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Abstract. Amap f: V — {0,1,2} is a Roman dominating function on a graph G = (V, E) if for every vertex
v € V with f(v) = 0, there exists a vertex u, adjacent to v, such that f(u) = 2. The weight of a Roman
dominating function is given by f(V) = Y,y f(#). The minimum weight among all Roman dominating
functions on G is called the Roman domination number of G. In this article we study the Roman domination
number of Generalized Sierpinski graphs S(G, t). More precisely, we obtain a general upper bound on the
Roman domination number of S(G, ) and discuss the tightness of this bound. In particular, we focus on the
cases in which the base graph G is a path, a cycle, a complete graph or a graph having exactly one universal
vertex.

1. Introduction

Let G = (V,E) be a non-empty graph of order n > 2, and t a positive integer. We denote by V' the set
of words of length ¢ on the alphabet V. The letters of a word u of length t are denoted by uju5...u;. The
concatenation of two words # and v is denoted by uv. Klavzar and Milutinovi¢ introduced in [12] the graph
S(Ky, t), t > 1, whose vertex set is V', where {u, v} is an edge if and only if there exists i € {1, ..., t} such that:

() uj = vj, if j <i; (i) u; # v;; (iii) u; = v;and v; = w; if j > i.
As noted in [10], in a compact form, the edge sets can be described as

{{wuiu;‘l,wujuf‘l} cu,ui e Vit jre{l, . thwe Vi,
The graph S(K3, t) is isomorphic to the graph of the Tower of Hanoi with ¢ disks [12]. Later, those graphs
have been called Sierpiriski graphs in [13] and they are studied by now from numerous points of view.
For instance, the authors of [6] studied identifying codes, locating-dominating codes, and total-dominating
codes in Sierpiriski graphs. In [9] the authors propose an algorithm, which makes use of three automata
and the fact that there are at most two internally vertex-disjoint shortest paths between any two vertices,
to determine all shortest paths in Sierpiniski graphs. The authors of [13] proved that for any n > 1 and
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t > 1, the Sierpiniski graph S(K,, t) has a unique 1-perfect code (or efficient dominating set) if ¢ is even, and
S5(Ky, t) has exactly n 1-perfect codes if t is odd. The Hamming dimension of a graph G was introduced
in [14] as the largest dimension of a Hamming graph into which G embeds as an irredundant induced
subgraph. That paper gives an upper bound for the Hamming dimension of the Sierpiriski graphs S(K;,, t)
for n > 3. It also showed that the Hamming dimension of S(K,, t) grows as 3/, The idea of almost-extreme
vertex of S(K,, t) was introduced in [15] as a vertex that is either adjacent to an extreme vertex of S(K, t)
or is incident to an edge between two subgraphs of S(K,, t) isomorphic to S(K, t — 1). The authors of [15]
deduced explicit formulas for the distance in S(K,, t) between an arbitrary vertex and an almost-extreme
vertex. Also they gave a formula of the metric dimension of a Sierpifiski graph, which was independently
obtained by Parreau in her Ph.D. thesis. For a general background on Sierpiriski graph, the reader is invited
to read the comprehensive survey [11] and references therein.

This construction was generalized in [7] for any graph G = (V, E), by defining the t-th generalized Sierpitiski
graph of G, denoted by S(G, t), as the graph with vertex set V! and edge set defined as

w7 wupl ™" s {ug,u) € E;re {1, ., thw e VL

i

]

Figure 1: A graph G and the Sierpiniski graph S(G, 2).

Figure 1 shows a graph G and the generalized Sierpifiski graph S(G,2), while Figure 2 shows the
Sierpiniski graph S(G, 3).

Notice that if {1, v} is an edge of S(G, t), there is an edge {x, y} of G and a word w such that u = wxyy...y
and v = wyxx...x. In general, S(G,t) can be constructed recursively from G with the following process:
5(G,1) = G and, for t > 2, we copy n times S(G, t — 1) and add the letter x at the beginning of each label of
the vertices belonging to the copy of S(G, t — 1) corresponding to x. Then for every edge {x, y} of G, add an
edge between vertex xyy ...y and vertex yxx...x. See, for instance, Figure 2. Vertices of the form xx...x
are called extreme vertices of S(G, t). Notice that for any graph G of order n and any integer t > 2, S(G, t) has
n extreme vertices and, if x has degree d(x) in G, then the extreme vertex xx...x of S(G, t) also has degree
d(x). Moreover, the degrees of two vertices yxx...x and xyy ...y, which connect two copies of S(G, t — 1),
are equal to d(x) + 1 and d(y) + 1, respectively.

For any w € Vtland t > 2 the subgraph (V) of S(G, t), induced by V,, = {wx : x € V}, is isomorphic to
G. Notice that there exists only one vertex u € V,, of the form w’xx...x, where w’ € V" for some r < t — 2.
We will say that w’xx ... x is the extreme vertex of (V,), which is an extreme vertex in S(G, f) whenever r = 0.
By definition of 5(G, t) we deduce the following remark.

