A Note on the System oif Linear Recurrence Equations

Vladimir Baltića
${ }^{a}$ Faculty of Organizational Sciences, University of Belgrade, Serbia

Abstract

We will find a solution to a system of 2^{d} linear recurrence equations. Each equation is of the form $x_{2 k}(n+1)=x_{k}(n)$ or $x_{2 k+1}(n+1)=x_{k}(n)+x_{2^{d-1}+k}(n)$. This kind of system is connected with counting restricted permutations.

1. Introduction

The study of restricted permutations has a long history. Probably the most well known example is derangement problem or "le Problème des Rencontres" (see [4]). "Today, most of the restricted permutations considered in the literature deal with pattern avoidance. For an exhaustive survey of such studies, see [5]. For a related topic of pattern avoidance in compositions and words see [3] and in set partitions see [7]. Study of permutation patterns has applications in counting different combinatorial structures, computer science, statistical mechanics and computational biology [5, Ch.2,3].

Another type of restricted permutations is a generalization of the derangement problem. Detailed historical introduction to restricted permutations of this kind can be found in [1,2]. Let p be a permutation of the set $\mathbb{N}_{n}=\{1,2, \ldots, n\}$. So, $p(i)$ refers to the value taken by the function p when evaluated at a point i. Mendelsohn, Lagrange, Lehmer, Tomescu and Stanley studied particular types of strongly restricted permutations satisfying the condition $|p(i)-i| \leq d$, where d is 1,2 , or 3 (more information on their work can be found in [1]). In [1] we pursue more general, asymmetric cases and we end up with asymmetric cases with more forbidden positions.

In [1] we developed a technique for counting restricted permutations of \mathbb{N}_{n} satisfying the conditions $-k \leq p(i)-i \leq r$ (for arbitrary natural numbers k and r) and $p(i)-i \notin I$ (for some set I). For a given k, r and I the technique produces a system of linear recurrence equations. When trying to determine the reduced system in a particular case, we get the following system of linear recurrence equations:

$$
\begin{align*}
x_{2 k}(n+1) & =x_{k}(n) \\
x_{2 k+1}(n+1) & =x_{k}(n)+x_{2^{d-1}+k}(n) \tag{*}
\end{align*}
$$

for $k=0,1, \ldots, 2^{d-1}-1$.
Purpose of this note is to solve the system (*) (for other type of systems, we refer the reader to [6]). Solution of a special case of $(*)$ is given in Lemma 2.1, which is used to solve the general case of $(*)$ in Theorem 2.2.

[^0]Now we will introduce some notations.
The number $n<2^{d}$ in binary form is represented by $n_{2}=\left(b_{d-1} b_{d-2} \ldots b_{1} b_{0}\right)_{2}$, where $b_{i} \in\{0,1\}$ and $n=\sum_{s=0}^{d-1} b_{s} \cdot 2^{s}$.

Binary operation \oplus is given by $x \oplus y=x+y(\bmod d)$.
For each position $s, 0 \leq s \leq d-1$, let us introduce the function

$$
f_{s}(a, b, r)= \begin{cases}1, & a_{s}=b_{s \oplus r} \\ 0, & a_{s}=1, b_{s \oplus r}=0 \\ t, & a_{s}=0, b_{s \oplus r}=1, s<d-r \\ t+1, & a_{s}=0, b_{s \oplus r}=1, s \geq d-r\end{cases}
$$

2. Main Results

Lemma 2.1. \quad Suppose we have a system of 2^{d} linear recurrence equations which are of the form $x_{2 k}(n+1)=x_{k}(n)$ and $x_{2 k+1}(n+1)=x_{k}(n)+x_{2^{d-1}+k}(n)$ for $k=0,1, \ldots, 2^{d-1}-1$, where $0 \leq a, b \leq 2^{d}-1$ and for some $a, x_{a}(0)=1$, while for all $b \neq a, x_{b}(0)=0$.
Then for $n=d \cdot t+r, 0 \leq r \leq d-1$, the following equality is true:

