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Abstract. In this paper, we associate a partial g-hypergroupoid with a given g-hypergraph and analyze
the properties of this hyperstructure. We prove that a g-hypergroupoid may be a commutative hypergroup
without being a join space. Next, we define diagonal direct product of g-hypergroupoids. Further, we
construct a sequence of g-hypergroupoids and investigate some relationships between it’s terms. Also, we
study the quotient of a g-hypergroupoid by defining a regular relation. Finally, we describe fundamental
relation of an H,-semigroup as a g-hypergroupoid.

1. Introduction and Preliminaries

Algebraic hyperstructures are a suitable generalization of classical algebraic structures. In a classical
algebraic structure, the composition of two elements is an element, while in an algebraic hyperstructure,
the composition of two elements is a set. More exactly, let P(X) be the set of all subsets of a given set X. A
partial hypergroupoid is a pair (X, *), where X is a non-empty set and = is a partial hyperoperation, i.e.,

+: XXX - P(X), (xym—x=*y.

Every map from X X X to P*(X) is called a hyperoperation, where P*(X) = P(X) — {0}. If A, B € P*(X), then we
define A+ B = U{a*blaeA,beB},x*B ={x}*BandAry=A=+{y}. f A=0o0r B=0wedefine A+B=0.
A partial hypergroupoid (X, #) is called a hypergroupoid if + is a hyperoperation. A hypergroupoid (X, ) is
called a semihypergroup if the associative axiom is valid, i.e., x * (y*z) = (x+y) 2z, for all x,y,z € X and it
is called reproductive if x + X = X+ x = X, for all x € X. A hypergroup is a reproductive semihypergroup.
A commutative hypergroup (X, *) (i.e.,, x* y = y*x for all x,y € X) is called a join space if the following
implication holds for all elements 4, b, ¢, d of X:

alb(c/d+0=a+d(\bxc+0,

wherea/b = {x|a € x = b}.
H,-structures which satisfy the corresponding structure-like axioms are the largest class of algebraic
hyperstructures. The notion of H,-structures has been introduced by Vougiouklis [13] as a generalization
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of well-known algebraic hyperstructures (semihypergroups, hypergroups, hyperrings and so on) which
satisfy the weak axioms where the non-empty intersection replaces the equality. A comprehensive review
of the theory of H,-structures appears in [1, 5, 6]. A hypergroupoid (X, #) is called an H,-semigroup if the
weak associative axiom is valid, i.e.,

x*(y*z)ﬂ(xx-y)x-zi@ , forallx,y,zEX

and it is called an H,-group if it is a reproductive H,-semigroup.
Let X be a non-empty set. By an h-relation R on X we mean a subset of X X P*(X). The domain of R is the

set Dom(R) = {x € X|(x,A) € Rfor some A € P(X)} and codomain of R is the set Cod(R) = {A eP(X)|(x,A) e

R for some x € X}. Also, for any x € X, we define xg = {A | (x, A) € R}.

The notion of hypergraph has been introduced around 1960 as a generalization of graph and one of the
initial concerns was to extend some classical results of graph theory. In [2], there is a very good presentation
of graph and hypergraph theory. Connections between hypergraphs and hyperstructures are studied by
many authors, for example, see [4, 8, 10, 11]. A hypergraph is a pair I = (X, A), where X is a finite set of
vertices and A = {A;,..., A} is a set of hyperedges which are non-empty subsets of X. Figure 1 is an
example of a hypergraph with 2 hyperedges A; = {1,2,3} and A, = {2, 3, 4}.

—
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N

Figure 1: An example of hypergraph with 2 hyperedges.

2. Partial g-Hypergroupoids

In this section we generalize the notion of hypergraphs to generalized hypergraphs and then we associate
a partial hypergroupoid to each generalized hypergraph.

Definition 2.1. [12] A generalized hypergraph or, in short, a g-hypergraph is an ordered pair G = (X, R), where X
is a non-empty set and R is an h-relation on X. The elements of X are called the vertices and the sets in & = Cod(R)
are called the hyperedges of the g-hypergraph.

It is worth mentioning that in this paper we deal only with g-hypergraphs G = (X, R) in which X is a finite

set. A g-hypergraph G = (X, R) is called v-linked if xg # 0, for all x € X and itis called plenaryif |J A=X.
AeCod(R)

Figure 2: An example of a g-hypergraph.