Remark 1.1. Let G = (V,E) be a graph, let t > 2 be an integer and w € yt-l Ifu € Vyand v € V' \ V, are adjacent
in S(G, t), then either u is the extreme vertex of (V) or u is adjacent to the extreme vertex of (V).



F. Ramezani et al. / Filomat 31:20 (2017), 6515-6528 6517

111

116 115 126

131
171 172 . 133 :

177@173 174 136 135 146
176 175

161 162
167@163 ’ 164
166 65

731 742 376 375
771 772 737@733 ' 4 e ’ 744
777@773 774 ’ ’ 361 362
3678363 ’ 364

366 65
761

762 5
767 763764 757 @75 ’ 54

766 65 756 755

661 662 561 562
667 @663 ’ 664 57653 ' 654 567 @363 ’ 564

666 65 65¢ 55 561 365

Figure 2: The Sierpiriski graph S(G, 3) for the graph G of Figure 1.

The authors of [7] announced some results about generalized Sierpiniski graphs concerning their auto-
morphism groups and perfect codes. These results definitely deserve to be published. Since then some
papers have been published on various aspects of generalized Sierpiniski graphs. For instance, in [17]
their chromatic number, vertex cover number, clique number, and domination number, are investigated.
The authors of [18] obtained closed formulae for the Randi¢ index of polymeric networks modelled by
generalized Sierpiniski graphs, while in [4] this work was extended to the so-called generalized Randi¢
index. Also, the total chromatic number of generalized Sierpiniski graphs was studied in [5] and the strong
metric dimension has recently been studied in [16]. In this paper we obtain closed formulae or bounds on
the Roman domination number of generalized Sierpiniski graphs S(G, t) in terms of parameters of the base
graph G.

We begin by establishing the principal terminology and notation which we will use throughout the
article. Hereafter G = (V, E) denotes a finite simple graph of order n > 2. The distance between two vertices
x,y € V will be denoted by dg(x, y). For two adjacent vertices u and v of G we use the notation u ~ v. For a
vertex v of G, N¢(v) = {u € V : u ~ v} denotes the set of neighbors that v has in G. N¢(v) is called the open
neighborhood of v and the closed neighborhood of v is defined as Ng[v] = N¢(v) U {v}. For a set D C V, the open
neighborhood is Ng(D) = UyepNg(v) and the closed neighborhood is Ng[D] = Ng(D)UD. A set D is a dominating
set if Ng[D] = V. The domination number y(G) is the minimum cardinality among all dominating sets in G.
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We say that a set S is a y(G)-set if it is a dominating set and |S| = y(G). The subgraph induced by a subset S
of vertices will be denoted by (S).

Amap f:V — {0,1,2} is a Roman dominating function on a graph G if for every vertex v with f(v) = 0,
there exists a vertex u € N(v) such that f(u) = 2. The weight of a Roman dominating function is given by
f(V) = Yev f(1). The minimum weight among all Roman dominating functions on G is called the Roman
domination number of G and is denoted by v, (G).

Any Roman dominating function f on a graph G induces three sets By, By, B, where B; ={v e V : f(v) =
i}. Thus, we will write f = (B, B1, B,). It is clear that for any Roman dominating function f = (B, B, B2) on
a graph G = (V,E) of order n we have that f(V) = },.cy f(u) = 2|Bs| + |B1| and |Bo| + |B1| + |B2| = n. We say
that a function f = (By, By, B2) is a yr(G)-function or a yr-function on G if it is a Roman dominating function
and f(V) = 7,(G).

The Roman domination number was introduced by Cockayne et al. [3] in 2004 and since then about
100 papers have been published on various aspects of Roman domination in graphs (for examples, see
[1, 2]). For instance, in [3, 8] was obtained the following result, which shows the relationship between the
domination number and the Roman domination number of a graph.

Lemma 1.2. [3, 8] For any graph G, y(G) < y,.(G) < 2y(G).

As shown in [3], ¥(G) = y,(G) if and only if G is an empty graph. A graph G is said to be a Roman graph
if y.(G) = 2y(G). Several examples of Roman graphs are given in [3, 19, 20].

Theorem 1.3. [3] A graph G is Roman if and only if it has a y-function f = (B, 0, By).

The following result, stated in [3], will be used as a tool to study the Roman domination number of
S(G, t) for the cases in which the base graph is a path or a cycle.

Theorem 1.4. [3] For the classes of paths P, and cycles Cy, v, (Py) = 7,(Cy) = [%].

Let G = (V,E) be a graph, and H = (V,E’) a subgraph of G. Since any y,(H)-function is a Roman
dominating function of G, we can state the following remark.

Remark 1.5. Let G = (V,E) be a graph, and H = (V, E’) a subgraph of G. Then y,(G) < y,.(H).

