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Angles and Quasiconformal Mappings Between Manifolds

Jian-Feng Zhua

aSchool of Mathematical Sciences, Huaqiao University, Quanzhou-362021, China

Abstract. In this paper we discuss the distortion of angles under quasiconformal deformation between
manifolds. Moreover, we obtain some useful inequalities.

1. Introduction

First we introduce some basic concepts as follows.

1.1. Dilatations
Let D,D′ be subdomains of Rn and f : D → D′ be a differentiable homeomorphism and denote its

Jacobian by J(x, f ) , x ∈ D. If x ∈ D and J(x, f ) , 0 , then the derivative of f at x ∈ D is a bijective linear
mapping f ′(x) : Rn

→ Rn and we denote

HI( f ′(x)) =
|J(x, f )|
λ f (x)n , HO( f ′(x)) =

Λ f (x)n

|J(x, f )|
, H( f ′(x)) =

Λ f (x)
λ f (x)

, (1)

where
Λ f (x) := max{| f ′(x)h| : |h| = 1} and λ f (x) := min{| f ′(x)h| : |h| = 1}.

Sometimes instead of Λ f (x) we use notation | f ′(x)|, to denote the norm of the matrix A = f ′(x). Ifλ2
1 ≤ · · · ≤ λ

2
n

(λi > 0, i = 1, 2, · · · ,n) are eigenvalues of the symmetric matrix AAt where At is the adjoint of A, then we
have the following well-known formulas

|J(x, f )| =
n∏

k=1

λk, Λ f (x) = λn, λ f (x) = λ1. (2)

By (1) and (2), we arrive at the following simple inequalities [6, 14.3]

H( f ′(x)) ≤ min{HI( f ′(x)),HO( f ′(x))} ≤ H( f ′(x))n/2. (3)
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H( f ′(x))n/2
≤ max{HI( f ′(x)),HO( f ′(x))} ≤ H( f ′(x))n−1. (4)

The quantities
KI( f ) = sup

x∈D
HI( f ′(x)), KO( f ) = sup

x∈D
HO( f ′(x))

are called the inner and outer dilatation of f , respectively. The maximal dilatation of f is

K( f ) = max{KI( f ),KO( f )}.

1.2. Quasiconformal Mappings Between Open Sets

In the literature, see e.g. [4], we can find various definitions of quasiconformality which are equivalent.
The following analytic definition for quasiconformal mappings is from [6, Theorem 34.6]: a homeomor-
phism f : D→ D′ is C-quasiconformal if and only if the following conditions are satisfied: (i) f is ACL; (ii)
f is differentiable a.e.; (iii) Λ f (x)n/C ≤ |J(x, f )| ≤ Cλ f (x)n for a.e. x ∈ D. By [6, Theorem 34.4], if f satisfies
the conditions (i), (ii) and J(x, f ) , 0 a.e., then

KI( f ) = ess sup
x∈D

HI( f ′(x)), KO( f ) = ess sup
x∈D

HO( f ′(x)).

Hence (iii) can be written as K( f ) ≤ C which by (4) is equivalent to

H( f ′(x)) ≤ K for a.e. x ∈ D. (5)

Here the constant K ≤ C2/n. In this paper we say that a quasiconformal mapping f : D → D′ is K-
quasiconformal if K satisfies (5). For other definition of quasiconformal mappings we refer to [5],[7],[8].

It is important to notice that f is K-quasiconformal if and only if f−1 is K-quasiconformal and that the
composition of K1 and K2 quasiconformal mappings is K1K2-quasiconformal. ( It is well-known that this
also holds for K - quasiconformality in Väisälä’s sense, see [6, Corollary 13.3, Corollary 13.4]).

1.3. Quasiconformal Mappings Between Manifolds

Let M and N be connected separable, orientable n-dimensional (n ≥ 2) differentiable manifolds of class
C1 The tangent bundle of M is denoted by TM. The derivative of a differentiable mapping f : M → N
is a fibre mapping D f : TM → TN. If we repeat the approach from the previous subsection to the linear
mapping A(p) = D f (p), we arrive to the notation of K - quasiconformality of f at p ∈M.

1.4. Angles Between Two Vectors

Let a, b ∈ Rn be two vectors and 〈a|b〉 denotes the standard inner product of vectors. If θ is the angle of
these two vectors, then we have

cos(θ) =
〈a|b〉
|a| · |b|

.