M. Farshi et al. / Filomat 31:15 (2017), 4819-4831 4821

Let G = (X, R) be a g-hypergraph. The partial hypergroupoid Xg = (X, o) where the partial hyperopera-
tion o is defined by
xoy=N(x)UN(y), forall (x,y) € X?,

is called the partial g-hypergroupoid associated with G, where N(x) = |J A. In the case that o is a
(v A)eR
hyperoperation, Xg is called a g-hypergroupoid.

Lemma 2.2. Xg is a g-hypergroupoid if and only if G is v-linked.
Proof. It is obvious. [

Remark 2.3. In [4], Corsini associated to a given hypergraph I = (H,{A;};) an h.g. hypergroupoid Hr = (H, o)
where the hyperoperation o has defined as follows:

xoy=E(x)JE(y), forallx,y € H?,

where E(x) = U A;. Let T = (H,{Ai}i) be a hypergraph. If we define the h-relation R = {(x, A)lxe Ai} on H, then
XEA;

I' becomes a v-linked and plenary g-hypergraph. Thus, every hypergraph can be considered as a g-hypergraph and

there is no difference between h.g. hypergroupoids and g-hypergroupoids when we deal with hypergraphs. In other

words, each h.g. hypergroupoid can be considered as a g-hypergroupoid. As we will see, h.g. hypergroupoids does not

coincide with g-hypergroupoids. For example, by Theorem 3 of [4], each h.g. hypergroupoid is a join space whereas

there are g-hypergroupoids which are not join spaces (see Example 2.4).

Example 2.4. Consider the following g-hypergraph and the table of it’s associated g-hypergroupoid:

o 1 2 3

5 1 {2} {1,2} {1,2,3}
2| {12}  {1,2} {1,2,3}

3 31{1,2,3} {1,2,3} {1,3}

It is not difficult to see that (X = {1,2,3}, o) is a hypergroup. We have 1/3 = {1,2,3} and 3/1 = {3}. It implies
that 1/3(\3/1#0, but 101(\303=0. Hence (X, o) is not a join space.

Here, we give an example of a g-hypergraph such that it’s associated g-hypergroup is a join space.

Example 2.5. In the following, we have drawing a g-hypergraph G and the table of the g-hypergroupoid associated
with G:
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o 1 2 3

{2y {123y {2}

214{1,2,3} {1,2,3} {1,2,3}

3 3 {2} {1,2,3} {2}

One can check that (X, o) is a hypergroup. On the other hand, we have x o y(\zow # 0, forall x,y,z,w € X.
This implies that (X, o) is a join space.

Definition 2.6. A partial hypergroupoid (X, o) is called separable if the following property holds:
xoy=xoxJyoy, forallx,y e X.

Remark 2.7. Let (X, 0) be a separable hypergroupoid. Define R = {(x,x ox)|x € X} Then, (X, o) is the g-
hypergroupoid associated with the v-linked g-hypergraph G = (X, R). Therefore, every separable hypergroupoid can
be considered as a g-hypergroupoid.

The next lemma can be proved easily by using the previous notions.

Lemma 2.8. Let (X, o) be a partial g-hypergroupoid. Then, for all x,y € X and A C X we have
(1) xoy=yox,
(2) (xox)o(xox)= |J tot,

texox

(3) (AocA)o(AcA)= U tot
teAoA

Lemma 2.9. Let (X, o) be a separable hypergroupoid. Then
(1) for each x,vy,z € X we have
(xoy)oz=[Eox)oon|UzozU[yoy) ooy
xo(yoz)= [(yoy)o(yoy)]UxoxU[(zoz)o(zoz)].
(2) (X, o) is an Hy,-semigroup.
Proof. (1) For each x, y,z € X we have
(xoy)oz=(xoxUyoyloz=(xox)ozU(yoy)oz
and
xo(yoz)=(yozjox=(yoylUzoz)ox=(yoy)oxUlzoz)ox.

Moreover,

(xox)oz= U toz:( U tot)Uzoz:[(xox)o(xox)]Uzoz.

texox texox
Therefore, we have
(xroy)oz=[@ox)oox)|UzozU[oy)oyoy)
and

xo(yoz):[(yoy)o(yoy)]UxoxU[(ZOZ)O(ZOZ)].
(2) We have (Z)q&[(yo]/)o(yoy)]Q(xoy)ozﬂxo(yoz). This completes the proof. [
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Notice that every partial g-hypergroupoid is separable and so we have the following corollary.
Corollary 2.10. Every g-hypergroupoid is an H,-semigroup.
Corollary 2.11. A partial g-hypergroupoid Xg is an Hy,-semigroup if and only if G is v-linked.

