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Abstract. In this paper, we associate a partial g-hypergroupoid with a given g-hypergraph and analyze
the properties of this hyperstructure. We prove that a g-hypergroupoid may be a commutative hypergroup
without being a join space. Next, we define diagonal direct product of g-hypergroupoids. Further, we
construct a sequence of g-hypergroupoids and investigate some relationships between it’s terms. Also, we
study the quotient of a g-hypergroupoid by defining a regular relation. Finally, we describe fundamental
relation of an Hv-semigroup as a g-hypergroupoid.

1. Introduction and Preliminaries

Algebraic hyperstructures are a suitable generalization of classical algebraic structures. In a classical
algebraic structure, the composition of two elements is an element, while in an algebraic hyperstructure,
the composition of two elements is a set. More exactly, let P(X) be the set of all subsets of a given set X. A
partial hypergroupoid is a pair (X, ∗), where X is a non-empty set and ∗ is a partial hyperoperation, i.e.,

∗ : X × X→ P(X), (x, y) 7→ x ∗ y.

Every map from X × X to P∗(X) is called a hyperoperation, where P∗(X) = P(X) − {∅}. If A,B ∈ P∗(X), then we
define A ∗ B =

⋃{
a ∗ b | a ∈ A, b ∈ B

}
, x ∗ B = {x} ∗ B and A ∗ y = A ∗ {y}. If A = ∅ or B = ∅we define A ∗ B = ∅.

A partial hypergroupoid (X, ∗) is called a hypergroupoid if ∗ is a hyperoperation. A hypergroupoid (X, ∗) is
called a semihypergroup if the associative axiom is valid, i.e., x ∗ (y ∗ z) = (x ∗ y) ∗ z, for all x, y, z ∈ X and it
is called reproductive if x ∗ X = X ∗ x = X, for all x ∈ X. A hypergroup is a reproductive semihypergroup.
A commutative hypergroup (X, ∗) (i.e., x ∗ y = y ∗ x for all x, y ∈ X) is called a join space if the following
implication holds for all elements a, b, c, d of X:

a/b
⋂

c/d , ∅ ⇒ a ∗ d
⋂

b ∗ c , ∅,

where a/b = {x | a ∈ x ∗ b}.
Hv-structures which satisfy the corresponding structure-like axioms are the largest class of algebraic

hyperstructures. The notion of Hv-structures has been introduced by Vougiouklis [13] as a generalization
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of well-known algebraic hyperstructures (semihypergroups, hypergroups, hyperrings and so on) which
satisfy the weak axioms where the non-empty intersection replaces the equality. A comprehensive review
of the theory of Hv-structures appears in [1, 5, 6]. A hypergroupoid (X, ∗) is called an Hv-semigroup if the
weak associative axiom is valid, i.e.,

x ∗ (y ∗ z)
⋂

(x ∗ y) ∗ z , ∅ , for all x, y, z ∈ X

and it is called an Hv-group if it is a reproductive Hv-semigroup.
Let X be a non-empty set. By an h-relation R on X we mean a subset of X×P∗(X). The domain of R is the

set Dom(R) =
{
x ∈ X | (x,A) ∈ R for some A ∈ P(X)

}
and codomain of R is the set Cod(R) =

{
A ∈ P(X) | (x,A) ∈

R for some x ∈ X
}
. Also, for any x ∈ X, we define xR = {A | (x,A) ∈ R}.

The notion of hypergraph has been introduced around 1960 as a generalization of graph and one of the
initial concerns was to extend some classical results of graph theory. In [2], there is a very good presentation
of graph and hypergraph theory. Connections between hypergraphs and hyperstructures are studied by
many authors, for example, see [4, 8, 10, 11]. A hypergraph is a pair Γ = (X,A), where X is a finite set of
vertices and A = {A1, . . . ,Am} is a set of hyperedges which are non-empty subsets of X. Figure 1 is an
example of a hypergraph with 2 hyperedges A1 = {1, 2, 3} and A2 = {2, 3, 4}.
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4

Figure 1: An example of hypergraph with 2 hyperedges.

2. Partial g-Hypergroupoids

In this section we generalize the notion of hypergraphs to generalized hypergraphs and then we associate
a partial hypergroupoid to each generalized hypergraph.

Definition 2.1. [12] A generalized hypergraph or, in short, a g-hypergraph is an ordered pair G = (X,R), where X
is a non-empty set and R is an h-relation on X. The elements of X are called the vertices and the sets in E = Cod(R)
are called the hyperedges of the g-hypergraph.

It is worth mentioning that in this paper we deal only with g-hypergraphs G = (X,R) in which X is a finite
set. A g-hypergraphG = (X,R) is called v-linked if xR , ∅, for all x ∈ X and it is called plenary if

⋃
A∈Cod(R)

A = X.
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Figure 2: An example of a g-hypergraph.
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Let G = (X,R) be a g-hypergraph. The partial hypergroupoid XG = (X, ◦) where the partial hyperopera-
tion ◦ is defined by

x ◦ y = N(x)
⋃
N(y), for all (x, y) ∈ X2,

is called the partial g-hypergroupoid associated with G, where N(x) =
⋃

(x,A)∈R
A. In the case that ◦ is a

hyperoperation, XG is called a g-hypergroupoid.

Lemma 2.2. XG is a g-hypergroupoid if and only if G is v-linked.

Proof. It is obvious.