2. The Main Results

It is well-known that smooth conformal mappings preserves the angles between the curves. What is
less-known is that to what extend the angles change under quasiconformal mappings. Two classical papers
by Agard and Ghering [2] and by Agard [1], bring much light on this topic for two and three dimensional
case. The main result of the paper is the following theorem.
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Theorem 2.1. Let f be a K−quasiconformal mapping between two orientable n-dimensional (n ≥ 2) differentiable
manifolds of class C1 and let γ1 and γ2 be two smooth curves making the angle s in their intersection point p ∈ M,
where the Jacobian of f does not vanish. Then the angle t between δ1 = f (γ1) and δ2 = f (γ2) in q = f (p) satisfies the
following inequality

| cos t| ≤
H + cos s

1 + H cos s
; (6)

where H = (K2
− 1)/(K2 + 1). Moreover if B = D f (p)∗D f (p) and t = t(s) is the infinum of all angles between

curves γ1 and γ2 passing throughout p and making the angle s, then there are vectors h and k such that |h| = |k| and
〈Bh, h〉 = 〈Bk, k〉 = 1 so that

cos t = 〈Bh, k〉 =
Ki, j + cos s

1 + K2
i, j cos s

where

Ki, j =
λ2

i − λ
2
j

λ2
i + λ j

,

and λ2
i , i = 1, . . . ,n are eigenvalues of B.

Remark 2.2. Under the condition of the Theorem 2.1, for two-dimensional planar domains case Agard and Ghering
in [2, Theorem 1], proved that

t ≥
s
K
. (7)

Let us show that (6) implies (7). It is enough to show that for s ∈ [0, π/2],

Φ(s) := arccos
H + cos s

1 + H cos s
−

s
K
≥ 0,

where H = (K2
− 1)/(K2 + 1). By differentiating Φ, we obtain

Φ′(s) =
2K

1 + K2 + (−1 + K2) cos s
.

Thus Φ′(s) ≥ 0, which implies that Φ(s) ≥ Φ(0) = 0. Further in [1], Agard proved for three-dimensional case the
inequality

tan
s
2
≥

1
K

tan
t
2
. (8)

It can be shown that (6) is equivalent with (8), but the proof given in [1] is applied only on the three-dimensional case,
and the present proof is different and hold for an Euclidean space of arbitrary dimension and for manifolds as well.

Proof. Fix p ∈M and let q = f (p) ∈ N. Let γi : [−1, 1]→M, i = 1, 2, and γi(0) = p and assume that their angle
is s, then the curves δ1, δ2 have the intersection point q and make the angle t at it. We should prove that

−
H + cos s

1 + H cos s
≤ cos t ≤

H + cos s
1 + H cos s

.

Let A = D f (p), B = A∗A, h = γ′1(0), k = γ′2(0). Since TMp � Rn � TNq, we will identify both TMp and TNq by
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Rn. Let 〈a|b〉 denotes the standard inner product of vectors. Then

cos t =

〈
δ′1(0)|δ′2(0)

〉
|δ′1(0)| · |δ′2(0)|

=

〈
D f (p)γ′1(0)|D f (p)γ′2(0)

〉
|D f (p)γ′1(0)| · |D f (p)γ′2(0)|

=

〈
Aγ′1(0)|Aγ′2(0)

〉
|Aγ′1(0)| · |Aγ′2(0)|

=
〈Bh|k〉

√
〈Bh|h〉

√
〈Bk|k〉

.

Here

h′ =
h

√
〈Bh|h〉

and

k′ =
k

√
〈Bk|k〉

.

We see that

〈Bh′|h′〉 =

〈
B

h
√
〈Bh|h〉

,
h

√
〈Bk|k〉

〉
= 1

and

〈Bk′|k′〉 =

〈
B

k
√
〈Bk|k〉

,
k

√
〈Bk|k〉

〉
= 1.

Thus we solve the extremal problem

• 〈Bh|k〉 → Ext

under the conditions

1. 〈Bh|h〉 = 1,
2. 〈Bk|k〉 = 1 and
3. 〈h|k〉 − cos s|h| · |k| = 0.

