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Abstract. The aim of this paper is to construct a new braided T-category via the generalized Yetter-Drinfel’d
modules and Drinfel’d codouble over a Hopf algebra, an approach different from that proposed by Panaite
and Staic [1]. Moreover, in the case of finite dimensional, we will show that this category coincides with
the corepresentation of a certain coquasitriangular Turaev group algebra which we construct. Finally we
apply our theory to the case of group algebra.

1. Introduction

Braided T-categories introduced by Turaev [2] are of interest due to their applications in homotopy
quantum field theories, which are generalizations of ordinary topological quantum field theories. Braided T-
category gives rise to 3-dimensional homotopy quantum field theory and plays a key role in the construction
of Hennings-type invariants of flat group-bundles over complements of link in the 3-sphere, see [3]. As
such, they are interesting to different research communities in mathematical physics (see [4, 5]).

The quantum double of Drinfel’d [6] is one of the most celebrated Hopf constructions, which associates
to a Hopf algebra H a quasitriangular Hopf algebra D(H). Unlike the Hopf algebra axioms themselves, the
axioms of a dual quasitriangular (coquasitriangular) Hopf algebra are not self-dual. Thus the axioms and
ways of working with these coquasitriangular Hopf algebras look somewhat different in practice and so it
is surely worthwhile to study and write them out explicity in dual form. Moreover, the corepresentation
categories of coquasitriangular Hopf algebras can give rise to a braided monoidal category which is different
from one coming from the representation categories of quasitriangular Hopf algebras. It is these ideals
which many authors studied these notions (cf.[7–17]).

In [1], the authors found a wise method to construct braided T-category YD(H) over the group G =
AutHop f (H) × AutHop f (H), where H is a Hopf algebra. This category YD(H) is the disjoint union of all these
categories HYD

H(α, β)(the categories of (α, β)-Yetter-Drinfel’d modules) over H for all α, β ∈ AutHop f (H).
The authors also proved that, if H is finite dimensional, then YD(H) coincides with the representations of
a certain quasitriangular T-coalgebra DT(H).
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Our motivation is the following: Can we use (α, β)-Yetter-Drinfel’d modules and Drinfel’d codouble
to construct a new braided T-category? And in the case of H being finite dimensional, can we prove that
this new braided T-category is isomorphic to the corepresentation category of a certain coquasitriangular
Turaev group algebra?

In this paper, we give a positive answer to the above question. The paper is organized as follows:
In section 1, we recall the notions of braided T-category, Turaev group algebra and generalized Yetter-

Drinfel’d modules. In section 2, we introduce the diagonal crossed coproduct H∗op ./ C, where H is a
Hopf algebra and C is an H-bimodule coalgebra. In section 3, we firstly recall the definition of (α, β)-
Yetter-Drinfel’d module, then we construct braided T-category ŶD(H) over G whose multiplication is
(α, β) ∗ (γ, δ) = (δαδ−1γ, δβ) for all α, β, γ, δ ∈ AutHop f (H). We also prove that category ŶD(H) coincides with
the corepresentation category of a certain coquasitriangular crossed Turaev group algebra in the sense of
[18].

2. Preliminary

Throughout this paper, let k be a fixed field, and all vector spaces and tensor product are over k. All
vector spaces are assumed to be finite dimensional, although it should be clear when this restriction is not
necessary.

In this section we recall some basic definitions and results related to our paper.

2.1. Crossed T-category

Let G be a group with the unit 1. Recall from [19–21] that a crossed category C (over G) is given by the
following data:
• C is a strict monoidal category.
• A family of subcategory {Cα}α∈G such that C is a disjonit union of this family and that U ⊗ V ∈ Cαβ for

any α, β ∈ G, U ∈ Cα and V ∈ Cβ.
• A group homomorphism ϕ : G → aut(C), β 7→ ϕβ , the conju1ation, where aut(C) is the group of the

invertible strict tensor functors from C to itself, such that ϕβ (Cα) = Cβαβ−1 for any α, β ∈ G.
We will use the left index notation in Turaev: Given β ∈ G and an object V ∈ Cα, the functor ϕβ will

be denoted by β(·) or V(·) and β−1
(·) will be denoted by V(·). Since V(·) is a functor, for any object U ∈ C

and any composition of morphism 1 ◦ f in C, we obtain VidU = idVU and V(1 ◦ f ) = V1 ◦V f . Since the
conjugation ϕ : π → aut(C) is a group homomorphism, for any V,W ∈ C, we have V⊗W(·) = V(W(·)) and
1(·) = V(V(·)) = V(V(·)) = idC. Since for any V ∈ C, the functor V(·) is strict, we have V( f ⊗ 1) = V f ⊗V1 for any
morphism f and 1 in C, and V(1) = 1.

A Turaev braided G-category is a crossed T-category C endowed with a braiding, i.e., a family of
isomorphisms

c = {cU,V : U ⊗ V → VU ⊗ V}U,V∈C

obeying the following conditions:
• For any morphism f ∈ HomCα (U,U′) and 1 ∈ HomCβ (V,V′), we have

(α1 ⊗ f ) ◦ cU,V = cU′ ,V′ ◦ ( f ⊗ 1),

• For all U,V,W ∈ C, we have

cU⊗V,W = (c
U,V W
⊗ idV)(idU ⊗ cV,W ), (2.1)

cU,V⊗W = (idUV ⊗ cU,W )(cU,V ⊗ idW). (2.2)

• For any U,V ∈ C and α ∈ G, ϕα (cU,V ) = cαU,αV .
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2.2. Turaev Group Algebras

Let G be a group with unit 1. Recall from [18, 22] that a G-algebra is a family A = {Aα}α∈G of k-spaces
together with a family of k-linear maps m = {mα,β : Aα⊗Aβ → Aαβ}α,β∈G (called multiplication) and a k-linear
map η : k→ A1 (called unit) such that m is associative in the sense that, for all α, β, γ ∈ G

mαβ,γ(mα,β ⊗ id) = mα,βγ(id ⊗mβ,γ),
mα,1(id ⊗ η) = id = m1,α(η ⊗ id).