Theorem 2.12. Let G = (X, R) be a v-linked g-hypergraph. Then, the g-hypergroupoid Xg = (X, o) is an H,-group

if and only if G is plenary.

Proof. Suppose that Xg = (X, o) is an H,-group. It suffices to show that X € |J A. Letx € X be an arbi-
AeCod(R)

trary element. By assumption, we have x o X = X and so thereis y € X such that x € x o y = N(x) U N(y).

Thus, there is A € Cod(R) such thatxe AC |J A.
AeCod(R)

Conversely, let G be plenary and x € X be an arbitrary element. By Corollary 2.10, it is sufficient to show
thatxo X = Xox = X. Itis obvious that x o X € X. We show that X C x o X. Since G is plenary, if z € X is an
arbitrary element, then there is A € Cod(R) such that z € A. Since A € Cod(R), it follows that there is y € X
such that (, A) € R and so we have z € x o y C x o X. This implies that X C x o X and so x o X = X. Clearly
X ox = X since o is commutative. Therefore, Xg is an H,-group. [

Corollary 2.13. Xg is a reproductive g-hypergroupoid if and only if G is v-linked and plenary.

Theorem 2.14. Let (X, o) be a separable hypergroupoid. Then, o is associative if and only if the following conditions
hold:

(1) xoxC(xox)o(xox), forallxeX,

(2) [(xox)o(xox)]—xoxg(yoy)O(yoy), forallx,y € X.

Proof. Suppose that o is associative and x, y are arbitrary elements of X. First, we show that xox C (xox)o
(x o0 x). Suppose that x o x = {xy,...,x,} and x; € x o x is an arbitrary element. Since xox;=xoxJx;ox; ,
it follows that x; € x o x; and so x; € x o (x o x;). Associativity of o implies that

xi€(xox)ox;=x10xJ...UJx,0x, =(xox)o(xox).

Thus (1) holds. Now, to prove the condition (2) we have
(oyox= U tox=( U tot)Uxox=[(yonoyon|Uxox

teyoy teyoy

yo(yox) = U yot= U oyUtoty=yoyU( U tot)U( U tot)

teyox teyox teyoy texox

[yomowon|U[Eox)oxon)]

Consequently, (2) holds.
Conversely, suppose that x, i, z are arbitrary elements of X and the conditions (1) and (2) hold. From

point (1) of Lemma 2.9, we have

(xoy)oz=[(xox)oxox)|UzozU[(yoy) o(yon)
and

xo(yoz)= [(yoy)o(yoy)]UxoxU[(zoz)o(zoz)].
By setting A = [(xox)O(xox)]Uzoz and B= [(zoz)O(zoz)]Uxox we have (xoy)oz = [(yoy)o
(yo y)] UAandxo(yoz)= [(y oy)o(yo y)] U B. By using the conditions (1) and (2) we have
[(xox)o(xox)]—xox)UxoxUzoz

(zoz)o(zoz)|JzozJxox

A

N

(zoz)o(zoz)[|Uxox=B.

In a similar way the inverse inclusion is proved and then o is associative. [
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Theorem 2.15. Let (X, o) be a separable hypergroupoid. Then, o is associative if and only if the following conditions
hold:

(1) AcAC(AoA)o(AocA), forall ACX,
(2) [(AoA)o(AoA)]—AoAQ(BoB)o(BoB), forall A,B C X.

Proof. Suppose that o is associative and A, B are arbitrary subsets of X. Then, by using Theorem 2.14 we
have

AoA =Jaocac U(aou)O(aoa)=U< U tot)= U tot
acA acA acA " teaoa teAcA

=(AocA)o(AcA).
Hence, (1) is true. For every b € B we have

[(AoA)o(AcA)|-AcAc g\[((aoa)O(aoa))—aoa]g(bob)o(bob).

On the other hand, we have (b o b) o (b o b) C (B o B) o (B o B). Hence, the assertion (2) holds too.