We consider the set

K = {(h, k) ∈ Rn
× Rn : 〈Bh|h〉 = 1, 〈Bk|k〉 = 1, 〈h|k〉 − cos s|h| · |k| = 0},

which is compact, because det B , 0. Then there exists (h0, k0) ∈ K such that

〈Bh0|k0〉 = max
(h,k)∈K

〈Bh|k〉 .

Thus it is necessary and sufficient to find the maximum of the function 〈Bh|k〉 inK . The Lagrangian is

L = 〈Bh|k〉 + µ 〈Bh|h〉 + ν 〈Bk|k〉 + η(〈h|k〉 − cos s|h| · |k|).

Then by differentiatingLw.r.t. h and k, we obtain that the stationary points on the intersections of Descartes
product of ellipsoids 〈Bh|h〉 = 1, 〈Bk|k〉 = 1 and the set 〈h|k〉 − cos s|h| · |k| = 0 satisfy the equations

Lh = Bk + 2µBh + η(k − cos(s)h
|k|
|h|

) = 0, (9)
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Lk = Bh + 2νBk + η(h − cos(s)k
|h|
|k|

) = 0 (10)

where µ, ν and η are some real constants. Then

〈Bk|h〉 + 2µ 〈Bh|h〉 = 0, 〈Bh|k〉 + 2ν 〈Bk|k〉 = 0, (11)

implying that µ = ν and

〈Bh|k〉 = −2µ (12)

and

η(〈k, k〉 − cos(s) 〈k, h〉
|k|
|h|

) = η(〈h, h〉 − cos(s) 〈k, h〉
|h|
|k|

).

The last implies that

η

(
|k|2 − |h|2 − cos(s) 〈k, h〉

|k|2 − |h|2

|k| · |h|

)
= 0.

Thus
η(|k|2 − |h|2) sin2(s) = 0.

This implies that |h| = |k|, or s = 0 or η = 0. Since the cases s = 0 and η = 0 are trivial we consider only the
case |h| = |k|. Let

P =

(
2µ 1
1 2µ

)
.

Then the system (9) and (10) can be written as

PB
(

h
k

)
=

 η cos(s) |k|
|h| −η

−η η cos(s) |h|
|k|

 ( h
k

)
,

or

B
(

h
k

)
= Q

(
h
k

)
(13)

where

Q = P−1
·

 η cos(s) |k|
|h| −η

−η η cos(s) |h|
|k|

 .
So we need to consider the matrix Q and determine its eigenvectors and eigenvalues. First we have that

Q =

 2µ
4µ2−1

1
1−4µ2

1
1−4µ2

2µ
4µ2−1

 ·
 η cos(s) |k|

|h| −η

−η η cos(s) |h|
|k|


i.e.

Q =


η(|h|+2|k|µ cos(s))
|h|(−1+4µ2)

η(2|h|µ+|k| cos(s))
|h|−4|h|µ2

η(2|h|µ+|k| cos(s))
|h|−4|h|µ2

η(|h|+2|k|µ cos(s))
|h|(−1+4µ2)

 .
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Then

det(Q − λI) =
η2

(
−|h|2 + |k|2 cos2 s

)
|h|2

(
−1 + 4µ2) +

2η(|h| + 2|k|µ cos s)λ
|h| − 4|h|µ2 + λ2.

In view of the fact that |h| = |k|we have
det(Q − λI) = 0

if and only if

λ =
η(−1 + cos(s))

1 + 2µ
or λ =

η(1 + cos(s))
−1 + 2µ

.

Thus in view of (13) we have

η(−1 + cos(s))
1 + 2µ

= λ2
i , and

η(1 + cos(s))
−1 + 2µ

= λ2
j ,

where λ2
i and λ2

j are eigenvalues of the positive operator B.
Then

µ = −
λ2

i − λ
2
j + λ2

i cos(s) + λ2
j cos(s)

2(λ2
i + λ2

j + λ2
i cos(s) − λ2

j cos(s))

and

η = −
(2λ2

i λ
2
j )

λ2
i + λ2

j + λ2
i cos(s) − λ2

j cos(s)
.