A Turaev G-algebra is a G-algebra H = {Hα}α∈G such that each Hα is a coalgebra with comultiplication ∆α

and counit εα; the map η : k→ H1 and the maps mα,β : Hα ⊗Hβ → Hαβ are coalgebra maps, with a family of
k-linear maps S = {Sα : Hα → Hα−1 }α∈G (called the antipode) such that for all α ∈ G

mα,α−1 (id ⊗ Sα)∆α = εα1 = mα−1,α(Sα ⊗ id)∆α.

Furthermore, a crossed Turaev G-algebra is a Turaev G-algebra with a family of coalgebra isomorphisms
ψ = {ψβ : Hα → Hβαβ−1 }β∈G (called crossing), satisfying the following conditions: for all α, β, γ ∈ G

(i) ψ is multiplicative, i.e., ψαψβ = ψαβ,

(ii) ψ is compatible with m, i.e., mγαγ−1,γβγ−1 (ψγ ⊗ ψγ) = ψγmα,β,

(iii) ψ is compatible with η, i.e., η = ψγη,

(iv) ψ preserves the antipode, i.e., ψβSα = Sβαβ−1ψβ.

We use the Sweedlers notation for a comultiplication ∆α on Hα: for all h ∈ Hα

∆α(h) = h1 ⊗ h2.

Recall from [18], a Turaev G-algebra H is called coquasitriangular if there exists a family of k-linear maps
σ = {σα,β : Hα ⊗Hβ → k} such that σα,β is convolution invertible for all α, β ∈ G and the following conditions
are satisfied:

(TCT1) σαβ,γ(xy, z) = σα,γ(x, z2)σβ,γ(y, z1),

(TCT2) σα,βγ(x, yz) = σα,β(x1, y)σβ−1αβ,γ(ψβ−1 (x2), z),

(TCT3) σα,β(x1, y1)y2ψβ−1 (x2) = x1y1σα,β(x2, y2),

(TCT4) σα,β(x, y) = σγαγ−1,γβγ−1 (ψγ(x), ψγ(y)),

for all x ∈ Hα, y ∈ Hβ, z ∈ Hγ.
Note that if Turaev G-algebra H is coquasitriangular, then (H1, σ1,1) is a coquasitriangular Hopf algebra.

2.3. Yetter-Drinfel’d module

Let H be a Hopf algebra and C an H-bimodule coalgebra, with module structures H⊗C→ C, h⊗c 7→ h ·c
and C ⊗ H → C, c ⊗ h 7→ c · h. Recall from [23], we can consider the Yetter-Drinfel’d datum (H,C,H) and
the Yetter-Drinfel’d category HYD

C, whose object M is a left H-module (with the action h ⊗m 7→ h ·m) and
right C-comodule (with the coaction m 7→ m(0) ⊗m(1)) such that for all h ∈ H,m ∈M,

h1 ·m(0) ⊗ h2 ·m(1) = (h2 ·m)(0) ⊗ (h2 ·m)(1) · h1,

or equivalently
(h ·m)(0) ⊗ (h ·m)(1) = h2 ·m(0) ⊗ h3 ·m(1) · S−1(h1).
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3. Diagonal Crossed Coproduct

As the dual of diagonal crossed product (for details, see [1]), we have the following result.

Proposition 3.1. Let H be a Hopf algebra with a bijective antipode S, and C a bimodule coalgebra with the actions
H ⊗ C→ C, h ⊗ c 7→ h · c and C ⊗H→ C, c ⊗ h 7→ c · h. Then we have a coalgebra H∗op

⊗ C (denoted by H∗op ./ C)
with the comultiplication and counit

∆̄(p ./ c) =
∑

i, j

p1 ./ h j · c1 · S−1(hi) ⊗ hip2h j ./ c2, (3.1)

ε̄(p ./ c) = p(1)ε(c), (3.2)

for all p ∈ H∗op, c ∈ C, where {hi} and {hi
} are basis and dual basis of H. H∗op ./ C is called diagonal crossed coproduct.

Proof. For all p ∈ H∗op, c ∈ C, on one hand

(∆̄ ⊗ id)∆̄(p ./ c) =
∑

i, j

∆̄(p1 ./ h j · c1 · S−1(hi)) ⊗ hip2h j ./ c2

=
∑
i, j,s,t

p1 ./ hs · (h j · c1 · S−1(hi))1S−1(ht) ⊗ htp2hs ./ (h j · c1 · S−1(hi))2 ⊗ hip3h j ./ c2

=
∑
i, j,s,t

p1 ./ hsh j1 · c1 · S−1(hthi2) ⊗ htp2hs ./ h j2 · c2 · S−1(hi1) ⊗ hip3h j ./ c3.

Evaluating the first, the third and the fifth factors at h, h′, h′′ ∈ H respectively, we have∑
i, j,s,t

p1(h)hsh j1 · c1 · S−1(hthi2) ⊗ htp2hs(h′)h j2 · c2 · S−1(hi1) ⊗ hip3h j(h′′)c3

= p1(h)h′3h′′4 · c1 · S−1(h′1h′′2 ) ⊗ p2(h′2)h′′5 · c2 · S−1(h′′1 ) ⊗ p3(h′′3 )c3

= p(hh′2h′′3 )h′3h′′4 · c1 · S−1(h′1h′′2 ) ⊗ h′′5 · c2 · S−1(h′′1 ) ⊗ c3.

