∈Ai

{(
Qx,Qy

)}
.

Now, from ⋃
Q(x,y)∈Ai

{(
Qx,Qy

)}
=

{(
Qx,Qy

) ∣∣∣Q(x,y) ∈ Ai

}
=

=
{(

Qx,Qy

) ∣∣∣Qx ∈ Q (X) , Qy ∈ Q (Y) , Qx ⊆ Ui,Qy ⊆ Vi

}
,

and from: QUi×QVi =
{(

Qx,Qy

) ∣∣∣Qx ∈ Q (X) , Qy ∈ Q (Y) , Qx ⊆ Ui,Qy ⊆ Vi

}
, we obtain f

(
C
)

=
⋃
i∈I

(QUi ×QVi).

The sets QUi ×QVi are open in QX ×QY for every i ∈ I so f
(
C
)

is open in QX ×QY.

4) f is continuous.
Let D be a element from base of QX ×QY.
Then D =

⋃
α∈A

QFα ×
⋃
β∈B

QGβ, where QFα is a basis element of QX and QGβ is a basis element of QY.

Hence QFα = {Qx |Qx ∈ QX, Qx ⊆ Fα }, QGβ =
{
Qy

∣∣∣Qy ∈ QY, Qy ⊆ Gβ

}
.

Let
Mα = {x |x ∈ X, Qx ∈ QX, Qx ⊆ Fα } and Nβ =

{
y
∣∣∣y ∈ Y, Qy ∈ QY, Qy ⊆ Gβ

}
.

Then we have

QFα =
⋃

x∈Mα

{Qx} and QGβ =
⋃

y∈Nβ

{
Qy

}
.

For the inverse image we obtain

f−1
(
D
)

= f−1

 ⋃
α∈A

⋃
x∈Mα

{Qx} ×
⋃
β∈B

⋃
y∈Nβ

{
Qy

} =

= f−1

 ⋃
(α,β)∈A×B

⋃
(x,y)∈Mα×Nβ

{(
Qx,Qy

)} =

=
⋃

(α,β)∈A×B

⋃
(x,y)∈Mα×Nβ

f−1
{(

Qx,Qy

)}
=

=
⋃

(α,β)∈A×B

⋃
(x,y)∈Mα×Nβ

{
Q(x,y)

}
For

⋃
(x,y)∈Mα×Nβ

{
Q(x,y)

}
we have

⋃
(x,y)∈Mα×Nβ

{
Q(x,y)

}
=

{
Q(x,y)

∣∣∣Qx ⊆ Fα, Qy ⊆ Gβ

}
=

=
{
Q(x,y)

∣∣∣∣Q(x,y) ⊆ Fα × Gβ

}
= Q

(
Fα × Gβ

)
.

From Proposition 3.3 it follows that the set f−1
(
D
)

=
⋃

(α,β)∈A×B
Q

(
Fα × Gβ

)
is open in Q(X × Y).
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Theorem 3.6. Let Q (X × Y) � QX ×QY, then every clopen subset W of the product X × Y can be represented as a
union of clopen boxes.

Proof. Let W be clopen subset of X × Y. From Q (X × Y) � QX × QY, there exists e homeomorphism
f : Q (X × Y)→ QX ×QY hence f (QW) is open in Q(X) ×Q(Y). Therefore f (QW) =

⋃
α∈I

(Uα × Vα), where

Uα =
⋃

i∈Aα

QFα,i and Vα =
⋃

j∈Bα
QGα, j

In a similar way as in Theorem 3.5 we prove that

QW = f−1

(⋃
α∈I

(Uα × Vα)
)

=
⋃
α∈I

⋃
(i, j)∈Aα×Bα

Q
(
Fα,i × Gα, j

)
.

It is easy to show that

W =
⋃
α∈I

⋃
(i, j)∈Aα×Bα

(
Fα,i × Gα, j

)
.

Examples 1 and 2 from [2] together with Theorem 3.6 ensures us that paracompactness and local
compactness could not be omitted in Theorem 3.5.

Remark 3.7. Let local compactness from Theorem 3.5 be omitted. From Example 1 of [2] it follows that
there exist two separable metrizable spaces X and Y whose product contains a clopen subset that cannot be
represented as a union of clopen boxes. This is contradiction with Theorem 3.6.

Remark 3.8. If paracompactness from Theorem 3.5 is omitted, then from Example 2 of [2] it follows that
there exist two locally compact Hausdorff spaces X and Y whose product contains a clopen subset that
cannot be represented as a union of clopen boxes. This is a contradiction with Theorem 3.6.
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