Conversely, suppose that the assertions (1) and (2) hold for all subsets A and B of X. Let x, y be arbitrary
elements of X. By setting A = {x} and B = {y}, the assertions (1) and (2) of Theorem 2.14 hold and therefore
o is associative. [J

Corollary 2.16. If a reproductive g-hypergroupoid Xg = (X, o) satisfies anyone of the following conditions:

(xox)o(xox)=xox, forallx € X,
(xox)o(xox)=X, forallx € X,

then it is a hypergroup.

Example 2.17. The g-hypergroupoid associated with the g-hypergraph of Figure 2 has the following table:

ol 1 2 3 4
1 2 X (1,2 (1,23
2 X X X X
3| (1,2} X (1,2} (1,23
41{1,2,3) X (1,23} {1,2,3)

where X = {1,2,3,4}. It is easy to verify that (x o x) o (x o x) = X, for all x € X. On the other hand, for every x € X
we have x o X = X o x = X. So, by Corollary 2.16, (X, o) is a hypergroup.

Example 2.18. Consider the g-hypergroupoid of Example 2.4. By Theorem 2.14, (X, o) is a hypergroup. Also, we
have (1 01) o (1 01) ={1,2}. This shows that the converse of Corollary 2.16 is not true.

3. Higher-order Hypergroupoids

Let (X, o) be a separable hypergroupoid. We construct a sequence of hypergroupoids Xy = (X, op), X1 =
(X, 01), Xp = (X, 02), ... recursively as follows: for all x, y € X we define xogy = xoy, X041 X = (X 0kX) o (x 0k X)
and X 0py1 Y = X 01 XUy ops1 y, where k > 0. Set Ni(x) = x o x. We define Ni(A) = | Ni(a), where A is

acA

a subset of X. The following properties are immediate:
(1) Nx(A) =Aor A forallACX,
(2) Niz1(x) = Ne(Ni(x)), for all x € X and k > 0,
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(3) Nc(Nir1(%)) = Nis1(Nk(x)), forall x € X and k > 0,
(4) Nis1(A) = Ni(Nk(A)), forall A € X and k > 0,
(5) A C B implies that Ny(A) € Nx(B), forall A,B C X,
(6) Ni(x) = Niga(x) implies that Ni(x) = N(x), for all ¥ > k.
By Theorem 2.14, Xj is a semihypergroup if and only if the following conditions hold:
(@) Ni(x) € Niy1(x), forallx e X,
(B) Nier1(x) = Ni(x) € Niea(y),  forallx, y € X.
Lemma 3.1. The above hyperoperation oy has the following properties:
(1) Aogy1 A= (AogA)ox(AorA), forall ACX,
(2) x 0z x = ((x 041 %) 0k (x 041 1)) 0k (X Os1 X) 0 (x Os1 X)), for all x € X.
Proof. (1) Let A be a subset of X. Then,
A o1 A = Nir1(A) = Ne(Ni(A)) = Ni(A) ok Ni(A) = (A o A) o (A o A).
(2) The result follows from part (1) and the definition of ox,,. [
Theorem 3.2. Let (X, o) be a separable hypergroupoid.
(1) If Xy = (X, ox) satisfies condition (a) for some k > 0, then Ny(x) € Nyrp1(x), forall x € X and r > k.
(2) If X = (X, ox) satisfies condition (B) for some k > 0, then Ny1(x) € Ny(x), forall x € X and r > k.

Proof. (1) Let x € X be an arbitrary element. We prove the result by induction on r. If r = k, then there is
nothing to prove. Assume that N,_i(x) € N,(x) for r > k, the induction hypothesis. Thus we have

Nr(x) = Nr—l(Nr—l(x)) - Nr—l(Nr(x)) = M‘(Nr—l(x))
C Ny(Ny(x)) = Ny (%)

(2) Let x € X be an arbitrary element. First, we show that Ni(Nk1(x)) € Nis1(x). Assume to the contrary
thatt € Ni(Ne1 (%)= Nix1(x). Then, t ¢ Ni,1(x) and thereisa € Nyy1(x) such thatt € Ni(a). Sincea € Niy1(x),
it follows that there is b € Ny(x) such that a € Ni(b) and so t € Ny(Nk(b)) = Nii1(b). On the other hand,
t & Nii1(x) implies that f ¢ Ni(b) and so t € Ni11(b) — Ni(b). By hypothesis we have Ni.1(b) = Ni(b) € Nis1(x)
which implies that t € Nj1(x) contradicting to t ¢ Ni41(x). Now, we prove the result by induction on r.
We have N (x) = Ne(NVie(Nir1(%))) € Ni(Nir1(x)) € Nis1(x). So, we are done with the initial step. Assume
that NV,.1(x) € N,(x) for r > k, the induction hypothesis. We obtain

Nr+2(x) =Nr1 (Nr+1 (X)) c Nr+1(Nr(x)) = Ny(Ny+1(x))
C N;(N:(x)) = Ny (x).