2. An Upper Bound on the Roman Domination Number of S(G, t)

Let f = (Bo, B1, B2) be a y,-function on G and let D; be the set of non-isolated vertices of (B;) fori € {0, 1,2}.
Also, let D13 be the set of non-isolated vertices of (B; UB,). Notice that, if we take f such that|B;|is minimum,
then B is an independent set, which implies that D; = @ and D;, = D,. With these notations in mind we
state the following result.

Theorem 2.1. Let G be a graph of order n. For any y -function f = (By, B1,Bz) on G, and any integer t > 2,
V:(S(G, 1) < n'2(ny(G) ~ Ba| = ID12| = 0 + 5ID1l),
where © = [{u € By \ Dy : dg(u,v) = 2 for some v € B, such that INg(v) N By| = 2}|.

Proof. Let f = (Bo, By, Bo) beay,(G)-function. Fora givenintegert > 2wedefine S; = {wx; w e V1 x e By},
forie{0,1,2}. Letg: V! — {0,1,2} such that g = (Sy, S1,S2). If v € V! and g(v) = 0, then v = wy where w is a
word in Vi~ and y € By. Since f isa y,-function on G, there exists z € BNNg(y). Hence, wz € S,NNgGn(wy).
So g is a Roman dominating function on S(G, t) and y,(S(G, t)) < w(g) = n'1(|B1| + 2|B2|) = n'"'y,(G). Now
we have four steps for reaching the result.

Step 1: Set S} = {wuu : w € V2, u € By}. We define g5 : V! — {0,1,2} such that g1 = (Sp,S1US%, Sz \ S5). Let
y € Sp. Then y has the form wuwvy where w € V=2, vy € By and u € V. Since f is a y,(G)-function, there is
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vy € By such thatvg isadjacent to v, in G. So wuwvy is adjacent to wuwv,. If wuv, € 5,\S), then we are done. Now,
if wuv, € S, then v; = u and, since vy is adjacent to v;, we can conclude that y = ww,vy is adjacent to wvyv,.
Hence, g; is a Roman dominating function on S(G, t). Therefore y,(S(G, t)) < w(g1) = n'~2(ny(G) — |Ba)).

Step 2: Set S} = {wvv : w € V72, v € D,}. We define g, : V! — {0,1,2} where

w={0  xEsy
g2\x) = g1(x), otherwise.

Let x € V' such that g»(x) = 0. In this case, g1(x) =0 or x € 5.

Suppose that g1(x) = 0. Since x must belong to Sy, it is of the form x = wuvy, where w € V2 e Vand
v € Bo. If Ns(G,1(x) NSy = 0, then there exists y € N5 (x) N (S2\ S5). On the other side, if z € NG5 (x) N S7,
then z = wv,v,, where v; € D, and u = v, and so v, ~ vy, which implies that x = wv,vy ~ wWVEv,y, and we
know that gx(wvgva) = g1(wvev2) = g(wvevs) = 2.

Now, if x € S;’, then there exists w € V=2 and v € D, such that x = wvv. So, by definition of D,, x must
be adjacent to wovu for some u € D, \ {v}. Hence, go(wou) = g1(wou) = glwou) = f(u) = 2.

Therefore, g, is a Roman dominating function on S(G, t), and so y,(S(G, t)) < n'2(ny,(G) — |B2| — |D2]).

Step 3: We know that the maximum degree on (B;) is one. Since D; is the set of non-isolated vertices of (B1),
(Dy) = Ui.‘:lpz,wherek = %|D1|- Suppose that {v1, u1, v2, Uz, . . ., Uk, ux} is the vertex set of (D1 ), where v; ~ u; for
1<i<k SetS|={wowi: weV? vieDiand1<i<k}, S/ ={wuovi: we V2 v,u;eDyand1<i <k}
and S} = {wou; : wu;v; € S} We define g5 : Vi = 10,1, 2} such that

0, x €S USY;
g3(x) =< 2, X € Si”;
go2(x), otherwise.
Notice that §]” dominates every vertex in S} U SJ'. So g3 is a Roman dominating function on S(G, t). Also
(g5) = w(g2) ~ 1] = 571+ 1S}| and |S}| = “5*|Di]. Hence, y,(S(G, 1) < n'2(1y, (G) - |Bal ~ 1Dl - 3Da)).
We know that there are not any edges between By and B,. So |Diz| = |D1| + |D2|. Hence, y,(S(G,t)) <
n'=2(ny(G) — |Ba2| — [D12| + 3ID1]).

Step 4: Let B) = {v € By : [Ng(v) N Bo| = 2and dg(v,u) = 2 for some u € By \ D1}. Let IT be the set of
paths vo, wa, wo, w1 in G such that w; € B}, vy, wo € Bp and wy € By \ D;. Given two vertices x, y € V, we say
that pu(x, y) = (i, j) if there exist a path vy, wa, wp, wy in IT such that x and y are (from the left) in position i
and j, respectively. We define the following sets.