$$
x_{b}(n)=\prod_{s=0}^{d-1} f_{s}(a, b, r)
$$

Proof. Let us prove that this solution satisfies the initial conditions and the equations of the first type and the second type of a given system.
1° the initial conditions
For $n=0=d \cdot 0+0$ we have that $r=0$, so $s \oplus r=s \oplus 0=s$.
If $b=a$ for each position applies $a_{s}=b_{s}$, therefore $f_{s}(a, a, 0)=1$, which implies that

$$
x_{a}(0)=\prod_{s=0}^{d-1} 1=1
$$

If $b \neq a$, then there is a position s from where the binary forms a_{2} and b_{2} differ.
If $a_{s}=1$ and $b_{s}=0$, it immediately follows that $f_{s}(a, b, 0)=0$.
If $a_{s}=0$ and $b_{s}=1$, as is true for $s<d=d-r$, we have that $f_{s}(a, b, 0)=t=0$.
When $b \neq a$ in both cases we get that $f_{s}(a, b, 0)=0$ for some s, which implies that $x_{b}(0)=0$.
$\underline{2^{\circ} x_{2 k}(n+1)=x_{k}(n)}$
Let $b=2 k$, for $k<2^{d-1}$.
For binary forms

$$
(k)_{2}=\left(b_{d-1}, b_{d-2}, \ldots, b_{1}, b_{0}\right) \quad \text { and } \quad(2 k)_{2}=\left(b_{d-1}^{\prime}, b_{d-2}^{\prime}, \ldots, b_{1}^{\prime}, b_{0}^{\prime}\right)
$$

we have that $(2 k)_{2}$ is obtained from $(k)_{2}$ with cyclic shift to the left by one position, i.e. $b_{s \oplus 1}^{\prime}=b_{s}$. Also, with increasing n to $n+1$ we have that the remainder of the division with d increases by 1 modulo d, i.e. $r^{\prime}=r \oplus 1$. Now we will prove the equality $x_{2 k}(n+1)=x_{k}(n)$ by considering the following cases:

- If $a_{s}=b_{s \oplus r} \Rightarrow a_{s}=b_{s \oplus r}=b_{(s \oplus r) \oplus 1}^{\prime}=b_{s \oplus(r \oplus 1)}^{\prime} \Rightarrow f_{s}(a, k, r)=f_{s}(a, 2 k, r \oplus 1)=1$.
- If $a_{s}=1, b_{s \oplus r}=0 \Rightarrow a_{s}=1,0=b_{s \oplus r}=b_{(s \oplus r) \oplus 1}^{\prime}=b_{s \oplus(r \oplus 1)}^{\prime} \Rightarrow f_{s}(a, k, r)=f_{s}(a, 2 k, r \oplus 1)=0$.
- If $a_{s}=0, b_{s \oplus r}=1, s<d-r-1 \Rightarrow a_{s}=0,1=b_{s \oplus r}=b_{s \oplus(r \oplus 1)^{\prime}}^{\prime} s<d-(r \oplus 1) \Rightarrow f_{s}(a, k, r)=f_{s}(a, 2 k, r \oplus 1)=t$.
- If $a_{s}=0, b_{s \oplus r}=1, s \geq d-r, r \neq d-1 \Rightarrow a_{s}=0,1=b_{s \oplus r}=b_{s \oplus(r \oplus 1)^{\prime}}^{\prime} s \geq d-(r+1)$