Corollary 3.3. If (X, o) is a separable semihypergroup, then Ny(x) = Nypp1(x), forall x € X and r > k.
Corollary 3.4. If (X, o) is a separable semihypergroup, then N(A) = Ny (A), forall A € X and r > k.

Next example shows that the converse of Corollary 3.3 is not true.
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Example 3.5. Let (X = {1, 2,3}, o) be a hypergroupoid with the following table:

o ‘ 1 2 3

11{20 X {2}
2| X (1,3} X
31{28 X {2}

We can see that No(1) = (2} and N1(1) = {1,3}. Since No(x) € Ni(x) by Theorem 2.14, (X, 0) is not a
semihypergroup. We can check that Ni(x) = Ni1(x), for all x € X and k > 0. This means that the converse of
Corollary 3.3 is not true.

Proposition 3.6. If there exists a natural number k such that Ni(x) = Ni1(x), for all x € X, then
(1) Xi = (X, of) is a semihypergroup,
(2) Xy = X, forallr > k.

At the beginning of this section, we construct a sequence of separable hypergroupoids Xy = (X, 0g), X1 =
(X,01), X2 = (X, 02),... by a given separable hypergroupoid (X, c). Let G be a v-linked g-hypergraph and
Xg be the g-hypergroupoid associated with G. Set Xy = Xg. For k > 0, we define an h-relation R, on X as
follows:

Ry = {(x,xokx)lxeX}

and therefore we have a sequence Gy, G1, 5>, . . . of g-hypergraphs where Gy = G and G, = (X, Ry), for k > 0.
It is easy to verify that X is the g-hypergroupoid associated with Gy. Now, by Corollary 3.3 and Proposition
3.6 we conclude that if X is an associative g-hypergroupoid, then G, = Gi,1 and X, = X, for all r > k. For
a given g-hypergraph G we define

n(@) = minfk | Ni(x) = N1 (x) for all x € X

and
s(G) = min{k | Xrisa semihypergroup}.

Obviously, s(G) < n(G). Consider the g-hypergraph G of Figure 2. In Example 2.17 we showed that Xg is a
hypergroup and so we have s(G) = 0 whereas n(G) = 1. This means that the inequality s(G) < n(G) may be
hold strictly.

4. Quotient g-Hypergroupoids

In this section, by considering a regular equivalence relation on a g-hypergroupoid, we define a quo-
tient g-hypergroupoid. Next, we investigate some relationships between diagonal direct product of hy-
pergroupoids and direct product of g-hypergraphs. In this regards we recall some definitions and results
which we need for the development of the rest of paper.

Let (X, *) be a hypergroupoid and p be an equivalence relation on X. If A and B are non-empty subsets
of X, then ApB means that for all 2 € A, there exists b € B such that apb and for all I’ € B there exists a’ € A
such that a’pb’. We say that p is regular if for all a € X from xp y, it follows that (a*x)p(a* y) and (x*a)p(y *a).
For an equivalence relation p on X, we may use p(x) to denote the equivalence class of x € X. Moreover,
generally, if A is a non-empty subset of X, thenp(A) = U{p(x) | x € A}. Let X/p be the family {p(x) | x € X}
of classes of p. By Theorem 2.5.2 of [6], if (X, *) is a hypergroupoid and p is a regular equivalence relation
on X, then the following hyperoperation on X/p is well defined:

p) @ p(y) = {p(2) |z € x*y}.

Let G = (X, R) be a v-linked g-hypergraph and (X, o) be the g-hypergroupoid associated with G. We define
the relation pg on X as follows:

xXpy if and only if xg = yr.



M. Farshi et al. / Filomat 31:15 (2017), 4819-4831 4827

Lemma 4.1. The relation Pg is a reqular equivalence relation.

