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On Product of Spaces of Quasicomponents
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Abstract. We use a characterization of quasicomponents by continuous functions to obtain the well known
theorem which states that product of quasicomponents Q., Q, of topological spaces X, Y, respectively, gives
quasicomponent in the product space XxY. If spaces X, Y are locally-compact, paracompact and Haussdorf,
then we prove that the space of quasicomponents of the product Q(X xY) is homeomorphic with the product
space Q(X) x Q(Y), so these two spaces have the same topological properties.

1. Introduction

First, we repeat some basic definitions and well known facts about quasicomponents and space of
quasicomponents.

The set O is clopen in the topological space X if it is open and closed subset of X.

The quasicomponent Q of a point x in a space X is the intersection of all clopen subsets of X which contain
the point x.

Quasicomponents are closed subsets of X. The quasicomponents of two distinct points of a topological
space X either coincide or are disjoint, so all quasicomponents constitute a decomposition of the space X
into pairwise disjoint closed subsets. The component C, of a point x in a topological space X is contained
in the quasicomponent Q. of the point x ([6], page 356).

For compact Hausdorff spaces, components and quasicomponents coincide ([6], Theorem 6.1.23.). Also,
if the space is locally connected then components and quasicomponents coincide ([3] Prop. 2.4). Every
open quasicomponent is a component ([3] Prop. 1.3).

Let QX be the set of all quasicomponents of X.

The quasicomponent space (or space of quasicomponents) of X is the space QX whose points are the quasi-
components of X and whose topology has a base consisting of sets of the form QF = {A|A € QX, A CF},
where F is clopen subset of X. The space QX has a base of clopen sets (i.e., QX is 0-dimensional) and hence
is regular and totally disconnected (see [1]).

For more details about quasicomponents, quasicompactification, space of quasicomponents, see [1, 3—
5,7-9].
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2. Product of Quasicomponents

In [9] quasicomponents are defined in terms of continuous functions.
Let X be a topological space and let {0, 1} be two element space with discrete topology.

Definition 2.1. Two points x, y € X are continuously separated if there exists a continuous function f : X —
{0, 1} such that f(x) =0and f(y) = 1.

Lemma 2.2. The quasicomponent Qi of a point x in a space X is the set of all points of X that could not be continuously
separated from x.

Proof. Leta € X and F, be the set of all points of X that cannot be functionally separated from a.

We will show that F, = Q,, where Q, is the quasicomponent of the point a.

Let b € Q, and let suppose the contrary, that there exists a continuous function f : X — {0, 1} such that
f@@) =0, f(b) = 1. We have 7! ({0}) is clopen subset of X that contains the point 4 and doesn’t contain b.
This is contradiction with b € Q,, so we have b € F,.

For the opposite, let b € F,. If we suppose that b ¢ Q,, then there exists clopen subset O of X such that
0, x€O
1, x¢O "’
from b. The last argument contradicts with b € F,, so Q, must contain the point b.

We proved that F, = Q,. O

a€Oandb ¢ O. If we define g : X — {0,1} by g(x) = then f is continuous and it separates a

This definition of quasicomponents is used in [9] for proving Borsuk’s theorem about mapping between
spaces of quasicomponents, induced from shape morphism between topological spaces.

In [7] (Ch.V, Theorem 2) it is shown that by taking product of quasicomponents we obtain quasicom-
ponent of product space. In this section we prove the same property using characterization by continuous
functions.

Theorem 2.3. Let X and Y be topological spaces and x € X, y € Y. If Q,, Qy are the quasicomponents of x, y,
respectively, and Q) the quasicomponent of (x, y), then

Q(x,y) = Qx X Qy-

Proof. 1) First we will prove the inclusion Q) € Qx X Qy :

Let (a,b) € Q) be arbitrary. There is no continuous function from X X Y to {0, 1} which separates the
points (4, b), (x, y).

Suppose that (a,b) ¢ Q» X Q. Leta ¢ Q.. There exists continuous function f : X — {0,1} such that
f@ =0, f(x)=1.