Inserting µ in (12), we obtain that

〈Bh|k〉 =
λ2

i − λ
2
j + λ2

i cos(s) + λ2
j cos(s)

(λ2
i + λ2

j + λ2
i cos(s) − λ2

j cos(s))
. (14)

So

〈Bh|k〉 =
Ki, j + cos(s)

1 + Ki, j cos(s)
, (15)

where

Ki, j =
1 −

λ2
j

λ2
i

1 +
λ2

j

λ2
i

.

This finishes the proof

Now we infer the following.

Theorem 2.3. Let 0 < λ1 ≤ · · · ≤ λn and ai, bi, i = 1, . . . ,n be real numbers such that

n∑
i=1

aibi = cos(s)

√√
n∑

i=1

a2
i

√√
n∑

i=1

b2
i .

Then

n∑
i=1

λiaibi ≤
H + cos(s)

1 + H cos(s)

√√
n∑

i=1

λia2
i

√√
n∑

i=1

λib2
i ,

where H = (λn − λ1)/(λn + λ1)
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Proof. Let B = (bi, j) be a n×n diagonal matrix satisfies bi,i = λi for i = 1, 2, · · · ,n, where 0 < λ1 ≤ λ2 ≤ · · · ≤ λn
are given by Theorem 2.3, and bi, j = 0 for every i , j. Let a = (a1, a2, · · · , an) and b = (b1, b2, · · · , bn) be two
vectors in Rn. If we set

h =
a

√
〈Ba|a〉

and
k =

b
√
〈Bb|b〉

,

then we have
〈Bh|h〉 = 1 = 〈Bk|k〉.

Since

〈Ba|b〉 =

n∑
i=1

λiaibi,

we see that it is enough to find the maximum of 〈Ba|b〉. According to the proof of Theorem 2.1 we see that

max 〈Bh|k〉 =
Ki, j + cos(s)

1 + Ki, j cos(s)

where cos(s) = 〈a|b〉
|a|·|b| ,

Ki, j =
1 − λ j

λi

1 +
λ j

λi

,

and λi, λ j are eigenvalues of the matrix B (c.f. (15), here we use λi > 0 instead of λ2
i ).

It is easy to see that the function ϕ1(t) := 1−t
1+t is a decreasing function for t > 0. Therefore we have

Ki, j ≤
1 − λ1

λn

1 + λ1
λn

:= H.

The function ϕ2(t) := t+cos(s)
1+t cos(s) is an increasing function of t > 0. Hence we have

〈Bh|k〉 ≤
H + cos(s)

1 + H cos(s)
.

By the assumption we know that
〈Ba|b〉 = 〈Bh|k〉 · 〈Ba|a〉 · 〈Bb|b〉.

This shows that
〈Ba|b〉 ≤

H + cos(s)
1 + H cos(s)

〈Ba|a〉 · 〈Bb|b〉

which implies that
n∑

i=1

λiaibi ≤
H + cos(s)

1 + H cos(s)

√√
n∑

i=1

λia2
i

√√
n∑

i=1

λib2
i .

The proof is completed.

Corollary 2.4. Let 0 < λ1 ≤ · · · ≤ λn and ai and bi be real numbers such that

n∑
i=1

aibi = 0.
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Then

n∑
i=1

λiaibi ≤
K − 1
K + 1

√√
n∑

i=1

λia2
i

√√
n∑

i=1

λib2
i ,

where K = λn/λ1.

Proof. This is a special case of Theorem 2.3 with cos(s) = 0.

Remark 2.5. Let us explore the equality statement of Corollary 2.4 for the case n = 2. Assume that a = (a1, a2) and
b = (b1, b2). Let a2 = b2 = ξ, a1 = t, λ1 < λ2. Then the equality of the above Corollary 2.4 shows that

λ1a1b1 + λ2a2b2 =

λ2
λ1
− 1

λ2
λ1

+ 1

√
λ1a2

1 + λ2a2
2

√
λ1b2

1 + λ2b2
2.

Using
2∑

i=1
aibi = 0, we have

ξ2(λ2 + λ1) =

√
(λ1t2 + λ2ξ2)(λ1

ξ4

t2 + λ2ξ2).

Take squared from the both side and Simply the equality we obtain

λ1λ2ξ
2t4
− 2λ1λ2ξ

4t2 + λ1λ2ξ
6 = 0,

which implies that (t2
− ξ2) = 0. Therefore t = ±ξ.
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