Remark 2.3. In [4], Corsini associated to a given hypergraph Γ = (H, {Ai}i) an h.g. hypergroupoid HΓ = (H, ◦)
where the hyperoperation ◦ has defined as follows:

x ◦ y = E(x)
⋃

E(y), for all x, y ∈ H2,

where E(x) =
⋃

x∈Ai

Ai. Let Γ = (H, {Ai}i) be a hypergraph. If we define the h-relation R =
{
(x,Ai) | x ∈ Ai

}
on H, then

Γ becomes a v-linked and plenary g-hypergraph. Thus, every hypergraph can be considered as a g-hypergraph and
there is no difference between h.g. hypergroupoids and g-hypergroupoids when we deal with hypergraphs. In other
words, each h.g. hypergroupoid can be considered as a g-hypergroupoid. As we will see, h.g. hypergroupoids does not
coincide with g-hypergroupoids. For example, by Theorem 3 of [4], each h.g. hypergroupoid is a join space whereas
there are g-hypergroupoids which are not join spaces (see Example 2.4).

Example 2.4. Consider the following g-hypergraph and the table of it’s associated g-hypergroupoid:

1

2

3

{1, 2} {1, 2} {1, 2, 3}

{1, 2, 3} {1, 2, 3} {1, 3}

{2} {1, 2} {1, 2, 3}

1 2 3◦

1

2

3

1

2

3

It is not difficult to see that (X = {1, 2, 3}, ◦) is a hypergroup. We have 1/3 = {1, 2, 3} and 3/1 = {3}. It implies
that 1/3

⋂
3/1 , ∅, but 1 ◦ 1

⋂
3 ◦ 3 = ∅. Hence (X, ◦) is not a join space.

Here, we give an example of a g-hypergraph such that it’s associated g-hypergroup is a join space.

Example 2.5. In the following, we have drawing a g-hypergraph G and the table of the g-hypergroupoid associated
with G:
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1

2

3

{1, 2, 3} {1, 2, 3} {1, 2, 3}

{2} {1, 2, 3} {2}

{2} {1, 2, 3} {2}

1 2 3◦
1

3

1

2

3

2

One can check that (X, ◦) is a hypergroup. On the other hand, we have x ◦ y
⋂

z ◦ w , ∅, for all x, y, z,w ∈ X.
This implies that (X, ◦) is a join space.

Definition 2.6. A partial hypergroupoid (X, ◦) is called separable if the following property holds:

x ◦ y = x ◦ x
⋃

y ◦ y, for all x, y ∈ X.

Remark 2.7. Let (X, ◦) be a separable hypergroupoid. Define R =
{
(x, x ◦ x) | x ∈ X

}
. Then, (X, ◦) is the g-

hypergroupoid associated with the v-linked g-hypergraph G = (X,R). Therefore, every separable hypergroupoid can
be considered as a g-hypergroupoid.

The next lemma can be proved easily by using the previous notions.

Lemma 2.8. Let (X, ◦) be a partial g-hypergroupoid. Then, for all x, y ∈ X and A ⊆ X we have

(1) x ◦ y = y ◦ x,

(2) (x ◦ x) ◦ (x ◦ x) =
⋃

t∈x◦x
t ◦ t,

(3) (A ◦ A) ◦ (A ◦ A) =
⋃

t∈A◦A
t ◦ t.

Lemma 2.9. Let (X, ◦) be a separable hypergroupoid. Then

(1) for each x, y, z ∈ X we have
(x ◦ y) ◦ z =

[
(x ◦ x) ◦ (x ◦ x)

]⋃
z ◦ z

⋃[
(y ◦ y) ◦ (y ◦ y)

]
,

x ◦ (y ◦ z) =
[
(y ◦ y) ◦ (y ◦ y)

]⋃
x ◦ x

⋃[
(z ◦ z) ◦ (z ◦ z)

]
.

(2) (X, ◦) is an Hv-semigroup.

Proof. (1) For each x, y, z ∈ X we have

(x ◦ y) ◦ z = (x ◦ x
⋃

y ◦ y) ◦ z = (x ◦ x) ◦ z
⋃

(y ◦ y) ◦ z,

and
x ◦ (y ◦ z) = (y ◦ z) ◦ x = (y ◦ y

⋃
z ◦ z) ◦ x = (y ◦ y) ◦ x

⋃
(z ◦ z) ◦ x.

Moreover,
(x ◦ x) ◦ z =

⋃
t∈x◦x

t ◦ z =
( ⋃

t∈x◦x
t ◦ t

)⋃
z ◦ z =

[
(x ◦ x) ◦ (x ◦ x)

]⋃
z ◦ z.

Therefore, we have
(x ◦ y) ◦ z =

[
(x ◦ x) ◦ (x ◦ x)

]⋃
z ◦ z

⋃[
(y ◦ y) ◦ (y ◦ y)

]
and

x ◦ (y ◦ z) =
[
(y ◦ y) ◦ (y ◦ y)

]⋃
x ◦ x

⋃[
(z ◦ z) ◦ (z ◦ z)

]
.

(2) We have ∅ ,
[
(y ◦ y) ◦ (y ◦ y)

]
⊆ (x ◦ y) ◦ z

⋂
x ◦ (y ◦ z). This completes the proof.
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Notice that every partial g-hypergroupoid is separable and so we have the following corollary.

Corollary 2.10. Every g-hypergroupoid is an Hv-semigroup.

Corollary 2.11. A partial g-hypergroupoid XG is an Hv-semigroup if and only if G is v-linked.

Theorem 2.12. Let G = (X,R) be a v-linked g-hypergraph. Then, the g-hypergroupoid XG = (X, ◦) is an Hv-group
if and only if G is plenary.