Then, the function F : X X Y — {0, 1} defined by F = f o px is continuous, where px : X X Y — X is the
projection on X.

We have F(a,b) = f (px(a,b)) = f(a) = 0and F(x, y) = f (px(x, y)) = f(x) = 1, but this is not possible since
(a/ b) € Q(x,y)-

It follows that (a,b) € Qx X Q.

In a similar way we prove the case when b ¢ Q.

2) Quy 2 Qx X Qy:

Let (c,d) € Qx X Qyie., c € Qyand d € Q,. Suppose to the contrary, (c,d) ¢ Q). There exists a
continuous function H : X XY — {0, 1} such that H(c,d) = 0 and H(x,y) = 1. The space Y = {x} X Y is
subspace of X X Y and (x, y), (x,d) € Y. If we take the projection py : X X Y — Y, then the restriction py |X is
homeomorphism from Y to Y.

Wedefineh: Y — {0,1}byh = H |X o (py |X)_1~ The function his continuous and h(y) = H |X ((py |X)_1(3/)) =
H ’Z (x,y) = H(x,y) = 1. If we suppose that h(d) = 1, we obtain H(x,d) = 1.

-1
The function a = H|X><{d} o (px |X><{d}) : X — {0, 1} is continuous and a(x) = 1, a(c) = H(c,d) = 0 which
is not possible. So we have h(d) = 0, but this is a contradiction with the fact that d € Q,.
We proved that (c,d) € Q,y), 50 Qx X Qy € Q). T
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3. Product of Spaces of Quasicomponents

In this section we prove that for locally compact, Hausdorff and paracompact X and Y the spaces
QX xY) and QX x QY are homeomorphic. At the end we show that paracompactness and locally-
compactness of spaces in our theorem are important.

Definition 3.1. A clopen box in a space X X Y is a clopen subset of the form U X V, where U and V are clopen
subsets of X and Y, respectively.

We use the following theorem ([2], Theorem 3) for our proof:

Theorem 3.2 (Keneth Kunen). Suppose X and Y are both locally compact, Hausdorff and paracompact. Then any
clopen subset of X X Y is a union of clopen boxes.

Proposition 3.3. Let F be clopen subset of X and G is clopen subset of Y. Then F x G is clopen subset of X X Y.

Proof. Itis obvious that FX G is open. The complement of the set F X G in the space X XY is (XX GS)U(FC X Y).
FC is open in X and G€ is open in Y so (X X G¢) U (F¢ x Y) is open in X X Y. Hence F X G is closed. [J

We can easily prove the following proposition.

Proposition 3.4. Let A;,i € I and |J A; be clopen subsets of X and x € | JA;. Then Qy € Q(U A,-) if and only if
i€l i€l i€l

there exists i € I such that Q, € Q (A)).

Proof. Let the requirements of the proposition be fulfilled and let Q, € Q(U A,«). Then Q, € QX and
i€l
Qx € UA;. From the last inclusion there exists a iy € [ such that x € A;,. The set A;, is clopen subset of X
i€l
and it contains the point x, so Qx € A;,. For the opposite, let j € [and Q, € Q (A j) where x € |J A;. Itimplies
i€l
that Q, € QX and Q, € A;. From the last condition we have Q. C [JA;,s0 Q. € Q (U A,-). o 0O
i€l i€l

Theorem 3.5. Suppose X and Y are both locally compact, Hausdorff and paracompact. Then the spaces Q (X X Y)
and QX x QY are homeomorphic.

Proof. We will prove that QX X QY = Q (X xY).

We define a function f : Q(X X Y) = QX X QY by f(Q(x,y)) = (Qx, Qy).
1) From Theorem 2.3 we obtain that the function f is well defined.
2) Again, from Theorem 2.3 it follows that f is a bijection.