= {wxy :w € V72 and p(x, y) = (3,4)},

w.

}
cw e V2 and p(x, y) = (4,4)},
}
}

cw e V2 and p(x,y) = (4,1)},

Ay = {

Ay = {wxy

Az = {wxy : w € V72 and u(x, y) = (4,2)},
Ay = {wxy

As = {

= {wxy :w € V2 and p(x, y) = (4,3)}.

Notice that |[A>| = 0 and A;NA; =0, foralli # j,i,j€{1,...,5}. Also, since the weight of f is minimum,
for every w, € B) there exists exactly one vertex wy € By \ D1 such that dg(wy, w1) = 2. Hence, |A3| = [B}|.
Furthermore, since |[Ng(w2) N Bg| = 2, we can conclude that [A;| = |A4] = |As|. On the other hand, suppose
that there are two different paths vy, wy, wo, w1 and vy, wj, w(, w1 in I1. In such a case, the weight of the cycle
o, Wa, Wy, W1, W), Wh, Vo equals 5 and we can find a Roman dominating function with weight equal to 4, as
we can consider that vy and w; have label 2 and the remaining vertices have label 0, which is a contradiction

with the minimality of f. Hence, |A4| = |B}|. Now, define the function g, : VvVt — {0,1, 2} such that
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Figure 3: This figure shows how the labels imposed by function g3 are transformed by function g4.

Notice that As is a dominating set for A; U A, U A3z. So g4 is a Roman dominating function on S(G, t) (See
Figure 3). Then

w(gs) = 2|As| + |Agl + w(g3) — |A1] = |Az| = 2|A3]
=w(g3)— 0
t—2 |D|
<n (”?/R(G) —|By| = |D12] = 0 + 7),

as required. [

As we can see in Theorems 3.1 and 4.3 the bound above is achieved for any Sierpiriski graph whose base
graph has one universal vertex or is a path P,, where n = 0,1 (mod 3).

Since any Roman graph has a y,-function f = (B, 0, B), we can state the following particular case of
Theorem 2.1.

Corollary 2.2. For any Roman graph G of order n and any integer t > 2,
Vx(S(G, 1) < Y(G)n'(2n - 1).

3. Graphs Having Exactly One Universal Vertex

Theorem 3.1. If G is a graph of order n > 4 having exactly one vertex of degree n — 1, then for any integer t > 2,
Ve(S(G, 1) = n'"2(2n - 1).

Proof. By Theorem 2.1 we deduce that yr(S(G,t)) < n'"2(2n — 1). We will show that for any y,(S(G, t))-
function f = (By, B1, By), w(f) = n~22n-1).Let V. =1{0,1,...,n—1} such that deg(0) = n—1. We would point
out that for any w € V=2 ie Vand t > 3, the subgraph (V) of S(G, t), induced by V; = {wij: je V},is
isomorphic to G. Let A(Vy;) = l{wij € Vi, : deg(wij) # deg(j)}|. There are two general cases.

Case I.i # 0. In this case 1 < A(Vy) < n—1. So there exists wij € Vi, such that deg(wij) = deg(j) for
1<j<n—-11f BN Vy # 0, then w(Vy;) = 2. Otherwise, wij € B; and w(Vyi) = 1. If w(Vyi) = 1, then
f(wik) =0fork € V\{j}. Letl € V\({0,1, j}. Then wil € N(wli) where wli € B,. Since ] # 0, A(V) <n—1, and
so there exists wll’ € V,,; N (B1 U By) such that !’ # i. Hence, w(V,;) = 3. This shows that w(Vy;) + w(V,) = 4.
Therefore, for every copy of G of weight 1 there is another copy of G of weight at least 3. Since there
are n'2(n — 1) copies of G of this type in S(G,t), the contribution of these copies of G to w(f) equals

Z E (Vi) > 2072 (n = 1).

weVt-2 i=1
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Case II. i = 0. Then n — 1 < A(Vy) < n. If Vo € By, then w(Vyo) = 1. Suppose that w(Vyo) = 0. Hence,
A(Vao) = nand so w00 € N(w'jj) forw’ € V=2 and j # 0. Since f is a yr-function, w’jj € By. Alsodeg(j) < n—1,
so there exists z € V' \ {0, j} such that w’jz ¢ N(w'jj) and deg(w’jz) = deg(z). Hence, f(w'jz) € {0,1}. If
f(@’jz) = 1, then we can move the label 2 from w’jj to w’00 and the label 1 from w’ jz to w00. The function
obtained in this manner is a y,-function on 5(G, t), and so we can assume that f is such a function, i.e.,
(Vo) = 1. Now, If f(w’jz) = 0, then we have two possibilities. Either f(w’j0) = 2 or f(w'jl) = 2, for some
I € N(z). The case f(w’j0) = 2 is impossible, as we can put the label 1 to w00 and the label 0 to w’jj, and the
function obtained is a Roman dominating function of weight less than f, which is a contradiction. Finally,
if f(w'jl) = 2, then we can modify the following weights: we put label 2 to w’;0, label 0 to w’jl, label 1 to
w00, label 0 to w’jj and, if I € N(j), then we put label 1 to w’lj. The function obtained in this manner is a

y,-function on S(G, t), and so we can assume that f is such a function, i.e., w(Vy0) = 1. So Z (Vo) > n'2.