$$
\Rightarrow f_{s}(a, k, r)=f_{s}(a, 2 k, r \oplus 1)=t+1
$$

- If $r=d-1$, then $r \oplus 1=0$, and also previous equality holds, but with different reasoning:
if $a_{s}=0, b_{s \oplus(d-1)}=1, s \geq d-(d-1)=1, f_{s}(a, k, r)=t+1 \Rightarrow a_{s}=0,1=b_{s \oplus r}=b_{s \oplus(r \oplus 1)}^{\prime}=b_{s \oplus 0}^{\prime}, s \leq d-0=d$, then $f_{s}(a, 2 k, r \oplus 1)=t^{\prime}=t+1$, because $n^{\prime}=n+1=d \cdot t+(d-1)+1=d \cdot(t+1)+0$ and again we get that $f_{s}(a, k, r)=f_{s}(a, 2 k, r \oplus 1)=t+1$.
- If $a_{s}=0, b_{s \oplus r}=1, s=d-r-1 \Rightarrow 1=b_{s \oplus r}=b_{s \oplus(r \oplus 1)}^{\prime}$. On the other hand we have that $b_{s \oplus(r \oplus 1)}^{\prime}=b_{0}^{\prime}=0$, since this is the last digit in the binary form of even number $2 k$. Thus, we get that this case is not possible.
As in all cases, we get that $f_{s}(a, k, r)=f_{s}(a, 2 k, r \oplus 1)$, which entails that

$$
x_{k}(n)=\prod_{s=0}^{d-1} f_{s}(a, k, r)=\prod_{s=0}^{d-1} f_{s}(a, 2 k, r \oplus 1)=x_{2 k}(n+1) .
$$

$3^{\circ} x_{2 k+1}(n+1)=x_{k}(n)+x_{2^{d-1}+k}(n)$
Let $b=2 k+1$, for $k<2^{d-1}$.
For binary forms

$$
(k)_{2}=\left(b_{d-1}, b_{d-2}, \ldots, b_{0}\right),
$$

$$
\left(2^{d-1}+k\right)_{2}=\left(b_{d-1}^{\prime \prime}, b_{d-2}^{\prime \prime}, \ldots, b_{0}^{\prime \prime}\right), \quad(2 k+1)_{2}=\left(b_{d-1}^{\prime}, b_{d-2}^{\prime}, \ldots, b_{0}^{\prime}\right)
$$

it is true that $b_{d-1}=0, b_{d-1}^{\prime}=1, b_{s}=b_{s}^{\prime}=0$ for $s<d-1$, while $(2 k+1)_{2}$ is obtained from $\left(2^{d-1}+k\right)_{2}$ with cyclic shift to the left by one position, i.e. $b_{s \oplus 1}^{\prime}=b_{s}^{\prime \prime}$. The same as before we have that $r^{\prime}=r \oplus 1$. Now we will prove the equality $x_{2 k+1}(n+1)=x_{k}(n)+x_{2^{d-1}+k}(n)$ by considering the following cases:

- If $a_{s}=b_{s \oplus r} r \neq d-1 \Rightarrow a_{s}=b_{s \oplus r}=b_{s \oplus r}^{\prime \prime}=b_{(s \oplus r) \oplus 1}^{\prime}=b_{s \oplus(r \oplus 1)}^{\prime}$

$$
\Rightarrow f_{s}(a, k, r)=f_{s}\left(a, 2^{d-1}+k, r\right)=f_{s}(a, 2 k+1, r+1)=1
$$

- If $a_{s}=1, b_{s \oplus r}=0, r \neq d-1 \Rightarrow a_{s}=1,0=b_{s \oplus r}=b_{s \oplus r}^{\prime \prime}=b_{(s \oplus r) \oplus 1}^{\prime}=b_{s \oplus(r \oplus 1)}^{\prime}$

$$
\Rightarrow f_{s}(a, k, r)=f_{s}\left(a, 2^{d-1}+k, r\right)=f_{s}(a, 2 k+1, r+1)=0
$$

- If $s=d-r-1, a_{s}=1$, then we have
$a_{s}=1, b_{s \oplus r}=b_{d-1}=0 \Rightarrow f_{s}(a, k, r)=0$;
$a_{s}=1, b_{s \oplus r}^{\prime \prime}=b_{d-1}^{\prime \prime}=1 \Rightarrow f_{s}\left(a, 2^{d-1}+k, r\right)=1$;
$a_{s}=1,1=b_{s \oplus r}^{\prime \prime}=b_{(s \oplus r) \oplus 1}^{\prime}=b_{0}^{\prime} \Rightarrow f_{s}(a, 2 k+1, r \oplus 1)=1$.
- If $a_{s}=0, b_{s \oplus r}=1, s<d-r-1 \Rightarrow a_{s}=0,1=b_{s \oplus r}=b_{s \oplus r}^{\prime \prime}=b_{s \oplus(r \oplus 1)^{\prime}}^{\prime}, s<d-(r \oplus 1)$

$$
\Rightarrow f_{s}(a, k, r)=f_{s}\left(a, 2^{d-1}+k, r\right)=f_{s}(a, 2 k+1, r \oplus 1)=t .
$$