Proof. Obviously, Pg is an equivalence relation. Let z € X be an arbitrary element and xpY. First, we
show that x o z = y o z which implies that (x o z)p (yoz). Letr € xoz = N(x) [UN(z) be an arbitrary
G

element. In the case that r € N(z), there is nothing to prove. If r € N(x), then there is a hyperedge A such
that (x, A) € R and r € A. By assumption, we have xg = yr and therefore we have (y, A) € R. This implies
that » € N(y). Hence x o z C y o z. The reverse inclusion can be shown similarly. In a similar way we can
show that (z o x)ﬁg (zoy). O

Definition 4.2. Let G1 = (X1, R1) and G, = (X3, Ry) be two g-hypergraphs. Then, the direct product of G1 and G»
is the g-hypergraph G1 X G2 = (X1 X X, R1 X Rp) where Ry X R, = {((x, y), A X B) | (x,A) € Ry, (y,B) € Rz}.

Lemma 4.3. Let G1 = (X1, R1) and G, = (X2, Rp) be two g-hypergraphs. Then, for every (x,y), (u,v) € X1 X Xa,
(x, y)pg] G (u,v) © xXp, U and U
Proof. It is obvious. [J

Definition 4.4. Let (X, +) and (Y, 0) be two hypergroupoids. We define the hyperoperation X4 on the Cartesian
product X X Y as follows:

(1, Y1) Xa (2, 12) = A(Ger, 1)) U A2, ),

where A((a, b)) = {(x, Yilxearaandyebo b}. The hypergroupoid (X X Y, X,) is called the diagonal direct product
of (X, ) and (Y, o).

Theorem 4.5. Let (X1,%*) and (X3, 0) be the g-hypergroupoids associated with the v-linked g-hypergraphs Gi =
(X1, R1)and G, = (Xa, Ro), respectively. Then, the diagonal direct product of (X1, *) and (X, o) is the g-hypergroupoid
associated with G1 X G».

Proof. Let (X1 X X5, X4) be the diagonal direct product of (X, *) and (Xj, o). It suffices to show that

(r,y) %4 (v, y) = U{A X B1((x, ), A x B) € Ry X Ro},

where (x, y) is an arbitrary element of X; X X5. This can be seen by the following argument. Let (7, s) € (x, y) X4
(x, y) be an arbitrary element. Then, r € x*x and s € y o y. Since (Xj, *) and (X, o) are the g-hypergroupoids
associated with the g-hypergraphs G1 = (X1, R1) and G» = (X, Rp), respectively, there are hyperedges A and

Bsuchthat (x, A) € Ry, (v, B) € Ry and (7, 5) € AXB. By the definition of R; xR, we have ((x, y), AXB) € RiXR;
and therefore (r,s) € | {AxB | ((x, y),AxB) € Ry sz}. Hence (x, y)%4(x, y) € U {AxB | ((x, y),AxB) € Ry xR2}.
The reverse inclusion can be shown similarly. O

Definition 4.6. Let (X1, *) and (X3, o) be two hypergroupoids. A map ¢ : X1 — X, is called a homomorphism if for
all x, y € X3 we have p(x*y) = @(x)o@(y). If ¢ is one to one (onto) we say that @ is a monomorphism (epimorphism).

If there exists a one to one epimorphism from Xy onto X, we say that Xj is isomorphic to X, and we write X; = Xj.

Theorem 4.7. Let (X1,*) and (Xy,0) be the g-hypergroupoids associated with the v-linked g-hypergraphs G1 =
(X1, Rq1) and G, = (X3, Ry), respectively. Then,

X1/Pgl><d Xz/Pg2 = (X1 Xq XZ)/‘Dglxgz .
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Proof. We equip Xi/ Pg,” X5/ Pg and (X; X4 X2)/ Pgixa with hyperoperations ©, & and ©, respectively.
Define 1 ’ o

PXi/p xaXalp, = XiXaXo)lp,
by
(P((Pgl(x), sz(y))) = pglxgz((x, ]/)), for all (x, y) € X; x Xo.
First, we prove ¢ is well defined. Consider
(05, p (1) = (p (), p (¥))-

Hence, we have xg, = x}, and yr, = y, . Since

AXBe X Y)rxr, ©A€xg,Bey ©Ac x}al,B € y}h
S AXB e, Y )RxR,

we obtain (x,y)) = (x’, 1)), i.e., ¢ is well defined. Now, we check that ¢ is one to one. Suppose
PQ1 G ¥ Y p ¢ ppP

pgl XQZ(
that pg] ><gg(x, y)) = pg] ><gg(x’, y’)). We obtain

Aexg,Beyr, ©AXBe (X, Yrxr, © AXBE X, Y )RxR,
S Aexy,Beyy.