weVi-2

Therefore, y,(S(G, 1)) = w(f) = n'"? + 2n'~2(n — 1) = n'~2(2n — 1). The proof is completed. [

Since any graph of order # having at most one vertex of degree greater than or equal to 7 -2 is a subgraph
of a graph of order n having exactly one vertex of degree n — 1, Remark 1.5 and Theorem 3.1 lead to the
following result.

Theorem 3.2. If G is a graph of order n > 4 having at most one vertex of degree greater than or equal to n — 2, then
for any integer t > 2, . (S(G, 1)) > n'72(2n — 1).
4. The Particular Case of Paths

Notice that S(Py,t) = Py and so y,(5(Py, 1) = [%] From now on we assume that n > 3. Let
V =1{1,2,...,n} be the vertex set of P, and (V) a copy of P, in S(P,, t) for w € V2 and u € V. Set

{wuie Vi i<u-1}, 3<u<n;

Awu=
0, u=1,2.
{wuje Vit j>u+1}, 1<u<n-2;
Byu =
0, u=n-1,n.
Also, let

Dl zlA‘lUlAl—‘ + [lewul

(Vi s (Vi) =| 25 -

}ri}, forie {0,1)

and

2|Awu|-‘ [ZIBWI
3 17173
where the weight w(V,,) corresponds to a labelling defined by a y,-function on S(P,, t). Alsoset A = {(Viy) :
deg(wuu) # deg(u) for 1 < u < n}. With these notations in mind we will prove the following Lemmas.

D, = {(un) P w(Viyy) = [ } + j, for some j > 2},

Lemma 4.1. Let f = (Bo, By, By) be a y~function on S(P,, t), where n > 3. For any w € V=2 and u € V there exists
i > 0 such that (V) € D;, and i > 1 whenever Vi, ¢ A.

Proof. LetP, = (Ayy)and Py = (Byy). Notice that Theorem 1.4 leads to v, ((Awu)) = I'%V'l and y,({Byu)) = [%'I.
If Vipu € A, then deg(wuu) = deg(u) < 2. Since

(Vi) = 0(Ag) + Y flaoui) + (B,

ZUMigAwu UByu
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W(V) = w(Awy) + @(Byy) + 1. If w(Awy) = I'Z{I or w(Byy) = I'%"'l, then we are done. If Ay, # 0 and
W(Awy) < [%'l, then f(wu(u—-2)) =0, f(wu(u—3)) <1,and so f(wu(u—1)) = 2. Hence, w(Awy) + f(wu(u—1)) =
I'@'l +1+2> I'%"l + 1. By analogy, if By, # 0 and w(By.) < [%'I, then w(Byy) + f(wu(u + 1)) > I'%'I + 1.
Therefore, in any case,

Wl , [ 2
3 3

Let Vi, € A. Then wuu € N(w'vv) where w’ € V=2 and v € V. Thus, as above,

2l , 2B
3 3 I

W(Viyy) = [ w + 1.

w(ku) = w(Awu) + Z f(wul) + w(Bwu) 2 ’V

Wui¢ Ay UBuwu
U

Lemma 4.2. Let V be the vertex set of P,, n > 3, and t a positive integer. If for some w € V*=2 and u € V we have
that (V) € Dy, then there exists w’' € V=2 and v € Ng(u) such that (V) € D,.

Proof. Let f = (By, B1, B2) be y,-function on S(P,, t), and (V) € Dg. Then Z f(wui) = 0. Thus, wuu €

wui¢A11711Ulevu
N(w'vv) where w'vo € VI=2NB, forw’ € VI-2and v € V. Hence, (Vo) € Aand w(Vyy) > [2|A3w/v|-‘ * P‘Bgrv‘]-‘-z'
So, <Vw’v> eD,. O

Theorem 4.3. For any integersn > 3 and t > 2,

n'=2 (n[%1-141), n=0,1 (mod 3);
Ve(S(Pn, 1)) =
n'2(n[31-2[41+1), n=2 (mod 3).