On the other hand

(id ⊗ ∆̄)∆̄(p ./ c) =
∑

i, j

p1 ./ h j · c1 · S−1(hi) ⊗ ∆̄(hip2h j ./ c2)

=
∑
i, j,s,t

p1 ./ h j · c1 · S−1(hi) ⊗ hi
1p2h j

1 ./ hs · c2 · S−1(ht) ⊗ hthi
2p3h j

2hs ./ c3.

Evaluating the first, the third and the fifth factors at h, h′, h′′ ∈ H respectively, we have∑
i, j,s,t

p1(h)h j · c1 · S−1(hi) ⊗ hi
1p2h j

1(h′)hs · c2 · S−1(ht) ⊗ hthi
2p3h j

2hs(h′′)c3

=
∑

i, j

p1(h)h j · c1 · S−1(hi) ⊗ hi
1(h′1)p2(h′2)h j

1(h′3)h′′5 · c2 · S−1(h′′1 ) ⊗ hi
2(h′′2 )p3(h′′3 )h j

2(h′′4 )c3

=
∑

i, j

p1(hh′2h′′3 )h′3h′′4 · c1 · S−1(h′1h′′2 ) ⊗ h′′5 · c2 · S−1(h′′1 ) ⊗ c3.

Thus ∆̄ is coassociative. Easy to check that ε̄ is counit. The proof is completed.

Remark 3.2. In particular when C = H and the module action is multiplication, we can recover the Drinfel’d
codouble D̂(H) introduced in [12, Proposition 10.3.14].
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Proposition 3.3. Diagonal crossed coproduct H∗op ./ C is a D̂(H)-bimodule coalgebra with structures

D̂(H) ⊗H∗op ./ C→ H∗op ./ C, (p ⊗ h) . (q ./ c) = qp ./ h · c, (3.3)

H∗op ./ C ⊗ D̂(H)→ H∗op ./ C, (q ./ c) / (p ⊗ h) = pq ./ c · h, (3.4)

for all p, q ∈ H∗op, h ∈ H, c ∈ C.

Proof. Obviously H∗op ./ C is a left D̂(H)-module. And for all p, q ∈ H∗op, h ∈ H, c ∈ C,

∆̄((p ⊗ h) . (q ./ c)) = ∆̄(qp ./ h · c)

=
∑

i, j

q1p1 ./ h j · (h · c)1 · S−1(hi) ⊗ hiq2p2h j ./ (h · c)2

=
∑

i, j

q1p1 ./ h jh1 · c1 · S−1(hi) ⊗ hiq2p2h j ./ h2 · c2

=
∑

i, j

q1p1 ./ hih1S−1(h j)hs · c1 · S−1(ht) ⊗ htq2hsh jp2hi ./ h2 · c2

= (p ⊗ h)1 . (q ./ c)1 ⊗ (p ⊗ h)2 . (q ./ c)2.

Thus H∗op ./ C is a left D̂(H)-module coalgebra. Similarly one can check that H∗op ./ C is also a right
D̂(H)-module coalgebra. The proof is completed.

4. The Construction of Braided T-Category ̂YD(H)

Definition 4.1. [1, Definition 2.1] Let H be a Hopf algebra and α, β ∈ AutHop f (H). An (α, β)-Yetter-Drinfel’d
module over H is a vector space M such that M is a left H-module and right H-comodule with the following compatible
condition

h1 ·m(0) ⊗ β(h2)m(1) = (h2 ·m)(0) ⊗ (h2 ·m)(1)α(h1),

for all h ∈ H,m ∈ M. We denote by HYD
H(α, β) the category of (α, β)-Yetter-Drinfel’d modules, morphisms being

the H-linear and H-colinear.

Example 4.2. For any Hopf algebra H and α, β ∈ AutHop f (H), define Hα,β as follows: Hα,β = H with regular left
H-module structure and right H-comodule structure given by

ρ(h) = h2 ⊗ β(h3)S−1α(h1),

for all h ∈ H. Then Hα,β ∈HYD
H(α, β).

Let α, β ∈ AutHop f (H). We define an H-bimodule coalgebra H(α, β) as follows: H(α, β) = H as coalgebra
with module structures

H ⊗H(α, β)→ H(α, β), h ⊗ h′ 7→ β(h)h′,
H(α, β) ⊗H→ H(α, β), h′ ⊗ h 7→ h′α(h),

for all h, h′ ∈ H.
Now consider the Yetter-Drinfel’d datum (H,H(α, β),H) and its Yetter-Drinfel’d category HYD

H(α,β).

Proposition 4.3. With the above notations, we have the relation:

HYD
H(α,β) =HYD

H(α, β).
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Consider now the diagonal crossed coproduct C(α, β) = H∗op
⊗H(α, β) with the comultiplication

∆̄(p ./ h) =
∑

i, j

p1 ./ β(h j)h1S−1α(hi) ⊗ hip2h j ./ h2,

for all p ∈ H∗op, h ∈ H. Moreover C(α, β) is a D̂(H)-bimodule coalgebra with module structures

D̂(H) ⊗H∗op ./ H(α, β)→ H∗op
⊗H(α, β), p ⊗ h ⊗ q ./ h′ 7→ qp ./ β(h)h′,

H∗op ./ H(α, β) ⊗ D̂(H)→ H∗op
⊗H(α, β), q ./ h′ ⊗ p ⊗ h 7→ pq ./ h′α(h).

Since H is finite dimensional, we have a category isomorphism HYD
H(α,β) �MH∗op./H(α,β), hence HYD

H(α, β) �
M

H∗op./H(α,β). The correspondence is given as follows. If M ∈HYD
H(α, β), then M ∈ MH∗op./H(α,β) with structure

m[0] ⊗m[1] =
∑

i

hi ·m(0) ⊗ hi ./ m(1).