This implies that (p (x),p (v)) = (p (x'),p (v')). Clearl is onto. We need only to show that ¢ is a
p P Py P ) PglY y ¢ y %

homomorphism. Before that we show that (p(A((pg(x), pg(y)))) = pg Xg(A(x, y)), forall (x,y) € X1 X Xp. We
know that
A(p ), p (w)

= {(p:p O 1 py(1) € p (D © p () (5) € p W B P (1),
and so we have

o(A((p ), p D))
={p,.l0 s)ﬁ [p,() €p DOp ()06 €p )P W]

But pg(r) €, (x) o} Pg (x) if and only if there is u € x * x such that Pg (r) Pg (1) and pg(s) € pg(y) oj pg(y) if
and only if there isv e y o y such that Py ( )= Pg (v). Now, by using Lemma 4.3 we have
2

(P(A<(Pgl(x)r sz(y)))) {‘Oglxgg(r’ s)) |[rex*x,seyo y}
= {pglxgg(r’ s)) | (1,5) € A((x, y))}

Ax,))-

PQl XQ2<
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Now, by using the above argument, for every elements (x, y), (x’, ') € X1 X X, we obtain

# (0,00 () Xa (0 (), 0 (1)

=0 (Ao 0, ) UA((0, ), 0, 0)

=P glxgz(A(x’ ¥ )) Up glxgz(A(x,’ Y ,))

=p, AN ) UA, 1))

SR (CAVEICH)

=, )15 € (xy) xa (2, )

=pg @ )or, [0 y)

=¢ ((pg$x), pggy))) ¢ ((pggx’), pgz(y’))) :
Hence, @ is an isomorphism. [J

Theorem 4.8. Let G be a v-linked g-hypergraph and (X5, o) be the g-hypergroupoid associated with G. If (Xy,*) is
a separable hypergroupoid and ¢ : X1 — Xj is an epimorphism, then there exists a reqular equivalence relation u on
Xj such that

Xl/[JEX2/Pg-

Proof. Suppose that the relation y on X; is defined by xuy < (p(x)pg @(y), for all x,y € X;. Since Pg

is an equivalence relation on Xj, then it is easy to check that u is an equivalence relation on X;. Let
x,Y,z € X be arbitrary elements such that xuy. We show that (x * z)u(y * z). From xuy it follows that
@(x) o p(x) = (y) o p(y) which implies that p(x*x) = @(y*y). Let r € x*z be an arbitrary element. Then, we
have p(r) € p(x+z) = p(x *x) | p(z *2) = p(y * y) U @(z * z) = p(y * z). Therefore, there is t € y * z such that
@(r) = @(t). This means that rut and so (x * z)1i(y * z). In a similar way we can show that (z * x)(z * y). Thus

u is regular. Now, let ¢ : Xq/u — X5/ Pg is defined by lj;(y(x)) =P, ((p(x)). Suppose that x, y € X;. Then,

H) = p(y) © P @) & p @) = p @H) & P(pE) = Y(uw)

Thus 1) is well defined and one to one. Since ¢ is onto, it follows that ¢ is onto. We equip X;/p and X;/ Py

with the hyperoperations ® and &, respectively. Let x,y € X;. The following argument shows that ¢ is a
homomorphism.

() o y(uy))

Py (p(x) = Py ()

{p, (@@ 19 € o) © p(v)]

{p, ®@) 1 9(@) = p(t) for some t € x+y)
o, (e®) 1t exy)

= Y({ut)1tex y))

P(u() © p)-

O

Theorem 4.9. Let G be a v-linked g-hypergraph and (X, *) be the g-hypergroupoid associated with G. If (Xa,0) is a
separable hypergroupoid and ¢ : X1 — Xo is a monomorphism, then there exists a reqular equivalence relation u’ on
@(X1) such that

X1/pg = (X1)/y'.
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Proof. Suppose that the relation u’ on ¢(Xj) is defined by p(x)i’'¢(y) © XpgYs for all x, y € X;. It is easy to
see that i is a regular equivalence relation. Define i : X;/ Pg ™ e(X1)/u by gb(pg (x)) = 1'(¢(x)). One can

easily checks that 1 is an isomorphism. [J

Lemma 4.10. Let p be a reqular equivalence relation on a hypergroupoid (X, o). Then,  : X — X/p which is defined
by m(x) = p(x), for all x € X, is an epimorphism which is called canonical epimorphism.