Proof. Suppose that XG = (X, ◦) is an Hv-group. It suffices to show that X ⊆
⋃

A∈Cod(R)
A. Let x ∈ X be an arbi-

trary element. By assumption, we have x ◦X = X and so there is y ∈ X such that x ∈ x ◦ y = N(x)
⋃
N(y).

Thus, there is A ∈ Cod(R) such that x ∈ A ⊆
⋃

A∈Cod(R)
A.

Conversely, letG be plenary and x ∈ X be an arbitrary element. By Corollary 2.10, it is sufficient to show
that x ◦X = X ◦ x = X. It is obvious that x ◦X ⊆ X. We show that X ⊆ x ◦X. Since G is plenary, if z ∈ X is an
arbitrary element, then there is A ∈ Cod(R) such that z ∈ A. Since A ∈ Cod(R), it follows that there is y ∈ X
such that (y,A) ∈ R and so we have z ∈ x ◦ y ⊆ x ◦ X. This implies that X ⊆ x ◦ X and so x ◦ X = X. Clearly
X ◦ x = X since ◦ is commutative. Therefore, XG is an Hv-group.

Corollary 2.13. XG is a reproductive g-hypergroupoid if and only if G is v-linked and plenary.

Theorem 2.14. Let (X, ◦) be a separable hypergroupoid. Then, ◦ is associative if and only if the following conditions
hold:

(1) x ◦ x ⊆ (x ◦ x) ◦ (x ◦ x), for all x ∈ X,

(2)
[
(x ◦ x) ◦ (x ◦ x)

]
− x ◦ x ⊆ (y ◦ y) ◦ (y ◦ y), for all x, y ∈ X.

Proof. Suppose that ◦ is associative and x, y are arbitrary elements of X. First, we show that x ◦ x ⊆ (x ◦ x) ◦
(x ◦ x). Suppose that x ◦ x = {x1, . . . , xn} and xi ∈ x ◦ x is an arbitrary element. Since x ◦ xi = x ◦ x

⋃
xi ◦ xi ,

it follows that xi ∈ x ◦ xi and so xi ∈ x ◦ (x ◦ xi). Associativity of ◦ implies that

xi ∈ (x ◦ x) ◦ xi = x1 ◦ x1
⋃
. . .

⋃
xn ◦ xn = (x ◦ x) ◦ (x ◦ x).

Thus (1) holds. Now, to prove the condition (2) we have

(y ◦ y) ◦ x =
⋃

t∈y◦y
t ◦ x =

( ⋃
t∈y◦y

t ◦ t
)⋃

x ◦ x =
[
(y ◦ y) ◦ (y ◦ y)

]⋃
x ◦ x,

y ◦ (y ◦ x) =
⋃

t∈y◦x
y ◦ t =

⋃
t∈y◦x

(y ◦ y
⋃

t ◦ t) = y ◦ y
⋃( ⋃

t∈y◦y
t ◦ t

)⋃ ( ⋃
t∈x◦x

t ◦ t
)

=
[
(y ◦ y) ◦ (y ◦ y)

]⋃ [
(x ◦ x) ◦ (x ◦ x)

]
.

Consequently, (2) holds.
Conversely, suppose that x, y, z are arbitrary elements of X and the conditions (1) and (2) hold. From

point (1) of Lemma 2.9, we have

(x ◦ y) ◦ z =
[
(x ◦ x) ◦ (x ◦ x)

]⋃
z ◦ z

⋃[
(y ◦ y) ◦ (y ◦ y)

]
,

and
x ◦ (y ◦ z) =

[
(y ◦ y) ◦ (y ◦ y)

]⋃
x ◦ x

⋃[
(z ◦ z) ◦ (z ◦ z)

]
.

By setting A =
[
(x ◦ x) ◦ (x ◦ x)

]⋃
z ◦ z and B =

[
(z ◦ z) ◦ (z ◦ z)

]⋃
x ◦ x we have (x ◦ y) ◦ z =

[
(y ◦ y) ◦

(y ◦ y)
]⋃

A and x ◦ (y ◦ z) =
[
(y ◦ y) ◦ (y ◦ y)

]⋃
B. By using the conditions (1) and (2) we have

A =
([

(x ◦ x) ◦ (x ◦ x)
]
− x ◦ x

)⋃
x ◦ x

⋃
z ◦ z

⊆

[
(z ◦ z) ◦ (z ◦ z)

]⋃
z ◦ z

⋃
x ◦ x

=
[
(z ◦ z) ◦ (z ◦ z)

]⋃
x ◦ x = B.

In a similar way the inverse inclusion is proved and then ◦ is associative.
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Theorem 2.15. Let (X, ◦) be a separable hypergroupoid. Then, ◦ is associative if and only if the following conditions
hold:

(1) A ◦ A ⊆ (A ◦ A) ◦ (A ◦ A), for all A ⊆ X,

(2)
[
(A ◦ A) ◦ (A ◦ A)

]
− A ◦ A ⊆ (B ◦ B) ◦ (B ◦ B), for all A,B ⊆ X.

Proof. Suppose that ◦ is associative and A,B are arbitrary subsets of X. Then, by using Theorem 2.14 we
have

A ◦ A =
⋃
a∈A

a ◦ a ⊆
⋃
a∈A

(a ◦ a) ◦ (a ◦ a) =
⋃
a∈A

( ⋃
t∈a◦a

t ◦ t
)

=
⋃

t∈A◦A
t ◦ t

= (A ◦ A) ◦ (A ◦ A).

Hence, (1) is true. For every b ∈ B we have[
(A ◦ A) ◦ (A ◦ A)

]
− A ◦ A ⊆

⋃
a∈A

[(
(a ◦ a) ◦ (a ◦ a)

)
− a ◦ a

]
⊆ (b ◦ b) ◦ (b ◦ b).