- If $a_{s}=0, b_{s \oplus r}=1, s \geq d-r \Rightarrow a_{s}=0,1=b_{s \oplus r}=b_{s \oplus r}^{\prime \prime}=b_{s \oplus(r \oplus 1)^{\prime}}^{\prime} s \geq d-(r+1)$

$$
\Rightarrow f_{s}(a, k, r)=f_{s}\left(a, 2^{d-1}+k, r\right)=f_{s}(a, 2 k+1, r \oplus 1)=t+1 .
$$

- If $s=d-r-1<d-r, a_{s}=0$, then we have
$a_{s}=0, b_{s \oplus r}=b_{d-1}=0 \Rightarrow f_{s}(a, k, r)=1$;
$a_{s}=0, b_{s \oplus r}^{\prime \prime}=b_{d-1}^{\prime \prime}=1 \Rightarrow f_{s}\left(a, 2^{d-1}+k, r\right)=t$;
$a_{s}=0,1=b_{s \oplus r}^{\prime \prime}=b_{(s \oplus r) \oplus 1}^{\prime}=b_{0}^{\prime}, s \leq d-0 \Rightarrow f_{s}(a, 2 k+1, r \oplus 1)=t^{\prime}=t+1$, because $n^{\prime}=n+1=$ $d \cdot t+(d-1)+1=d \cdot(t+1)+0$.

For $s=d-r-1$ and $a_{d-r-1}=1$ we get $f_{s}(a, k, r)=0 \Rightarrow x_{k}(n)=0$, and since $f_{s}\left(a, 2^{d-1}+k, r\right)=f_{s}(a, 2 k+1, r \oplus 1)$ for all positions $s \neq d-r-1$, we have that $x_{2^{d-1}+k}(n)=x_{2 k+1}(n+1)$, which entails equality $x_{2 k+1}(n+1)=x_{k}(n)+x_{2^{d-1}+k}(n)$. For $s=d-r-1$ and $a_{d-r-1}=0$ we get $f_{s}(a, k, r)=1, f_{s}\left(a, 2^{d-1}+k, r\right)=t, f_{s}(a, 2 k+1, r \oplus 1)=t+1$, while $f_{s}(a, k, r)=f_{s}\left(a, 2^{d-1}+k, r\right)=f_{s}(a, 2 k+1, r \oplus 1)$ for all positions $s \neq d-r-1$, and we have that

$$
\begin{aligned}
x_{k}(n)+x_{2^{d-1}+k}(n) & =\prod_{s=0}^{d-1} f_{s}(a, k, r)+\prod_{\substack{s=0}}^{d-1} f_{s}\left(a, 2^{d-1}+k, r\right) \\
& =f_{d-r-1}(a, k, r) \cdot \prod_{\substack{0 \leq s \leq d-1 \\
s \neq d-r-1}} f_{s}(a, k, r)+f_{d-r-1}\left(a, 2^{d-1}+k, r\right) \cdot \prod_{\substack{0 \leq s \leq d-1 \\
s \neq d-r-1}} f_{s}\left(a, 2^{d-1}+k, r\right) \\
& =1 \cdot \prod_{\substack{0 \leq s \leq d-1 \\
s \neq d-r-1}} f_{s}(a, 2 k+1, r \oplus 1)+t \cdot \prod_{\substack{0 \leq s \leq d-1 \\
s \neq d-r-1}} f_{s}(a, 2 k+1, r \oplus 1) \\
& =(1+t) \cdot \prod_{\substack{0 \leq s \leq d-1 \\
s \neq d-r-1}} f_{s}(a, 2 k+1, r \oplus 1)=\prod_{s=0}^{d-1} f_{s}(a, 2 k+1, r \oplus 1)=x_{2 k+1}(n+1) .
\end{aligned}
$$

In both cases we get that $x_{2 k+1}(n+1)=x_{k}(n)+x_{2^{d-1}+k}(n)$.
We will illustrate this Theorem later, in Example 3.1. Now, we move on to the general case of the system (*).