Conversely if M ∈ MH∗op./H(α,β), then M ∈HYD
H(α, β) with structures

h ·m = m[0](h ⊗ ε)m[1],

m(0) ⊗m(1) = m[0] ⊗ (ε∗ ⊗ id)m[1].

Proposition 4.4. Let H be a Hopf algebra and α, β, γ, δ ∈ AutHop f (H). If M ∈HYD
H(α, β), N ∈HYD

H(γ, δ), then
M ⊗N ∈HYD

H(δαδ−1γ, δβ) with the following structures:

h · (m ⊗ n) = h2 ·m ⊗ h1 · n,
(m ⊗ n)(0) ⊗ (m ⊗ n)(1) = m(0) ⊗ n(0) ⊗ δ(m(1))δαδ−1(n(1)),

for all h ∈ H,m ∈M,n ∈ N.

Proof. Clearly M ⊗ N is a left H-module and right H-comodule. We need only to verify the compatible
condition.

h1 · (m ⊗ n)(0) ⊗ δβ(h2)(m ⊗ n)(1)

= h2 ·m(0) ⊗ h1 · n(0) ⊗ δ(β(h3)m(1))δαδ−1(n(1))

= (h3 ·m)(0) ⊗ h1 · n(0) ⊗ δ((h3 ·m)(1))δαδ−1(δ(h2)n(1))

= (h3 ·m)(0) ⊗ (h2 · n)(0) ⊗ δ((h3 ·m)(1))δαδ−1((h2 · n)(1)γ(h1))

= (h2 · (m ⊗ n))(0) ⊗ (h2 · (m ⊗ n))(1)δαδ
−1γ(h1).

The proof is completed.

Note that if M ∈HYD
H(α, β), N ∈HYD

H(γ, δ) and P ∈HYD
H(µ, ν), then (M⊗N)⊗ P = M⊗ (N ⊗ P) as an

object in HYD
H(νδαδ−1γν−1µ, νδβ).

Denote G = AutHop f (H) × AutHop f (H), a group with multiplication

(α, β) ∗ (γ, δ) = (δαδ−1γ, δβ).

The unit is (id, id) and (α, β)−1 = (β−1α−1β, β−1).

Proposition 4.5. Let N ∈HYD
H(γ, δ) and (α, β) ∈ G. Define (α,β)N = N as vector space with structures

h ⇀ n = α−1β(h) · n,
n<0> ⊗ n<1> = n(0) ⊗ β

−1δαδ−1(n(1)).

Then (α,β)N ∈HYD
H(β−1δαδ−1γα−1β, β−1δβ) =HYD

H((α, β) ∗ (γ, δ) ∗ (α, β)−1).
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Proof. Easy to see that (α,β)N is a left H-module and right H-comodule. We check the compatible condition.

h1 ⇀ n<0> ⊗ β
−1δβ(h2)n<1>

= α−1β(h1) · n(0) ⊗ β
−1δβ(h2)β−1δαδ−1(n(1))

= (α−1β(h2) · n)(0) ⊗ β
−1δαδ−1[(α−1β(h2) · n)(1)γδα

−1β(h1)]

= (α−1β(h2) · n)(0) ⊗ β
−1δαδ−1((α−1β(h2) · n)(1))β−1δαδ−1γα−1β(h1)

= (α−1β(h2) · n)<0> ⊗ (α−1β(h2) · n)<1>β
−1δαδ−1γα−1β(h1)

= (h2 ⇀ n)<0> ⊗ (h2 ⇀ n)<1>β
−1δαδ−1γα−1β(h1).

The proof is completed.

Remark 4.6. Let M ∈HYD
H(α, β), N ∈HYD

H(γ, δ) and (µ, ν) ∈ G. We have
(α,β)∗(γ,δ)N = (α,β)((γ,δ)N)

as an object in HYD
H((α, β) ∗ (µ, ν) ∗ (γ, δ) ∗ (µ, ν)−1

∗ (α, β)−1). and
(µ,ν)(M ⊗N) = (µ,ν)M ⊗(µ,ν)N

as an object in HYD
H((µ, ν) ∗ (α, β) ∗ (γ, δ) ∗ (µ, ν)−1).

Proposition 4.7. Let M ∈ HYD
H(α, β) and N ∈ HYD

H(γ, δ). Denote MN = (α,β)N as an object in HYD
H((α, β) ∗

(γ, δ) ∗ (α, β)−1). Define the map

cM,N : M ⊗N→MN ⊗M, m ⊗ n 7→ α−1(m(1)) · n ⊗m(0),

for all m ∈M,n ∈ N. Then cM,N is H-linear H-colinear and satisfies the relations (1.1) and (1.2). And cPM,PN
= cM,N.

Moreover cM,N is bijective with inverse c−1
M,N(n ⊗m) = m(0) ⊗ α−1S(m(1)) · n.

Proof. We prove that cM,N is H-linear H-colinear. Indeed

cM,N(h · (m ⊗ n)) = cM,N(h2 ·m ⊗ h1 · n)

= α−1((h2 ·m)(1)α(h1)) · n ⊗ (h2 ·m)(0)

= α−1(β(h2)m(1)) · n ⊗ h1 ·m(0)

= h · cM,N(m ⊗ n).

And

cM,N(m ⊗ n)(0) ⊗ cM,N(m ⊗ n)(1)

= (α−1(m(1)) · n)<0> ⊗m(0)(0) ⊗ β((α−1(m(1)) · n)<1>)δαδ−1γα−1(m(0)(1))

= (α−1(m(1)2) · n)(0) ⊗m(0) ⊗ δαδ
−1((α−1(m(1)2) · n)(1)γα

−1(m(1)1))

= α−1(m(1)1) · n(0) ⊗m(0) ⊗ δ(m(1)2)δαδ−1(n(1))
= cM,N((m ⊗ n)(0)) ⊗ (m ⊗ n)(1).