On the other hand, we have (b ◦ b) ◦ (b ◦ b) ⊆ (B ◦ B) ◦ (B ◦ B). Hence, the assertion (2) holds too.
Conversely, suppose that the assertions (1) and (2) hold for all subsets A and B of X. Let x, y be arbitrary

elements of X. By setting A = {x} and B = {y}, the assertions (1) and (2) of Theorem 2.14 hold and therefore
◦ is associative.

Corollary 2.16. If a reproductive g-hypergroupoid XG = (X, ◦) satisfies anyone of the following conditions:

(x ◦ x) ◦ (x ◦ x) = x ◦ x, for all x ∈ X,
(x ◦ x) ◦ (x ◦ x) = X, for all x ∈ X,

then it is a hypergroup.

Example 2.17. The g-hypergroupoid associated with the g-hypergraph of Figure 2 has the following table:

◦ 1 2 3 4
1 {2} X {1, 2} {1, 2, 3}
2 X X X X
3 {1, 2} X {1, 2} {1, 2, 3}
4 {1, 2, 3} X {1, 2, 3} {1, 2, 3}

where X = {1, 2, 3, 4}. It is easy to verify that (x ◦ x) ◦ (x ◦ x) = X, for all x ∈ X. On the other hand, for every x ∈ X
we have x ◦ X = X ◦ x = X. So, by Corollary 2.16, (X, ◦) is a hypergroup.

Example 2.18. Consider the g-hypergroupoid of Example 2.4. By Theorem 2.14, (X, ◦) is a hypergroup. Also, we
have (1 ◦ 1) ◦ (1 ◦ 1) = {1, 2}. This shows that the converse of Corollary 2.16 is not true.

3. Higher-order Hypergroupoids

Let (X, ◦) be a separable hypergroupoid. We construct a sequence of hypergroupoids X0 = (X, ◦0),X1 =
(X, ◦1),X2 = (X, ◦2), . . . recursively as follows: for all x, y ∈ X we define x◦0 y = x◦y, x◦k+1 x = (x◦k x)◦k (x◦k x)
and x ◦k+1 y = x ◦k+1 x

⋃
y ◦k+1 y, where k ≥ 0. SetNk(x) = x ◦k x. We defineNk(A) =

⋃
a∈A
Nk(a), where A is

a subset of X. The following properties are immediate:

(1) Nk(A) = A ◦k A, for all A ⊆ X,

(2) Nk+1(x) = Nk(Nk(x)), for all x ∈ X and k ≥ 0,
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(3) Nk(Nk+1(x)) = Nk+1(Nk(x)), for all x ∈ X and k ≥ 0,

(4) Nk+1(A) = Nk(Nk(A)), for all A ⊆ X and k ≥ 0,

(5) A ⊆ B implies thatNk(A) ⊆ Nk(B), for all A,B ⊆ X,

(6) Nk(x) = Nk+1(x) implies thatNk(x) = Nr(x), for all r ≥ k.

By Theorem 2.14, Xk is a semihypergroup if and only if the following conditions hold:

(α) Nk(x) ⊆ Nk+1(x), for all x ∈ X,

(β) Nk+1(x) −Nk(x) ⊆ Nk+1(y), for all x, y ∈ X.

Lemma 3.1. The above hyperoperation ◦k has the following properties:

(1) A ◦k+1 A = (A ◦k A) ◦k (A ◦k A), for all A ⊆ X,

(2) x ◦k+2 x =
(
(x ◦k+1 x) ◦k (x ◦k+1 x)

)
◦k

(
(x ◦k+1 x) ◦k (x ◦k+1 x)

)
, for all x ∈ X.

Proof. (1) Let A be a subset of X. Then,

A ◦k+1 A = Nk+1(A) = Nk(Nk(A)) = Nk(A) ◦k Nk(A) = (A ◦k A) ◦k (A ◦k A).

(2) The result follows from part (1) and the definition of ◦k+2.

Theorem 3.2. Let (X, ◦) be a separable hypergroupoid.

(1) If Xk = (X, ◦k) satisfies condition (α) for some k ≥ 0, thenNr(x) ⊆ Nr+1(x), for all x ∈ X and r ≥ k.

(2) If Xk = (X, ◦k) satisfies condition (β) for some k ≥ 0, thenNr+1(x) ⊆ Nr(x), for all x ∈ X and r > k.

Proof. (1) Let x ∈ X be an arbitrary element. We prove the result by induction on r. If r = k, then there is
nothing to prove. Assume thatNr−1(x) ⊆ Nr(x) for r > k, the induction hypothesis. Thus we have

Nr(x) = Nr−1(Nr−1(x)) ⊆ Nr−1(Nr(x)) = Nr(Nr−1(x))
⊆ Nr(Nr(x)) = Nr+1(x).

(2) Let x ∈ X be an arbitrary element. First, we show thatNk(Nk+1(x)) ⊆ Nk+1(x). Assume to the contrary
that t ∈ Nk(Nk+1(x))−Nk+1(x). Then, t < Nk+1(x) and there is a ∈ Nk+1(x) such that t ∈ Nk(a). Since a ∈ Nk+1(x),
it follows that there is b ∈ Nk(x) such that a ∈ Nk(b) and so t ∈ Nk(Nk(b)) = Nk+1(b). On the other hand,
t < Nk+1(x) implies that t < Nk(b) and so t ∈ Nk+1(b)−Nk(b). By hypothesis we haveNk+1(b)−Nk(b) ⊆ Nk+1(x)
which implies that t ∈ Nk+1(x) contradicting to t < Nk+1(x). Now, we prove the result by induction on r.
We haveNk+2(x) = Nk(Nk(Nk+1(x))) ⊆ Nk(Nk+1(x)) ⊆ Nk+1(x). So, we are done with the initial step. Assume
thatNr+1(x) ⊆ Nr(x) for r > k, the induction hypothesis. We obtain

Nr+2(x) = Nr+1(Nr+1(x)) ⊆ Nr+1(Nr(x)) = Nr(Nr+1(x))
⊆ Nr(Nr(x)) = Nr+1(x).