Proof. We first proceed to deduce the lower bound v, (S(Py, ) = nt‘z(nl'%”'l —[51). Let V=1{1,2,...,n},and
f = (Bo, B, B2) a y,-function on S(P,, t). Let (V) be a copy of P,, in S(P,,t) for w € V=2 and u € V. Since

Vr (S(Pnr t)) = Z (U(un)/

weVi-2,ueV

we will obtain a lower bound on w(Vy,) in terms of n. Before doing it, notice that

Ve BPu = Y, oWVad+ Y, oWVa)+ Y, @(Vi)

<un>€D0 <un>€D1 <un>€D2

and by Lemma 4.2, there exists an injective application i : Dy — D5, so that we emphasize that if
(Vuwu) € Dy, then the contribution of w(Vyy) + @(@((Viw))) to y.(S(Py, 1)) is greater than or equal to its
contribution when both (V) and ¢((Vy)) belong to D;. With this observation in mind we continue the
proof.

By Lemma 4.1, w(Vyy) = [M-l + [%] +1, for some i > 0. Hence, we now proceed to express [%] and

3 3
[@] in terms of n. To this end, we consider theset S = {x € V : x = 2 (mod 3)} and differentiate three cases.

Case 1: n = 3k for some positive integer k. So S is a y(Py)-set. If u € S, then |Ayyl, |Bwul € {3K" : 0 <k <k—-1)
and, as |Apy U Byl = n — 3, we have

n—-3 2n
L n i 1
3 +1 3 +i-2 (@)

a)(ku) =2
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If u € N(S)\ {1,n}, then |Ay,| € {{l : | = 1(mod3)} and |B,,| € {I : I = 2(mod 3)} or vice versa. Hence,
w(Vyy) = %” +i—1. Notice that if u = 1, then Ay, = 0 and |Byy| = 1 (mod 3), which implies that
w(Vyy) = %” +i—1. The case u = n is analogous to the previous one. Therefore,

VeSPut) = Y, Y oV

weVt-2 uevV

> =2 ((%” - 1)y(p,,) + 2?” (n— V(Pn)))

2n n
N e N
- (”[ 3 } M)
Case 2: n = 3k + 1 for some positive integer k. In this case, S" = SU {n — 1} is a y-set of P,,. If (V,4) is a copy
of P, forsomed € S, |Awgl € {l: | =0 (mod 3)} and [Byy| € {l: [ =1 (mod 3)} or vice versa. Hence,

(V) = [zl‘zwﬂ + V'B;”’W +i=2 gJ b1 @)

Let V., where u € N(5') \ {1,n}. Hence, we have two possibilities, |Awul, [Bwul € {I : | =2 (mod 3)} or
|Awul, IBwul € {1 : 1 =0,1 (mod 3)} where |Ayy| # Byl (mod 3). In the first case, w(Vyy,) > 2[5] + i and, in
the second one, w(Vyy) 2 2[5 +i-1.

Suppose that w(Vy,) = 25| +i—1forw € V=2 and v € V. Then w(Vye-1)) > 2[5]+i—1wherev-1€S.
Therefore w(Vy,) is equal to 2| 5| +i — 1 at most for y(P,) copies of P,, and for other copies it is more than
2[ 2] +i—1. Hence,

oS, 1) 2 12 (2B | 5 + 1=y @) (2|5 [ +1)) =2 %’ﬂ -13)).

Case 3: n = 3k + 2 for some positive integer k. We discuss first words of the form wu where2 <u <n -1
and w € V2. If wuu € B, U By, then w(Vy,) > [@] + [M'I +1. Hence, w(Vyu) = 2|5] + 1 for
u = 0(mod 3) and w(Vy,) > 2|_§J + 2 for others. Now, suppose that wuu € By and (V) ¢ Dy. In this case
wu(u —1) € By or wu(u + 1) € By, say wu(u + 1) € By. Hence, w(Vyy) 2 [@] + [w] + 2, which implies
that w(Viy) > 2[5] + 1 foru € {3K',3k" +2: 0 <k’ <k -1} and w(Vy) > 2| 5] + 2 for others. In summary,
(V) 2 2[5]+1foru=0,2 (mod 3) and w(Vyy) 2 2[5] +2foru=1 (mod 3).

Now, let u € {1,n}. Suppose that u = 1 (for u = n, the proof is likewise). If (V1) € D,, then
w(Vy1) 2 2151 + 2. Now, if (V1) € Dy, then f(wll) = 1 or f(wll) = 0. In the first case, f(w21) = 2, as
f(w13) = 2 implies that (V1) € D;, which is a contradiction. In the second case, there exists w’ € yi2
such that f(w'22) = 2 and w1l € N(w'22). As a consequence, @(Vy1) > 2[5] + 2 or for some w’ € V=2,
w(Vyr2) 2 2| 5]+2. In summary, we can collect the lower bounds for the weight of the copies of P, in S(P,,, 2)
in a table.