Furthermore

(cM,NP ⊗ id)(id ⊗ cN,P)(m ⊗ n ⊗ p)

= (cM,NP ⊗ id)(m ⊗ γ−1(n(1)) · p ⊗ n(0))

= α−1(m(1)) ⇀ (γ−1(n(1)) · p) ⊗m(0) ⊗ n(0)

= γ−1δα−1(m(1))γ−1(n(1)) · p ⊗m(0) ⊗ n(0)

= γ−1δα−1δ−1((m ⊗ n)(1)) · p ⊗ (m ⊗ n)(0)

= cM⊗N,P(m ⊗ n ⊗ p).

Similarly we can prove (1.2). The proof is completed.
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Define ŶD(H) as the disjoint union of all HYD
H(α, β) with (α, β) ∈ G. If we endow ŶD(H) with monoidal

structure given in Proposition 4.4, then it becomes a strict monoidal category with the unit k as an object in
HYD

H (with trivial structure).
The group homomorphism ψ : G −→ Aut( ̂YD(H)), (α, β) 7→ ψ(α,β) is defined on components as

ψ(α,β) :HYD
H(γ, δ) −→HYD

H((α, β) ∗ (γ, δ) ∗ (α, β)−1),

ψ(α,β)(N) = (α,β)N.

and the functor acts on morphisms as identity. The braiding in ŶD(H) is given by the family c = {cM,N}.
Hence we have

Proposition 4.8. ŶD(H) is a braided T-category over G.

It is well known that for a Hopf algebra with a bijective antipode, the subcategory HYD
H
f d of all finite

dimensional objects in HYD
H is rigid, i.e., every object has left and right dualities. For the category ŶD(H),

we have the following result.

Proposition 4.9. Let M ∈HYD
H(α, β) and suppose that M is finite dimensional. Then M∗ = Hom(M, k) belongs to

HYD
H(β−1α−1β, β−1) with

(h · f )(m) = f (S−1(h) ·m),
f(0)(m) f(1) = f (m(0))β−1α−1S(m(1)),

for all h ∈ H,m ∈M and f ∈M∗. Then M∗ is a left dual of M. Similarly we can define the right dual ∗M = Hom(M, k)
of M with

(h · f )(m) = f (S(h) ·m),
f(0)(m) f(1) = f (m(0))β−1α−1S−1(m(1)).

Therefore the category ŶD(H) f d, the subcategory of ŶD(H) consisting of finite dimensional objects, is rigid.

Proof. First of all, M∗ is an object in HYD
H(β−1α−1β, β−1). Indeed, obviously M∗ is a left H-module and right

H-comodule. And

(h2 · f )(0)(m)(h2 · f )(1)β
−1α−1β(h1)

= (h2 · f )(m(0))S(m(1))β−1α−1β(h1)

= f (S−1(h2) ·m(0))β−1α−1S(m(1))β−1α−1β(h1)

= f (S−1(h2) ·m(0))S(β−1α−1(βS−1(h1)m(1)))

= f ((S−1(h1) ·m)(0))S(β−1α−1((S−1(h1) ·m)(1))β−1S−1(h2))

= f ((S−1(h1) ·m)(0))β−1(h2)S(β−1α−1((S−1(h1) ·m)(1)))

= f(0)(S−1(h1) ·m)β−1(h2) f(1)

= (h1 · f(0))(m)β−1(h2) f(1),

as required. Define maps

bM : k→M ⊗M∗, 1 7→
∑

i

mi ⊗mi,

dM : M∗ ⊗M→ k, f ⊗m 7→ f (m),
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where {mi} and {mi
} are basis and dual basis of M. We need to prove that bM and dM are H-linear. We

compute

(h · bM(1))(m) = (h ·
∑

i

mi ⊗mi)(m)

= (
∑

i

h2 ·mi ⊗ h1 ·mi)(m)

=
∑

i

h2 ·mimi(S−1(h1) ·m)

= h2S−1(h1) ·m
= ε(h)bM(1)(m),

and

dM(h · ( f ⊗m)) = dM(h2 · f ⊗ h1 ·m)
= (h2 · f )(h1 ·m)

= f (S−1(h2)h1 ·m)
= ε(h) f (m)
= h · dM( f ⊗m).

They are also H-colinear. Indeed,

bM(1)(0)(m) ⊗ bM(1)(1) =
∑

i

mi(0)mi
(0)(m) ⊗ β−1(mi(1))β−1αβ(mi

(1))

=
∑

i

mi(0)mi(m(0)) ⊗ β−1(mi(1))β−1(S(m(1)))

= m(0) ⊗ β
−1(m(1)1)S(m(1)2)

= bM(1)(m) ⊗ 1,

and

dM(( f ⊗m)(0)) ⊗ ( f ⊗m)(1) = dM( f(0) ⊗m(0)) ⊗ β( f(1))α−1(m(1))

= f(0)(m(0))β( f(1))α−1(m(1))

= f (m(0))α−1(S(m(1)1)m(1)2)
= dM( f ⊗m)(0) ⊗ dM( f ⊗m)(1).

It is straightforward to verify that
(idM ⊗ dM)(bM ⊗ idM) = idM and (dM ⊗ idM∗ )(idM∗ ⊗ bM) = idM∗ .
Similarly we can prove that ∗M is a right dual of M. The proof is completed.

Now we are in a position to construct a coquasitriangular Turaev group algebra over G, denoted by
CT(H) such that the T-category Corep(CT(H)) of corepresentation of CT(H) is isomorphic to ŶD(H) as
braided T-categories.