Corollary 3.3. If (X, ◦k) is a separable semihypergroup, thenNr(x) = Nr+1(x), for all x ∈ X and r > k.

Corollary 3.4. If (X, ◦k) is a separable semihypergroup, thenNr(A) = Nr+1(A), for all A ⊆ X and r > k.

Next example shows that the converse of Corollary 3.3 is not true.
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Example 3.5. Let (X = {1, 2, 3}, ◦) be a hypergroupoid with the following table:

◦ 1 2 3
1 {2} X {2}
2 X {1, 3} X
3 {2} X {2}

We can see that N0(1) = {2} and N1(1) = {1, 3}. Since N0(x) * N1(x) by Theorem 2.14, (X, ◦) is not a
semihypergroup. We can check that Nk(x) = Nk+1(x), for all x ∈ X and k > 0. This means that the converse of
Corollary 3.3 is not true.

Proposition 3.6. If there exists a natural number k such thatNk(x) = Nk+1(x), for all x ∈ X, then

(1) Xk = (X, ◦k) is a semihypergroup,

(2) Xr = Xk, for all r ≥ k.

At the beginning of this section, we construct a sequence of separable hypergroupoids X0 = (X, ◦0),X1 =
(X, ◦1),X2 = (X, ◦2), . . . by a given separable hypergroupoid (X, ◦). Let G be a v-linked g-hypergraph and
XG be the g-hypergroupoid associated with G. Set X0 = XG. For k > 0, we define an h-relation Rk on X as
follows:

Rk =
{
(x, x ◦k x) | x ∈ X

}
and therefore we have a sequence G0,G1,G2, . . . of g-hypergraphs where G0 = G and Gk = (X,Rk), for k > 0.
It is easy to verify that Xk is the g-hypergroupoid associated withGk. Now, by Corollary 3.3 and Proposition
3.6 we conclude that if Xk is an associative g-hypergroupoid, then Gr = Gk+1 and Xr = Xk, for all r > k. For
a given g-hypergraph Gwe define

n(G) = min
{
k | Nk(x) = Nk+1(x) for all x ∈ X

}
and

s(G) = min
{
k | Xk is a semihypergroup

}
.

Obviously, s(G) ≤ n(G). Consider the g-hypergraph G of Figure 2. In Example 2.17 we showed that XG is a
hypergroup and so we have s(G) = 0 whereas n(G) = 1. This means that the inequality s(G) ≤ n(G) may be
hold strictly.

4. Quotient g-Hypergroupoids

In this section, by considering a regular equivalence relation on a g-hypergroupoid, we define a quo-
tient g-hypergroupoid. Next, we investigate some relationships between diagonal direct product of hy-
pergroupoids and direct product of g-hypergraphs. In this regards we recall some definitions and results
which we need for the development of the rest of paper.

Let (X, ∗) be a hypergroupoid and ρ be an equivalence relation on X. If A and B are non-empty subsets
of X, then AρB means that for all a ∈ A, there exists b ∈ B such that aρb and for all b′ ∈ B there exists a′ ∈ A
such that a′ρb′. We say that ρ is regular if for all a ∈ X from xρ y, it follows that (a ∗x)ρ(a ∗ y) and (x ∗ a)ρ(y ∗ a).
For an equivalence relation ρ on X, we may use ρ(x) to denote the equivalence class of x ∈ X. Moreover,
generally, if A is a non-empty subset of X, thenρ(A) =

⋃
{ρ(x) | x ∈ A}. Let X/ρ be the family {ρ(x) | x ∈ X}

of classes of ρ. By Theorem 2.5.2 of [6], if (X, ∗) is a hypergroupoid and ρ is a regular equivalence relation
on X, then the following hyperoperation on X/ρ is well defined:

ρ(x) � ρ(y) =
{
ρ(z) | z ∈ x ∗ y

}
.

Let G = (X,R) be a v-linked g-hypergraph and (X, ◦) be the g-hypergroupoid associated with G. We define
the relation ρ

G
on X as follows:

xρ
G

y if and only if xR = yR.
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Lemma 4.1. The relation ρ
G

is a regular equivalence relation.

Proof. Obviously, ρ
G

is an equivalence relation. Let z ∈ X be an arbitrary element and xρ
G

y. First, we

show that x ◦ z = y ◦ z which implies that (x ◦ z)ρ
G

(y ◦ z). Let r ∈ x ◦ z = N(x)
⋃
N(z) be an arbitrary

element. In the case that r ∈ N(z), there is nothing to prove. If r ∈ N(x), then there is a hyperedge A such
that (x,A) ∈ R and r ∈ A. By assumption, we have xR = yR and therefore we have (y,A) ∈ R. This implies
that r ∈ N(y). Hence x ◦ z ⊆ y ◦ z. The reverse inclusion can be shown similarly. In a similar way we can
show that (z ◦ x)ρ

G

(z ◦ y).