We will prove the following statements:

3) f is open function.
Let C be arbitrary element from the base of Q(X xY). Then C = Q (]\_/I) where M is clopen subset of
X xY. From Theorem 3.2 it follows that
M=|_Juxv,
i€l
where U is clopen in X and V; is clopen in Y for every i € I.
Using Proposition 3.4 we obtain

Q(UI U; x Vi) = {Q(x,w Quy € QX XY), Quy S UIUi X Vz} =
1€ 1€
=U {Qua [ Qum € QXX Y), Quyy € Ui x Vi
1€
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If we denote by A; = {Q(x,y) | Quy €EQXXY), Quy € Ui X V; } we could simplify the previous notation

as
Q(U U; x Vi) =U U {Q(x,y)}
i€l i€l Q(X/y)EA[
and we have

10)= () =r(o[yuxv)) = [y, U, (0wl -

iel Q(le) EA,

=U U f({Qun)) = U U {(QuQu)}

i€l Q,y€Ai Q€A

Now, from

U .{<Qm Qy)} = {(Qx/ Qy) |Q(x,y) € Ai} =
Qe €A

={(QvQy) Q€ Q(X), Qe Q(Y), Q: S U, Qy S Vi,

and from: QU;xQV; = {(Qx, Qy)|Qx € Q(X), Qy € Q(Y), Q« € U, Q, € V;}, weobtain f (C) = JQuix Qv
The sets QU; X QV/; are open in QX X QY for every i € I so f(g) is open in QX x QY.

4) f is continuous.
Let D be a element from base of QX x QY.

Then D = |UJ QF, X | QGg, where QF, is a basis element of QX and QG; is a basis element of QY.

a€gA peB

Hence QF, = {Q:|Q: € QX, Q. € Fa}, QGp = {Qy Qs € QY, Q, € Gs}-
Let

M, ={x|x€X, Qr € QX, Qc C F,}and N = {y'y €Y, Q €QY, Q, C Gy}
Then we have

QF,= U {Q.}and QGg = U {Qy}'

xeM, YEN;
For the inverse image we obtain

fl[ (Qdx U U{Qy})=
a€A xeM, ﬁeB yeNp,
U

f [(a ﬁ)eAxB (x, y)eM ><N/5 {(er Qy)}] B
- Qv Q)=

(a,B)EAXB (x, y)eMuxNﬁ

H

(,)EAXB (x,1)eMxNj (xy )}

For U {Q(x,y)} we have

(x,y)EMaXNpg

(x,y)ELZ\)L‘xNﬁ {Q(xy)} - {Q(Xy) ‘Qx CFa QyC Gﬁ} =
- {Q(x,y) 'Q(x/y) CFax Gﬁ} = Q(Fa X Gﬁ),

From Proposition 3.3 it follows that the set f~! (Q) = U Q (Fa X Gﬁ) is open in Q(X X Y).

(a,B)eAXB
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Theorem 3.6. Let Q (X X Y) = QX X QY, then every clopen subset W of the product X XY can be represented as a
union of clopen boxes.

Proof. Let W be clopen subset of X X Y. From Q(XXY) = QX X QY, there exists e homeomorphism
f:QXXxY)— QXX QY hence f(QW) is open in Q(X) X Q(Y). Therefore f (QW) = |J (U, X V,), where

a€l

U, = U QFa,i and V, = U QGa,j
€Ay j€B4

In a similar way as in Theorem 3.5 we prove that

QW = f_l (U (U, x Va)) =U U Q(Fa,i X Ga,j)-

a€l a€l (i,j)eA“de

It is easy to show that

W=U U (FaixGay).
a€l (i,j)eAaxBa

O

Examples 1 and 2 from [2] together with Theorem 3.6 ensures us that paracompactness and local
compactness could not be omitted in Theorem 3.5.

Remark 3.7. Let local compactness from Theorem 3.5 be omitted. From Example 1 of [2] it follows that
there exist two separable metrizable spaces X and Y whose product contains a clopen subset that cannot be
represented as a union of clopen boxes. This is contradiction with Theorem 3.6.

Remark 3.8. If paracompactness from Theorem 3.5 is omitted, then from Example 2 of [2] it follows that
there exist two locally compact Hausdorff spaces X and Y whose product contains a clopen subset that
cannot be represented as a union of clopen boxes. This is a contradiction with Theorem 3.6.
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