For (α, β) ∈ G, the (α, β)-component CT(H)α,β will be the diagonal crossed coproduct H∗op ./ H(α, β).
Define multiplication by

m(α,β),(γ,δ) :H∗op ./ H(α, β) ⊗H∗op ./ H(γ, δ) −→ H∗op ./ H((α, β) ∗ (γ, δ)),

(p ./ h) ⊗ (q ./ h′) 7→ qp ./ δ(h)δαδ−1(h′). (4.1)

Then we have the following result.
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Proposition 4.10. CT(H) becomes a Turaev G-algebra under the diagonal crossed coproduct and multiplication (4.1).
The antipode is given by

S(α,β) : H∗op ./ H(α, β) −→ H∗op ./ H((α, β)−1),

p ./ h 7→
∑

i, j

hiS−1∗(p)S−1∗(h j) ./ β−1(h j)β−1α−1S(h1)β−1α−1β(hi).

Proof. The multiplication is associative. For all f ./ h ∈ H∗op ./ H(α, β), p ./ h′ ∈ H∗op ./ H(γ, δ), q ./ h′′ ∈
H∗op ./ H(µ, ν), we compute

[( f ./ h)(p ./ h′)](q ./ h′′) = (p f ./ δ(h)δαδ−1(h′))(q ./ h′′)

= qp f ./ νδ(h)νδαδ−1(h′)νδαδ−1γν−1(h′′)

= ( f ./ h)(qp ./ ν(h′)νγν−1(h′′))
= ( f ./ h)[(p ./ h′)(q ./ h′′)],

as claimed. Next we prove that m(α,β),(γ,δ) is a coalgebra map. Indeed,

m(α,β),(γ,δ)((p ./ h)1 ⊗ (q ./ h′)1) ⊗m(α,β),(γ,δ)((p ./ h)2 ⊗ (q ./ h′)2)

=
∑
i, j,s,t

m(α,β),(γ,δ)(p1 ./ β(h j)h1αS−1(hi) ⊗ q1 ./ δ(hs)h′1γS−1(ht))

⊗m(α,β),(γ,δ)(hip2h j ./ h2 ⊗ htq2hs ./ h′2)

=
∑
i, j,s,t

q1p1 ./ δβ(h j)δ(h1)δαS−1(hi)δα(hs)δαδ−1(h′1)δαδ−1γS−1(ht)

⊗ htq2hship2h j ./ δ(h2)δαδ−1(h′2)

=
∑

j,t

q1p1 ./ δβ(h j)δ(h1)δαδ−1(h′1)δαδ−1γS−1(ht) ⊗ htq2p2h j ./ δ(h2)δαδ−1(h′2)

= (qp ./ δ(h)δαδ−1(h′))1 ⊗ (qp ./ δ(h)δαδ−1(h′))2

= m(α,β),(γ,δ)(p ./ h ⊗ q ./ h′)1 ⊗m(α,β),(γ,δ)(p ./ h ⊗ q ./ h′)2,

as required. Easy to see that (ε ./ 1)1 ⊗ (ε ./ 1)2 = ε ./ 1 ⊗ ε ./ 1.
We now check that S is the antipode of CT(H).

S(α,β)((p ./ h)1)(p ./ h)2

=
∑

i, j

S(α,β)(p1 ./ β(h j)h1αS−1(hi))(hip2h j ./ h2)

=
∑
i, j,s,t

(hsS−1∗(p1)S−1∗(ht) ./ β−1(hthi)β−1α−1S(h1)β−1α−1βS(h j)β−1α−1β(hs))(hip2h j ./ h2)

=
∑
i, j,s,t

hip2h jhsS−1∗(p1)S−1∗(ht) ./ hthiα
−1S(h1)α−1β(S(h j)hs)α−1(h2)

=
∑
i, j,t

hip2h jS−1∗(p1)S−1∗(ht) ./ hthiα
−1S(h1)α−1β(S(hi1)hi2)α−1(h2)

=
∑
i, j,t

hip2S−1∗(p1)S−1∗(ht) ./ hthiα
−1S(h1)α−1(h2)

= p(1)ε(h)ε ./ 1.

Thus S(α,β) ∗ id(α,β) = ε(α,β)ε ./ 1. Similarly one can verify that id(α,β) ∗ S(α,β) = ε(α,β)ε ./ 1. S is the antipode of
CT(H). The proof is completed.
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Proposition 4.11. Moreover CT(H) is a crossed Turaev G-algebra with the crossing ψ given by

ψ(α,β) :H∗op ./ H(γ, δ) −→ H∗op ./ H((α, β) ∗ (γ, δ) ∗ (α, β)−1),

p ./ h 7→ p ◦ α−1β ./ β−1δαδ−1(h).

Proof. First of all ψ(α,β) is bijective and for all p ∈ H∗, h ∈ H,

ψ(α,β)(p ./ h)1 ⊗ ψ(α,β)(p ./ h)2

= (p ◦ α−1β ./ β−1δαδ−1(h))1 ⊗ (p ◦ α−1β ./ β−1δαδ−1(h))2

=
∑

i, j

p1 ◦ α
−1β ./ β−1δβ(h j)β−1δαδ−1(h1)β−1δαδ−1γα−1βS−1(hi) ⊗ hi(p2 ◦ α

−1β)h j ./ β−1δαδ−1(h2)

=
∑

i, j

p1 ◦ α
−1β ./ β−1δα(h j)β−1δαδ−1(h1)β−1δαδ−1γS−1(hi) ⊗ (hip2h j) ◦ α−1β ./ β−1δαδ−1(h2)

=
∑

i, j

ψ(α,β)(p1 ./ δ(h j)h1γS−1(hi)) ⊗ ψ(α,β)(hip2h j ./ h2)

= ψ(α,β)((p ./ h)1) ⊗ ψ(α,β)((p ./ h)2).