Definition 4.2. Let G1 = (X1,R1) and G2 = (X2,R2) be two g-hypergraphs. Then, the direct product of G1 and G2

is the g-hypergraph G1 × G2 = (X1 × X2,R1 × R2) where R1 × R2 =
{(

(x, y),A × B
)
| (x,A) ∈ R1, (y,B) ∈ R2

}
.

Lemma 4.3. Let G1 = (X1,R1) and G2 = (X2,R2) be two g-hypergraphs. Then, for every (x, y), (u, v) ∈ X1 × X2,

(x, y)ρ
G1×G2

(u, v)⇔ xρ
G1

u and yρ
G2

v.

Proof. It is obvious.

Definition 4.4. Let (X, ∗) and (Y, ◦) be two hypergroupoids. We define the hyperoperation ×d on the Cartesian
product X × Y as follows:

(x1, y1) ×d (x2, y2) = ∆
(
(x1, y1)

)⋃
∆
(
(x2, y2)

)
,

where ∆
(
(a, b)) =

{
(x, y) | x ∈ a ∗ a and y ∈ b ◦ b

}
. The hypergroupoid (X ×Y,×d) is called the diagonal direct product

of (X, ∗) and (Y, ◦).

Theorem 4.5. Let (X1, ∗) and (X2, ◦) be the g-hypergroupoids associated with the v-linked g-hypergraphs G1 =
(X1,R1) andG2 = (X2,R2), respectively. Then, the diagonal direct product of (X1, ∗) and (X2, ◦) is the g-hypergroupoid
associated with G1 × G2.

Proof. Let (X1 × X2,×d) be the diagonal direct product of (X1, ∗) and (X2, ◦). It suffices to show that

(x, y) ×d (x, y) =
⋃{

A × B |
(
(x, y),A × B

)
∈ R1 × R2

}
,

where (x, y) is an arbitrary element of X1×X2. This can be seen by the following argument. Let (r, s) ∈ (x, y)×d
(x, y) be an arbitrary element. Then, r ∈ x ∗ x and s ∈ y ◦ y. Since (X1, ∗) and (X2, ◦) are the g-hypergroupoids
associated with the g-hypergraphsG1 = (X1,R1) andG2 = (X2,R2), respectively, there are hyperedges A and
B such that (x,A) ∈ R1, (y,B) ∈ R2 and (r, s) ∈ A×B. By the definition of R1×R2 we have

(
(x, y),A×B

)
∈ R1×R2

and therefore (r, s) ∈
⋃{

A×B |
(
(x, y),A×B

)
∈ R1×R2

}
. Hence (x, y)×d(x, y) ⊆

⋃{
A×B |

(
(x, y),A×B

)
∈ R1×R2

}
.

The reverse inclusion can be shown similarly.

Definition 4.6. Let (X1, ∗) and (X2, ◦) be two hypergroupoids. A map ϕ : X1 → X2 is called a homomorphism if for
all x, y ∈ X1 we haveϕ(x∗ y) = ϕ(x)◦ϕ(y). Ifϕ is one to one (onto) we say thatϕ is a monomorphism (epimorphism).
If there exists a one to one epimorphism from X1 onto X2 we say that X1 is isomorphic to X2 and we write X1 � X2.

Theorem 4.7. Let (X1, ∗) and (X2, ◦) be the g-hypergroupoids associated with the v-linked g-hypergraphs G1 =
(X1,R1) and G2 = (X2,R2), respectively. Then,

X1/ρ
G1
×d X2/ρ

G2
� (X1 ×d X2)/ρ

G1×G2
.
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Proof. We equip X1/ρ
G1

, X2/ρ
G2

and (X1 ×d X2)/ρ
G1×G2

with hyperoperations �, � and }, respectively.
Define

ϕ : X1/ρ
G1
×d X2/ρ

G2
→ (X1 ×d X2)/ρ

G1×G2

by

ϕ
(
(ρ
G1

(x), ρ
G2

(y))
)

= ρ
G1×G2

(
(x, y)

)
, for all (x, y) ∈ X1 × X2.

First, we prove ϕ is well defined. Consider

(ρ
G1

(x), ρ
G2

(y)) = (ρ
G1

(x′), ρ
G2

(y′)).

Hence, we have xR1 = x′R1
and yR2 = y′R2

. Since

A × B ∈ (x, y)R1×R2 ⇔ A ∈ xR1 ,B ∈ yR2 ⇔ A ∈ x′R1
,B ∈ y′R2

⇔ A × B ∈ (x′, y′)R1×R2 ,

we obtain ρ
G1×G2

(
(x, y)

)
= ρ

G1×G2

(
(x′, y′)

)
, i.e., ϕ is well defined. Now, we check that ϕ is one to one. Suppose

that ρ
G1×G2

(
(x, y)

)
= ρ

G1×G2

(
(x′, y′)

)
. We obtain

A ∈ xR1 ,B ∈ yR2 ⇔ A × B ∈ (x, y)R1×R2 ⇔ A × B ∈ (x′, y′)R1×R2

⇔ A ∈ x′R1
,B ∈ y′R2

.

This implies that (ρ
G1

(x), ρ
G2

(y)) = (ρ
G1

(x′), ρ
G2

(y′)). Clearly ϕ is onto. We need only to show that ϕ is a

homomorphism. Before that we show that ϕ
(
∆
(
(ρ
G1

(x), ρ
G2

(y))
))

= ρ
G1×G2

(
∆(x, y)

)
, for all (x, y) ∈ X1 × X2. We

know that

∆
(
(ρ
G1

(x), ρ
G2

(y))
)

=
{
(ρ
G1

(r), ρ
G2

(s)) | ρ
G1

(r) ∈ ρ
G1

(x) � ρ
G1

(x), ρ
G2

(s) ∈ ρ
G2

(y) � ρ
G2

(y)
}
,

and so we have

ϕ
(
∆
(
(ρ
G1

(x), ρ
G2

(y))
))

=
{
ρ
G1×G2

(
(r, s)

)
| ρ
G1

(r) ∈ ρ
G1

(x) � ρ
G1

(x), ρ
G2

(s) ∈ ρ
G2

(y) � ρ
G2

(y)
}
.