U= 3K 3K +1 3k +2
u# 1L, 0(Va) 2 2LT+1 | 2[2]+2 | 2[E]+1
w(le) 2 ZLEJ
w(Vyp) = 3 22 +2
(Vir) € Dy oVe2) L5
Fw' e V2 (Vi) 2 2%)+2
(V1) 2
2[2]+1 "
(le> €D CZEVIUZ) 2 2|.3J +2
Fw' e V2 (Vi) 2 21%)+2
(Vu1) € Dy (V1) 2 2[2]+2
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Therefore,

VeSPu ) = Y Y oV
weVi-2 uev
(els)+ el )+ 1)+ 51k (5]+2)
=n ((2{3J+1)(2{3 +1)+ 3 2 3 +2
2n n
— 2 Z =92 =
= (] 3 ]-2[5]+1)
and the proof of the lower bound is complete.

Forn = 0,1 (mod 3), the upper bound y, (5(Py, t)) < nt‘z(nl'%”'l —[31) is obtained from Theorem 2.1. Thus
we consider the case n = 3k + 2 for some positive integer k.

As above, consider the set S = {x € V'\ {n} : x = 2(mod 3)}. In order to construct a Roman dominating

function we introduce the following sets.

Ay ={wis: we V2, s€S,i>s+2},

Ay ={win-1): we V2, ie(l,n}},

As=lwij: we V™, 1<i<n-2,j=i+1+3K,0<k <k-1},

Ci={

G =

G ={

win: we V2, ie§),
wis+1)(s-1): weV2 ses),
wn—-1)n-1): we V=72

Define g : V! — {0, 1,2} such that

3
2, wije| JAs
i=1
g(wij) = ’
1, wije| Jcy
i=1

0, otherwise.

Suppose that g(wij) = 0 forw € V"2 and i,j € V. Ifi > j+2, then j ¢ S and so wij € N(wis) where
s € {j—1,j+1}. Asaconsequence,i > s+2and wis € A;. Ifi = j+2ands = j+1, thenwij = w(s+1)(s—1) € Cy,
which is a contradiction, as g(wij) = 0. Hence, if i = j+ 2, thens = j — 1 and wis = w(s + 3)s € A;. Now,
leti < j+2. Ifi=j+1,then wij = wi(i — 1) € N(w(i — 1)i) and w(i — 1)i € Ay. Also, if i < j + 1, then wij is
dominated by some vertex in A; U A3. Hence, g is a Roman dominating function on S(P,, t). Thus,

3 3
Ve(S(Pu, ) < w(g) =2) Al + ) ICil
i=1

i=1
On one hand,

3
Z ICil = n'2(2IS] + 1) = n'2Qy(P,) — 1) = 2k + 1
i=1

and, on the other hand,

_ (3K +k 3
|A1|=nt2Zu=nt2( 5 ),Iz‘\2|=2nt2

ues



and

Thus,

F. Ramezani et al. / Filomat 31:20 (2017), 6515-6528

2 2 2
2 2 1
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2 2 2
2 2 1
103122 5 1 P
2 2 1
2 2 2
w2333
w3322

Figure 4: This figure shows the labelling of (Vy3,) = S(Pg, 2) induced by g, where labels 0’s are omitted.

k
3k? + 5k — 2
_ 2 ) )
|As| =n [k+2+§ 31]—;1 ( > )

i=2

3 2 2 _
Z|Ai| = nf2(3k ;k v24+ 2k +25k 2) = n'?(3k* + 3k +1).

Therefore, y,(S(P,,, t)) < n'~2(6k? + 8k + 3) and, since n = 3k + 2,

Vo(S(P 1) < nt2 (n %ﬂ _2 [g} + 1),

as required. [

5. The Particular Case of Cycles

6525

Theorem 5.1. Let n > 4 and t > 2 be two integers. If n = 1,2 (mod 3), then y,(S(Cy, 1)) = nt‘ll_%”J, otherwise,
B <y, (S(Co ) < L

Proof. Let V = {1,...,n} be the vertex set of C,, where i € N¢, (i + 1), for any 7, and the addition is taken
modulo n. First, we proceed to deduce the upper bound for y,(S(Cy, t)). If n = 0 (mod 3), then Theorem

2.1 leads to

t—1

yR(S(Cn/ t)) < nT(ZTl - 1).

©)

Suppose that n = 3k + 1, for some integer k. DefineD ={ij:ieV, j=i+1+3kK,0<k <k-1}and
Di_p = {wx : w € V!72,x € D}. Notice that D is a 2-packing! dominating set, and D N {ii : i € V} = 0, hence

DA set S of vertices is called a 2-packing of G if for every pair of vertices u,v € S, Ng[u] N Ng[v] = 0.
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D;, is also a 2-packing dominating set and therefore y(S(Cy, t)) = |D;—o| = n'2|D| = n'™! [%J , which implies
that

o(S(Co 1) £ 2/S(Cot) = | 5. )

Now, let n = 3k + 2 for any positive integer k. Set
A={wij: we V™2, ieV,j=i+1+3kK,0<k <k-1}

and
B={wij: we V™2 ieV, j=i-2}

Define f, : V! — {0,1, 2} such that

2, xX€A
fhx)={1 x€B;
0, otherwise.