Thus ψ(α,β) is a coalgebra isomorphism. And

(i) ψ is multiplicative, since for h ∈ H(µ, ν)

ψ(α,β)ψ(γ,δ)(p ./ h) = ψ(α,β)(p ◦ γ−1δ ./ δ−1νγν−1(h))

= p ◦ γ−1δα−1β ./ β−1δ−1νδαδ−1γν−1(h)
= ψ(δαδ−1γ,δβ)(p ./ h)

= ψ(α,β)∗(γ,δ)(p ./ h).

Obviously ψ(1,1)(CT(α, β)) = id(α,β).

(ii) For p, q ∈ H∗ and h ∈ H(γ, δ), h′ ∈ H(µ, ν),

ψ(α,β)(p ./ h)ψ(α,β)(q ./ h′) = (p ◦ α−1β ./ β−1δαδ−1(h))(q ◦ α−1β ./ β−1ναν−1(h′))

= qp ◦ α−1β ./ β−1νδαδ−1(h)β−1νδαδ−1γν−1(h′)

= qp ◦ α−1β ./ β−1νδαδ−1ν−1(ν(h)νγν−1(h′))

= ψ(α,β)(qp ./ ν(h)νγν−1(h′))
= ψ(α,β)((p ./ h)(q ./ h′)).

(iii) ψ(α,β)(ε ./ 1) = ε ./ 1.

(iv)

ψ(α,β)S(γ,δ)(p ./ h) =
∑

i, j

ψ(α,β)(hiS−1∗(p)S−1∗(h j) ./ δ−1(h j)δ−1γ−1(S(h))δ−1γ−1δ(hi))

=
∑

i, j

(hiS−1∗(p)S−1∗(h j)) ◦ α−1β ./ β−1δ−1αδ(δ−1(h j)δ−1γ−1(S(h))δ−1γ−1δ(hi))

=
∑

i, j

(hiS−1∗(p)S−1∗(h j)) ◦ α−1β ./ β−1δ−1α(h jγ
−1(S(h))γ−1δ(hi))

=
∑

i, j

hiS−1∗(p ◦ α−1β)S−1∗(h j) ./ β−1δ−1β(h j)β−1δ−1αγ−1S(h)β−1δ−1αγ−1δα−1β(hi)

= S(α,β)∗(γ,δ)∗(α,β)−1 (p ◦ α−1β ./ β−1δαδ−1(h))

= S(α,β)∗(γ,δ)∗(α,β)−1ψ(α,β)(p ./ h).
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The proof is completed.

Proposition 4.12. CT(H) is coquasitriangular with the structure

σ(α,β),(γ,δ)(p ./ h, q ./ h′) = p(δ−1(h′))q(1)ε(h).

Proof. For all f , p, q ∈ H∗, h ∈ H(α, β), h′ ∈ H(γ, δ), h′′ ∈ H(µ, ν),
For (TCT1):

σ(α,β)∗(γ,δ),(µ,ν)(( f ./ h)(p ./ h′), (q ./ h′′)) = σ(α,β)∗(γ,δ),(µ,ν)(p f ./ δ(h)δαδ−1(h′), (q ./ h′′))

= p f (ν−1(h′′))q(1)ε(hh′)

= p(ν−1(h′′1 )) f (ν−1(h′′2 ))q(1)ε(hh′),

and

σ(α,β),(µ,ν)( f ./ h, (q ./ h′′)2)σ(γ,δ),(µ,ν)(p ./ h′, (q ./ h′′)1)

=
∑

i, j

σ(α,β),(µ,ν)( f ./ h, hiq2h j ./ h′′2 )σ(γ,δ),(µ,ν)(p ./ h′, q1 ./ ν(h j)h′′1 µS−1(hi))

=
∑

i, j

f (ν−1(h′′2 ))h j(1)q2(1)hi(1)ε(h)p(h jν
−1(h′′1 )ν−1µS−1(hi))

= f (ν−1(h′′2 ))p(ν−1(h′′1 ))ε(hh′)q(1).

For (TCT2):

σ(α,β),(γ,δ)∗(µ,ν)( f ./ h, (p ./ h′)(q ./ h′′)) = σ(α,β),(γ,δ)∗(µ,ν)( f ./ h, qp ./ ν(h′)νγν−1(h′′))

= f (δ−1(h′γν−1(h′′)))qp(1)ε(h),

and

σ(α,β),(γ,δ)(( f ./ h)1, p ./ h′)σ(γ,δ)−1∗(α,β)∗(γ,δ),(µ,ν)(ψ(γ,δ)−1 (( f ./ h)2), q ./ h′′)

=
∑

i, j

σ(α,β),(γ,δ)( f1 ./ β(h j)h1αS−1(hi), p ./ h′)

σ(γ,δ)−1∗(α,β)∗(γ,δ),(µ,ν)(ψ(γ,δ)−1 (hi f2h j ./ h2), q ./ h′′)

= f1(δ−1(h′))p(1)σ(γ,δ)−1∗(α,β)∗(γ,δ),(µ,ν)( f2 ◦ δ−1γ ./ δβδ−1γ−1δβ−1(h2), q ./ h′′)

= f1(δ−1(h′))qp(1) f2(δ−1γν−1(h′′))ε(h)

= f (δ−1(h′)δ−1γν−1(h′′))qp(1)ε(h).