Proof. The proof is straightforward. [

Theorem 4.11. Let(X, *) and (X, o) be g-hypergroupoids associated with the v-linked g-hypergraphs Gi = (X1, R1)
and Gr = (X, Ry), respectively. Let ¢ : X1 — X, be an epimorphism such that (p(x)pg @(y) implies xXpg Y- If
2 1

u={xy) eX?| (p(x)pg qo(y)} and ' = {(p(x), p(y)) € X3 | P y}, then there exists a unique homomorphism
2 1
@ : X1/u — Xo/ ' such that the following diagram is commutative; i.e., ' o ¢ = @* o 11, where 7 and 1’ denote the

X1 14 > XQ
s '
Xl/[L (P > XQ/ILL,

canonical epimorphisms.

Proof. The proof of the fact that p and p” are regular equivalence relations is analogous to the corresponding
part of the proof of Theorem 4.8 and we omit the details. We equip X;/u and X, /u’ with the hyperoperations
© and [, respectively. Let ¢* : X;/u — X5/’ is defined by (p*(y(x)) = u’(@(x)), for all x € Xj. First, we show
that ¢* is well defined. Let x, y € X; and p(x) = p(y). Then, ¢(x) P ¢(y) and so xXpg Y- Therefore, ¢ is well

defined. Moreover, it is easy to prove that (p*(y(x) o y(y)) = (p*(y(x)) o (p*(p(y)) and ' o p = @* o . Now,
we show that ¢* is unique. Let g : X;/u — X»/y’ be a homomorphism such that n’ o ¢ = g o . Then, for

all x € Xy, g((x)) = g(n(x)) = 7’ 0 p(x) = ¢ 0 1(x) = ¢*(u(x)). O

5. Fundamental Relation on a g-Hypergroupoid

One of the main tool to study hyperstructures is the fundamental relation §* in an H,-semigroup (X, o)
as the smallest equivalence relation so that the quotient X/f* would be a semigroup. The relation f* was
introduced on hypergroups by M. Koskas in 1970 [9] and was mainly studied intensively and in depth by
Corsini [3], also see [7]. .

For a relation § on a non-empty set X, we denote by f8 the transitive closure of § and define it as follows:

xﬁy if and only if there exists a natural number k and elements
X =a,ay,...,001,8% = y in X such that
a1Bay,a5a3, . . ., k-1 pa.

Obviously, g = Eif B is transitive.
The proof of following theorem is similar to the proof of Theorem 1.2.2 of [14].

Theorem 5.1. Let (X, o) be an Hy-semigroup and denote U the set of all finite products of elements of X. We define
the relation B on X by setting xfy if and only if x = y or {x, y} € u where u € U. Then, B is the transitive closure of

B.
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Theorem 5.2. Let G = (X, R) be a v-linked g-hypergraph and Xg = (X, o) be the g-hypergroupoid associated with
G. Then, we have

N _ | S ifxeSs
W)‘{{x} ifres,

where S = |J Aand B is the relation defined in Theorem 5.1.
AeCod(R)

Proof. First, we show that | J{u | u € U} = S. Let x € S be an arbitrary element. Then, there exist A € Cod(R)
anda € X suchthat (2, A) € Rand x € A. Therefore, by setting u = aoawehavex € u. Hence S € (J{u|u € U}.
The reverse inclusion is obvious. We conclude that if x, y € X and xfy, then x € S if and only if y € S. Now,
let x, y € S be arbitrary elements. Then, there exist A, B € Cod(R) and a,b € X such that (4, A) € R, (b, B) € R,
x € A and y € B. Therefore, {x,y} C a o b which implies that xpy. Consequently, for every x, y € S we have
xBy. By the above argument, we obtain

S ifxeS
P ={ () ifxes,

It is easy to see that § is transitive and so we have E = B. By using Theorem 5.1, we have " = Ewhich
completes the proof. [

Corollary 5.3. A v-linked g-hypergraph G = (X, R) is plenary if and only if * = X X X.
By using the above corollary and Remark 2.7, we obtain the following corollary.

Corollary 5.4. For every separable H,-group, we have p* = .
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