Theorem 2.2. Suppose we have a system of 2^{d} linear recurrence equations of the form $x_{2 k}(n+1)=x_{k}(n)$ and $x_{2 k+1}(n+1)=x_{k}(n)+x_{2^{d-1}+k}(n)$ for $k=0,1, \ldots, 2^{d-1}-1$, with initial conditions $x_{0}(0)=y_{0}, x_{1}(0)=y_{1}, \ldots$, $x_{2^{d}-1}(0)=y_{2^{d}-1}$, for arbitrary real numbers $y_{0}, y_{1}, \ldots, y_{2^{d}-1}$.
Then for $n=d \cdot t+r, 0 \leq r \leq d-1$, the following equality is true:

$$
x_{b}(n)=\sum_{a=0}^{2^{d}-1}\left(y_{a} \cdot \prod_{s=0}^{d-1} f_{s}(a, b, r)\right)
$$

Proof. This result is a direct consequence of Lemma 2.1 and the basic properties of the system of linear recurrence equations.

3. Examples

Example 3.1. We will now illustrate Lema 2.1, for the case $d=3$ and $a=4$. Then we have the system

$$
\begin{array}{ll}
x_{0}(n+1)=x_{0}(n), & x_{1}(n+1)=x_{0}(n)+x_{4}(n) \\
x_{2}(n+1)=x_{1}(n), & x_{3}(n+1)=x_{1}(n)+x_{5}(n), \\
x_{4}(n+1)=x_{2}(n), & x_{5}(n+1)=x_{2}(n)+x_{6}(n) \\
x_{6}(n+1)=x_{3}(n), & x_{7}(n+1)=x_{3}(n)+x_{7}(n),
\end{array}
$$

with initial conditions $x_{4}(0)=1$ and $x_{b}(0)=0$ for $b \neq 4,0 \leq b \leq 2^{d}-1=7$.
Solution. We will take case analysis on all values of b.

- For $a=4$ and $b=0$ binary form $0_{2}=000$ has more zeros than binary form $4_{2}=100$, so by the Pigeonhole principle at least one position will be $a_{s}=1$ and $b_{s \oplus r}=0$. Then for each n the equality $x_{0}(n)=0$ is satisfied. These conclusions are valid whenever the binary form $(b)_{2}$ has more zeros than $(a)_{2}$!
- For $a=4_{2}=100$ and $b=1_{2}=001$ when $r=0$ or $r=2$ we will have a position s such that $a_{s}=1$ and $b_{s \oplus r}=0$ (for $r=0$, i.e. when there is no movement, $a_{2}=1$ and $b_{2}=0$; for $r=2$, i.e. when moving to the right by two positions, $a_{2}=1$ and $\left.b_{2 \oplus 2}=b_{1}=0\right)$. Then for $n \equiv 0(\bmod 3)$ and $n \equiv 2(\bmod 3)$ it is true that $x_{0}(n)=0$.
When $r=1$ we have that

$$
\begin{aligned}
& a_{0}=b_{0 \oplus 1}=b_{1}=0 \quad \Rightarrow \quad f_{0}(a, b, 1)=1, \\
& a_{1}=b_{1 \oplus 1}=b_{2}=0 \quad \Rightarrow \quad f_{1}(a, b, 1)=1, \\
& a_{2}=b_{2 \oplus 1}=b_{0}=1 \quad \Rightarrow \quad f_{2}(a, b, 1)=1
\end{aligned}
$$

and we have that $x_{b}(n)=x_{1}(n)=f_{0}(a, b, 1) \cdot f_{1}(a, b, 1) \cdot f_{2}(a, b, 1)=1 \cdot 1 \cdot 1=1$ for $n \equiv 1(\bmod 3)$. Thus, we have shown that:

$$
x_{1}(n)= \begin{cases}0, & n=3 t \\ 1, & n=3 t+1 \\ 0, & n=3 t+2\end{cases}
$$

- For $a=4_{2}=100$ and $b=3_{2}=011$ when $r=0$ we have that $a_{2}=1$ and $b_{2 \oplus 0}=b_{2}=0$).