But ρ
G1

(r) ∈ ρ
G1

(x) � ρ
G1

(x) if and only if there is u ∈ x ∗ x such that ρ
G1

(r) = ρ
G1

(u) and ρ
G2

(s) ∈ ρ
G2

(y) � ρ
G2

(y) if
and only if there is v ∈ y ◦ y such that ρ

G2
(s) = ρ

G2
(v). Now, by using Lemma 4.3 we have

ϕ
(
∆
(
(ρ
G1

(x), ρ
G2

(y))
))

=
{
ρ
G1×G2

(
(r, s)

)
| r ∈ x ∗ x, s ∈ y ◦ y

}
=

{
ρ
G1×G2

(
(r, s)

)
| (r, s) ∈ ∆

(
(x, y)

)}
= ρ

G1×G2

(
∆(x, y)

)
.
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Now, by using the above argument, for every elements (x, y), (x′, y′) ∈ X1 × X2 we obtain

ϕ
(
(ρ
G1

(x), ρ
G2

(y)) ×d (ρ
G1

(x′), ρ
G2

(y′))
)

= ϕ
(
∆
(
(ρ
G1

(x), ρ
G2

(y))
)⋃

∆
(
(ρ
G1

(x′), ρ
G2

(y′))
))

= ρ
G1×G2

(
∆(x, y)

)⋃
ρ
G1×G2

(
∆(x′, y′)

)
= ρ

G1×G2

(
∆
(
(x, y)

)⋃
∆
(
(x′, y′)

))
= ρ

G1×G2

(
(x, y) ×d (x′, y′)

)
=

{
ρ
G1×G2

(
(r, s)

)
| (r, s) ∈ (x, y) ×d (x′, y′)

}
= ρ

G1×G2

(
(x, y)

)
} ρ

G1×G2

(
(x′, y′)

)
= ϕ

(
(ρ
G1

(x), ρ
G2

(y))
)
} ϕ

(
(ρ
G1

(x′), ρ
G2

(y′))
)
.

Hence, ϕ is an isomorphism.

Theorem 4.8. Let G be a v-linked g-hypergraph and (X2, ◦) be the g-hypergroupoid associated with G. If (X1, ∗) is
a separable hypergroupoid and ϕ : X1 → X2 is an epimorphism, then there exists a regular equivalence relation µ on
X1 such that

X1/µ � X2/ρ
G
.

Proof. Suppose that the relation µ on X1 is defined by xµy ⇔ ϕ(x)ρ
G
ϕ(y), for all x, y ∈ X1. Since ρ

G

is an equivalence relation on X2, then it is easy to check that µ is an equivalence relation on X1. Let
x, y, z ∈ X1 be arbitrary elements such that xµy. We show that (x ∗ z)µ(y ∗ z). From xµy it follows that
ϕ(x)◦ϕ(x) = ϕ(y)◦ϕ(y) which implies that ϕ(x ∗ x) = ϕ(y ∗ y). Let r ∈ x ∗ z be an arbitrary element. Then, we
have ϕ(r) ∈ ϕ(x ∗ z) = ϕ(x ∗ x)

⋃
ϕ(z ∗ z) = ϕ(y ∗ y)

⋃
ϕ(z ∗ z) = ϕ(y ∗ z). Therefore, there is t ∈ y ∗ z such that

ϕ(r) = ϕ(t). This means that rµt and so (x ∗ z)µ(y ∗ z). In a similar way we can show that (z ∗ x)µ(z ∗ y). Thus
µ is regular. Now, let ψ : X1/µ→ X2/ρ

G
is defined by ψ

(
µ(x)

)
= ρ

G

(
ϕ(x)

)
. Suppose that x, y ∈ X1. Then,

µ(x) = µ(y)⇔ ϕ(x)ρ
G
ϕ(y)⇔ ρ

G
(ϕ(x)) = ρ

G
(ϕ(y))⇔ ψ

(
µ(x)

)
= ψ

(
µ(y)

)
.

Thus ψ is well defined and one to one. Since ϕ is onto, it follows that ψ is onto. We equip X1/µ and X1/ρ
G

with the hyperoperations � and �, respectively. Let x, y ∈ X1. The following argument shows that ψ is a
homomorphism.

ψ
(
µ(x)

)
� ψ

(
µ(y)

)
= ρ

G
(ϕ(x)) � ρ

G
(ϕ(y))

=
{
ρ
G

(ϕ(z)) | ϕ(z) ∈ ϕ(x) ◦ ϕ(y)
}

=
{
ρ
G

(ϕ(z)) | ϕ(z) = ϕ(t) for some t ∈ x ∗ y
}

=
{
ρ
G

(ϕ(t)) | t ∈ x ∗ y
}

= ψ
({
µ(t) | t ∈ x ∗ y

})
= ψ

(
µ(x) � µ(y)

)
.