For (TCT3):

σ(α,β),(γ,δ)(( f ./ h)1, (p ./ h′)1)(p ./ h′)2ψ(γ,δ)−1 (( f ./ h)2)

=
∑
i, j,s,t

σ(α,β),(γ,δ)( f1 ./ β(h j)h1αS−1(hi), p1 ./ δ(hs)h′1γS−1(ht))(htp2hs ./ h′2)ψ(γ,δ)−1 (hi f2h j ./ h2)

=
∑

s,t

f1(hsδ
−1(h′1)δ−1γS−1(ht))p1(1)(htp2hs ./ h′2)ψ(γ,δ)−1 ( f2 ./ h)

=
∑

s,t

f1(hsδ
−1(h′1)δ−1γS−1(ht))p1(1)(htp2hs ./ h′2)( f2 ◦ δ−1γ ./ δβδ−1γ−1δβ−1(h))

=
∑

s,t

f1(hsδ
−1(h′1)δ−1γS−1(ht))( f2 ◦ δ−1γ)htphs ./ δβδ−1(h′2)δ(h)

=
∑

s,t

f2(δ−1(h′1))( f4 ◦ δ−1γ)( f3 ◦ δ−1γS−1)p f1 ./ δβδ−1(h′2)δ(h)

= f2(δ−1(h′1))p f1 ./ δβδ−1(h′2)δ(h),
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and

( f ./ h)1(p ./ h′)1σ(α,β),(γ,δ)(( f ./ h)2, (p ./ h′)2)

=
∑
i, j,s,t

( f1 ./ β(h j)h1αS−1(hi))(p1 ./ δ(hs)h′1γS−1(ht))σ(α,β),(γ,δ)(hi f2h j ./ h2, htp2hs ./ h′2)

=
∑
i, j,s,t

p1 f1 ./ δβ(h j)δ(h1)δαS−1(hi)δα(hs)δαδ−1(h′1)δαδ−1γS−1(ht)hi f2h j(δ−1(h′2))ε(h2)htp2hs(1)

= p f1 ./ δβδ−1(h′4)δ(h)δαδ−1S−1(h′2)δαδ−1(h′1) f2(δ−1(h′3))

= p f1 ./ δβδ−1(h′2)δ(h) f2(δ−1(h′1)).

For (TCT4):

σ(α,β)∗(γ,δ)∗(α,β)−1,(α,β)∗(µ,ν)∗(α,β)−1 (ψ(α,β)(p ./ h′), ψ(α,β)(q ./ h′′))

= σ(α,β)∗(γ,δ)∗(α,β)−1,(α,β)∗(µ,ν)∗(α,β)−1 (p ◦ α−1β ./ β−1δαδ−1(h′), q ◦ α−1β ./ β−1ναν−1(h′′))

= p(ν−1(h′′))q(1)ε(h′)
= σ(γ,δ),(µ,ν)(p ./ h′, q ./ h′′).

The proof is completed.

By the arguments after Proposition 4.3 we obtain the main result:

Theorem 4.13. Corep(CT(H)) and ŶD(H) are isomorphic as braided T-categories over G.

Example 4.14. Let π be a group, then we have a group algebra k(π). It is well known that the group AutHop f (k(π)) of
Hopf automorphisms of k(π) is equal to the group Aut(π) of automorphisms of π. Let α, β ∈ Aut(π). An (α, β)-Yetter-
Drinfel’d module is a leftπ-module M with a decomposition M =

⊕
a∈π Ma, where Ma = {m ∈M|m(0)⊗m(1) = m⊗a}.

If α, β, γ, δ ∈ Aut(π), M ∈ k(π)YD
k(π)(α, β) and N ∈ k(π)YD

k(π)(γ, δ), then M⊗N ∈ k(π)YD
k(π)(δαδ−1γ, δβ) with

action a · (m ⊗ n) = a · m ⊗ a · n for all a ∈ π,m ∈ M,n ∈ N, and decomposition M ⊗ N =
⊕

c∈π(
⊕

ab=c Mδ−1(a) ⊗

Nδα−1δ−1(b)).
If α, β ∈ Aut(π) and N ∈ k(π)YD

k(π)(γ, δ), then (α,β)N = N as vector space with action a ⇀ n = α−1β(a) · n for all
a ∈ π,n ∈ N, and decomposition (α,β)N =

⊕
a∈π Nδα−1δ−1β(a).

With the above notations, the braiding cM,N : M ⊗N →MN ⊗M acts on homogeneous elements m ∈Ma,n ∈ Nb
as cM,N(m ⊗ n) = α−1(a) · n ⊗m(0). Therefore Mα ⊗Nβ is sent to Nδα−1(a)bγα−1(a−1) ⊗Ma.

Now assume that M ∈ k(π)YD
k(π)(α, β) is finite dimensional. Since S = S−1 for k(π), we have M∗ = ∗M, and for

all a ∈ π,m ∈M, f ∈M∗, (a · f )(m) = f (a−1
·m) with decomposition M∗ =

⊕
a∈π(Mβ−1α−1(a))∗.

Let π be a finite group and {pa}a∈π the dual of k(π). For α, β ∈ Aut(π), the component CT(k(π))(α, β) = k(π)∗op ./
k(π) with comultiplication

∆̄(pc ./ d) =
∑
ab=c

pa ./ β(b)dα(b−1) ⊗ pb ./ d,

for all c, d ∈ π. Furthermore for a ∈ k(π)(α, β) and b ∈ k(π)(γ, δ),

(pc ./ a)(pd ./ b) = δc,dpc ./ δ(a)δαδ−1(b),

1CT(k(π))(id,id) =
∑
a∈π

pa ⊗ 1,

ψ(α,β)(pc ./ d) = pβ−1α(c) ⊗ β
−1δαδ−1(d),

S(α,β)(pc ./ a) = pc−1 ./ β−1(c)β−1α−1(a−1)β−1α−1β(c−1),
σ(α,β),(γ,δ)((pc ./ a), (pd ./ b)) = δb,δ(c)δ1,d.
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