Then for $n \equiv 0(\bmod 3)$ it is true that $x_{3}(n)=0$.
When $r=1$ we have that

$$
\begin{array}{ll}
a_{0}=0, b_{0 \oplus 1}=b_{1}=1 \text { and } s=0<3-1=d-r & \Rightarrow f_{0}(a, b, 1)=t \\
a_{1}=b_{1 \oplus 1}=b_{2}=0 & \Rightarrow f_{1}(a, b, 1)=1 \\
a_{2}=1, b_{2 \oplus 1}=b_{0}=1 & \Rightarrow f_{2}(a, b, 1)=1
\end{array}
$$

and we have that $x_{b}(n)=x_{3}(n)=f_{0}(a, b, 1) \cdot f_{1}(a, b, 1) \cdot f_{2}(a, b, 1)=t \cdot 1 \cdot 1=t$ for $n \equiv 1(\bmod 3)$. When $r=2$ we have that

$$
\begin{array}{ll}
a_{0}=0, b_{0 \oplus 2}=b_{2}=0 & \Rightarrow \quad f_{0}(a, b, 1)=1 \\
a_{1}=0, b_{1 \oplus 2}=b_{0}=1 \text { and } s=1 \geqslant 3-2=d-r & \Rightarrow \quad f_{1}(a, b, 1)=t+1 \\
a_{2}=1, b_{2 \oplus 1}=b_{0}=1 & \Rightarrow \quad f_{2}(a, b, 1)=1
\end{array}
$$

and we have that $x_{b}(n)=x_{3}(n)=1 \cdot(t+1) \cdot 1=t+1$ for $n \equiv 2(\bmod 3)$.
Thus, we have shown that:

$$
x_{3}(n)= \begin{cases}0, & n=3 t \\ t, & n=3 t+1 \\ t+1, & n=3 t+2\end{cases}
$$

- For $a=4_{2}=100$ and $b=7_{2}=111$ when $r=0$ we have $x_{7}(n)=t \cdot t \cdot 1=t^{2}$ for $n \equiv 1(\bmod 3)$.

When $r=1$ we have that $x_{7}(n)=t \cdot t \cdot 1=t^{2}$ for $n \equiv 1(\bmod 3)$.
When $r=2$ we have that $x_{7}(n)=t \cdot(t+1) \cdot 1=t(t+1)$ for $n \equiv 2(\bmod 3)$.
Thus, we have shown that:

$$
x_{7}(n)= \begin{cases}t^{2}, & n=3 t \\ t^{2}, & n=3 t+1 \\ t(t+1), & n=3 t+2\end{cases}
$$

- Analogously we obtain:

$$
\begin{gathered}
x_{2}(n)=\left\{\begin{array}{ll}
0, & n=3 t \\
0, & n=3 t+1 \\
1, & n=3 t+2,
\end{array} \quad x_{4}(n)= \begin{cases}1, & n=3 t \\
0, & n=3 t+1 \\
0, & n=3 t+2,\end{cases} \right. \\
x_{5}(n)=\left\{\begin{array}{ll}
t, & n=3 t \\
t, & n=3 t+1 \\
0, & n=3 t+2,
\end{array} \quad x_{6}(n)= \begin{cases}t, & n=3 t \\
0, & n=3 t+1 \\
t, & n=3 t+2 .\end{cases} \right.
\end{gathered}
$$

All these sequences can be found in [8]: x_{0} is $\underline{A 000004}, x_{1}$ is shifted $\underline{A 079978}, x_{2}$ and x_{4} are $\underline{A 079978}, x_{3}$ is $\underline{\text { A087509, }}, x_{5}$ is shifted $\underline{\text { A087508, }} x_{6}$ is shifted $\underline{\text { A087509, }} x_{7}$ is A008133.