Theorem 4.9. Let G be a v-linked g-hypergraph and (X1, ∗) be the g-hypergroupoid associated with G. If (X2, ◦) is a
separable hypergroupoid and ϕ : X1 → X2 is a monomorphism, then there exists a regular equivalence relation µ′ on
ϕ(X1) such that

X1/ρ
G
� ϕ(X1)/µ′.
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Proof. Suppose that the relation µ′ on ϕ(X1) is defined by ϕ(x)µ′ϕ(y)⇔ xρ
G

y, for all x, y ∈ X1. It is easy to

see that µ′ is a regular equivalence relation. Define ψ : X1/ρ
G
→ ϕ(X1)/µ′ by ψ

(
ρ
G

(x)
)

= µ′(ϕ(x)). One can
easily checks that ψ is an isomorphism.

Lemma 4.10. Let ρ be a regular equivalence relation on a hypergroupoid (X, ◦). Then, π : X→ X/ρwhich is defined
by π(x) = ρ(x), for all x ∈ X, is an epimorphism which is called canonical epimorphism.

Proof. The proof is straightforward.

Theorem 4.11. Let(X1, ∗) and (X2, ◦) be g-hypergroupoids associated with the v-linked g-hypergraphsG1 = (X1,R1)
and G2 = (X2,R2), respectively. Let ϕ : X1 → X2 be an epimorphism such that ϕ(x)ρ

G2
ϕ(y) implies xρ

G1
y. If

µ = {(x, y) ∈ X2
1 | ϕ(x)ρ

G2
ϕ(y)

}
and µ′ = {(ϕ(x), ϕ(y)) ∈ X2

2 | xρG1
y
}
, then there exists a unique homomorphism

ϕ∗ : X1/µ→ X2/µ′ such that the following diagram is commutative; i.e., π′ ◦ϕ = ϕ∗ ◦π, where π and π′ denote the

X1 X2

X1/µ X2/µ
′

π π′

ϕ

ϕ∗

canonical epimorphisms.

Proof. The proof of the fact that µ and µ′ are regular equivalence relations is analogous to the corresponding
part of the proof of Theorem 4.8 and we omit the details. We equip X1/µ and X2/µ′with the hyperoperations
� and �, respectively. Let ϕ∗ : X1/µ→ X2/µ′ is defined by ϕ∗

(
µ(x)

)
= µ′(ϕ(x)), for all x ∈ X1. First, we show

that ϕ∗ is well defined. Let x, y ∈ X1 and µ(x) = µ(y). Then, ϕ(x)ρ
G2
ϕ(y) and so xρ

G1
y. Therefore, ϕ∗ is well

defined. Moreover, it is easy to prove that ϕ∗
(
µ(x) � µ(y)

)
= ϕ∗

(
µ(x)

)
� ϕ∗

(
µ(y)

)
and π′ ◦ ϕ = ϕ∗ ◦ π. Now,

we show that ϕ∗ is unique. Let 1 : X1/µ → X2/µ′ be a homomorphism such that π′ ◦ ϕ = 1 ◦ π. Then, for
all x ∈ X1, 1(µ(x)) = 1(π(x)) = π′ ◦ ϕ(x) = ϕ∗ ◦ π(x) = ϕ∗

(
µ(x)

)
.

5. Fundamental Relation on a g-Hypergroupoid

One of the main tool to study hyperstructures is the fundamental relation β∗ in an Hv-semigroup (X, ◦)
as the smallest equivalence relation so that the quotient X/β∗ would be a semigroup. The relation β∗ was
introduced on hypergroups by M. Koskas in 1970 [9] and was mainly studied intensively and in depth by
Corsini [3], also see [7].

For a relation β on a non-empty set X, we denote by β̂ the transitive closure of β and define it as follows:

xβ̂y if and only if there exists a natural number k and elements
x = a1, a2, . . . , ak−1, ak = y in X such that
a1βa2, a2βa3, . . . , ak−1βak.

Obviously, β = β̂ if β is transitive.
The proof of following theorem is similar to the proof of Theorem 1.2.2 of [14].

Theorem 5.1. Let (X, ◦) be an Hv-semigroup and denote U the set of all finite products of elements of X. We define
the relation β on X by setting xβy if and only if x = y or {x, y} ⊆ u where u ∈ U. Then, β∗ is the transitive closure of
β.
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Theorem 5.2. Let G = (X,R) be a v-linked 1-hypergraph and XG = (X, ◦) be the 1-hypergroupoid associated with
G. Then, we have

β∗(x) =

{
S if x ∈ S
{x} if x < S,

where S =
⋃

A∈Cod(R)
A and β is the relation defined in Theorem 5.1.

Proof. First, we show that
⋃
{u | u ∈ U} = S. Let x ∈ S be an arbitrary element. Then, there exist A ∈ Cod(R)

and a ∈ X such that (a,A) ∈ R and x ∈ A. Therefore, by setting u = a◦a we have x ∈ u. Hence S ⊆
⋃
{u | u ∈ U}.

The reverse inclusion is obvious. We conclude that if x, y ∈ X and xβy, then x ∈ S if and only if y ∈ S. Now,
let x, y ∈ S be arbitrary elements. Then, there exist A,B ∈ Cod(R) and a, b ∈ X such that (a,A) ∈ R, (b,B) ∈ R,
x ∈ A and y ∈ B. Therefore, {x, y} ⊆ a ◦ b which implies that xβy. Consequently, for every x, y ∈ S we have
xβy. By the above argument, we obtain

β(x) =

{
S if x ∈ S
{x} if x < S.

It is easy to see that β is transitive and so we have β̂ = β. By using Theorem 5.1, we have β∗ = β̂ which
completes the proof.

Corollary 5.3. A v-linked 1-hypergraph G = (X,R) is plenary if and only if β∗ = X × X.

By using the above corollary and Remark 2.7, we obtain the following corollary.

Corollary 5.4. For every separable Hv-group, we have β∗ = β.
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