This particular example can be solved by using generating functions, such as in [6]. Although generating functions and then Cramers method can be used to solve the system (*) in general, we think that results in Lemma 2.1 and Theorem 2.2 are more straightforward.

The following discussion illustrates the connection between the system considered in the paper, and restricted permutations from [1].

Let $C_{m d+1-q}$ denote the number of combinations where the smallest element is equal to $m d+1-q$, for $q=0,1, \ldots, m d$, and can be obtained from the initial combination ($r+1, r+2, \ldots, r+k+1$) using techniques developed in [1] (those techniques count the number of permutations that satisfy $p(i)-i \in S$ and $S=\{-d,-d+1, \ldots, m d\} \backslash\{-d, 0, m d\})$. Then, $C_{m d+1-q}$ is equal to

$$
C_{m d+1-q}=\sum_{b=0}^{2^{d}-1} x_{b}(q)=\sum_{b=0}^{2^{d}-1} \prod_{s=0}^{d-1} f_{s}\left(2^{d-1}, b, r\right),
$$

where $q=d \cdot t+r$.
Example 3.2. Let us illustrate these considerations for the case $d=3$ and $m=2($ when $k=d=3$ and $r=m d=6)$.
Solution. Then we deal with the permutations that satisfy $p(i)-i \in S, S=\{-3,-2, \ldots, 5,6\} \backslash\{-3,0,6\}=$ $\{-2,-1,1,2,3,4,5\}$, i.e. $I=\{-3,0,6\}$ and $r+1-I=7-I=\{10,7,1\}$. The number of such permutations is given in sequence A224810 at [8].
The set C consists of all combinations of the set $\mathbb{N}_{k+r+1}=\{1,2 \ldots, 10\}$, with $k+1=4$ elements and containing a number $k+r+1=10$. The set C has $|C|=\binom{9}{3}=84$ elements, but most of them are not relevant to the technique developed in [1], because they cannot be generated starting from the initial combination ($7,8,9,10$).
In Example 3.1 we get the values of all sequences x_{b} that occur in the previous theorem.
For $q=3 t$ we have that

$$
\begin{aligned}
C_{m d+1-q} & =x_{0}(q)+x_{1}(q)+x_{2}(q)+x_{3}(q)+x_{4}(q)+x_{5}(q)+x_{6}(q)+x_{7}(q) \\
& =0+0+0+0+1+t+t+t^{2}=(t+1)^{2}
\end{aligned}
$$

for $q=3 t+1$ we have that

$$
C_{m d+1-q}=0+1+0+t+0+t+0+t^{2}=(t+1)^{2}
$$

for $q=3 t+2$ we have that

$$
C_{m d+1-q}=0+0+1+(t+1)+0+0+t+t(t+1)=(t+1)(t+2) .
$$

Thus, we find that for combinations starting with $m d+1-q$ the following equality is satisfied:

$$
C_{m d+1-q}= \begin{cases}(t+1)^{2}, & q=3 t \\ (t+1)^{2}, & q=3 t+1 \\ (t+1)(t+2), & q=3 t+2\end{cases}
$$

This sequence is A008133 at [8].
For $q=0$ we have $(0+1)^{2}=1$ combination that begins with $m d+1-q=7$. This is the initial combination $(7,8,9,10)$.
For $q=1$ we have $(0+1)^{2}=1$ combination that begins with $6:(6,7,8,10)$.

For $q=2$ we have $(0+1) \cdot(0+2)=2$ combinations starting with $5:(5,7,9,10),(5,6,7,10)$.
For $q=3$ we have $(1+1)^{2}=4$ combinations starting with $4:(4,8,9,10),(4,6,8,10),(4,5,9,10),(4,5,6,10)$.
For $q=4$ we have $(1+1)^{2}=4$ combinations starting with $3:(3,7,8,10),(3,5,7,10),(3,4,8,10),(3,4,5,10)$.
For $q=5$ we have $(1+1) \cdot(1+2)=6$ combinations starting with $2:(2,7,9,10),(2,6,7,10),(2,4,9,10)$, $(2,4,6,10),(2,3,7,10),(2,3,4,10)$.
For $q=6$ we have $(2+1)^{2}=9$ combinations starting with $1:(1,8,9,10),(1,6,8,10),(1,5,9,10),(1,5,6,10)$, $(1,3,8,10),(1,3,5,10),(1,2,9,10),(1,2,6,10),(1,2,3,10)$.

Altogether we have

$$
1+1+2+4+4+6+9=27=(m+1)^{d}
$$

combinations which occur in the technique developed in [1]. We get a $(m+1)^{d} \times(m+1)^{d}$ matrix as the matrix of the reduced system of linear recurrence equations. Furthermore, the generating function corresponding to the restricted permutations is a rational function $P(z) / Q(z)$. Also, the denominator $Q(z)$ is of degree less than or equal to $(m+1)^{d}$, i.e. $\operatorname{deg} Q(z) \leq(m+1)^{d}$, which is significantly less than $|C|=\binom{(m+1) d}{d}$, the total number of combinations that occur in technique developed in [1].

In this particular case, we have that $\operatorname{deg} Q(z)=24 \leq 27=(m+1)^{d}$, because

$$
A(z)=\frac{1+z^{3}-z^{4}-z^{5}+z^{6}-2 z^{7}-z^{8}-z^{9}-2 z^{10}-z^{12}-z^{13}-z^{15}}{1-z+z^{3}-2 z^{4}+2 z^{6}-4 z^{7}-2 z^{9}-2 z^{10}-4 z^{12}+2 z^{13}-2 z^{15}+4 z^{16}+2 z^{18}+2 z^{19}+z^{21}+z^{22}+z^{24}}
$$

The denominator of $A(z)$ is $(z-1)\left(z^{2}+z+1\right)\left(z^{3}+z-1\right)\left(z^{18}+3 z^{15}+7 z^{12}+9 z^{9}+7 z^{6}+3 z^{3}+1\right)$ and the numerator is $2-(z+1)\left(z^{2}-z+1\right)\left(z^{12}+z^{10}+z^{7}+z^{6}+z^{5}+z^{4}-2 z^{3}+1\right)$. It is significantly less than $|C|=\binom{(m+1) d}{d}=\binom{9}{3}=84$. The sequence corresponding to $A(z)$ is $\underline{\text { A224810 }}$ in [8].

4. Acknowledgment

We are indebted to anonymous referees and Dragan Stevanović, who helped us significantly improve the quality of the presentation.

References

[1] V. Baltić, On the number of certain types of strongly restricted permutations, Applicable Analysis and Discrete Mathematics (2010), Volume 4, No 1, 119-135.
[2] C.-O. Chow, T. Mansour, Counting derangements, involutions and unimodal elements in the wreath product C_{r} ? S_{n}, Israel Journal of Mathematics 179 (2010) 425-448.
[3] S. Heubach and T.Mansour, Combinatorics of compositions and words, Chapman \& Hall/CRC an imprint of Taylor \& Francis LLC, 2009.
[4] I. Kaplansky, On a generalization of the "problème des rencontres", Amer. Math. Monthly (1939), Volume 46, 159-161.
[5] S. Kitaev, Patterns in permutations and words, Springer Verlag, 2011.
[6] S. Kitaev, T. Mansour, Linear recurrences and Chebyshev polynomials, The Fibonacci Quarterly (2005), Volume 43, No 3, 256-261.
[7] T. Mansour, Combinatorics of Set Partitions, Discrete Mathematics and its Applications, CRC Press, Boca Raton, FL, 2012.
[8] The On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org/

[^0]: 2010 Mathematics Subject Classification. Primary 11B37; Secondary 05A05
 Keywords. recurrences, restricted permutations
 Received: 19 September 2013; Accepted: 15 May 2014
 Communicated by Francesco Belardo
 Email address: baltic@matf.bg.ac.rs (Vladimir Baltić)