Letw € V"2 and i,j € V such that g(wii) = 0. If j =i—1 (mod n), then wi(i — 1) € N(w(i — 1)i) C N(A).
Otherwise, j =i+ 3k’ ori+2+ 3k’ (mod n), for 1 <k’ < k—1. Hence, wij € N(wi(j + 1)) or wij € N(wi(j — 1))
respectively. So wij € N(A). Therefore, g is a Roman dominating function on 5(C,, t) and, as a consequence,

V(S D) < w(fy) = 2A| + Bl = 12k + 1) = ™! %"J (5)

Now we will find the lower bound for y,(S(Cy, t)). Assume that f = (By, By, B2) is a y,-function on S(C,, t).
Set
Cou ={wui € Vo 0 i1 ¢ {u—1,u,u+1}}

for w € V"2 and u € V. Hence, the subgraph induced by C, is isomorphic to P,_3 and w(Vyy) =

@ (Copu) + Z f(wuz) Let

ie{u—1uu+1}
2n . .
D; = {(un) f (Vi) = {?} -2+ z} forie {0,1)
and
2n . .
D, = {(un> (Vi) = [?} ~ 24, forsome j 2 2} .
Notice that

VeSCu) = Y, w@Va)+ Y @Va)+ Y @(Va).

(Vwu)eDy (Vawu)eDy (Vwu)eD2

If (Vi) € Dy, then {wu(u — 1), wuu, wu(u + 1)} € By and so there exists w’ € V!2 and v € V such that
wuu € N(w'vo) and f(w'vv) = 2. Thus, (V) € D,. We can define an injective application ¢ : Dy — D», so
that we emphasize that if (V) € Dy, then the contribution of w(Vuy) + w(p({Viu))) to y,(S(Cy, t)) is greater
than or equal to such contribution when both (V) and ¢({Vy)) belong to D;. The argument shows that,

7SCut = Y, Y oW = ([2]-1).
weVt-2 ueV

Therefore, the result follows. [
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6. The Particular Case of Complete Graphs

The domination number of S(K,,t) was previously studied by Klavzar, Milutinovi¢ and Petr in [13]
where they obtained the following result.

Theorem 6.1. [13] For any integersn >2and t > 1,

nt+n
—, teven;
n+1
Y(S(Ky, 1) = t
n_+1’ todd.
+1

The above result is an important tool to deduce an upper bound on the Roman domination number of
S(Ky, 1).

Theorem 6.2. For any integersn > 2and t > 1,

2nt+n—-1
——, teven;
n+1
Ve(S(Ky, ) < t
2
CA U
n+1

Proof. Let V = {1,2,...,n} be the vertex set of K. For t odd we deduce the bound from Theorem 6.1, as
Vo (S(Ky, 1)) < 2y(S5(K,, t)). We claim that for ¢+ = 2k there exists a Roman dominating function such that
f@...1) =1and w(f) = % To show this we proceed by induction on k. For k = 1 we define the
Roman dominating function f as follows. f(11) =1, f(il) = 2 for all i # 1 and f(xy) = 0 for others. Notice
that w(f) = 201 — 1) + 1 = 2=,

Now, suppose that f is a Roman dominating function on S(K,, 2k) such that f(1...1) = 1 and w(f) =

2”2;%*1. We shall construct a Roman dominating function f” on S(K, 2k + 2) in the following way:

e f'(11w) = f(w) for all w € V.

e f'(li...iy=0foralli # 1and f(11w) = f(w’) for all w € V*2\ {i...i:i € V}, where w’ is obtained
from w by exchanging i and 1.

e Foranyie V\{l}and w € V2 we define f(ilw) as follows. As shown in [13, Corollary 3.5], there
exists a 1-perfect code C of S(Kj,, 2k) which contains all the extreme vertices. So, we set f’(ilw) = 2 for
allw € Cand f’(ilw) = 0 for others.

e f'(ij1...1)=0and f'(ijw) = f(w) foralli,j#landw #1...1.

Notice that f’(1...1) = 1. To conclude that f” is a Roman dominating function on S(K,, 2k +2) we only need
to observe that all x € V**2 of the form x = 1i...i,i # 1 are adjacent to i1...1 and f’(il...1) = 2, and all
x € V**2 of the form x = ijl...1,i,j # 1 are adjacent to i1j...jand f’(i1j...j) = 2. Finally, by Theorem 6.1,

k
IC| = ”;:1”, and so

2n%k+2 4y —1
n+1

o(f) = o(f) + (n = D(w(f) = 1) +2IC|(n = 1) + (n — D*(w(f) = 1) = ,

as required. [

By Remark 1.5 we deduce the following corollary.
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Corollary 6.3. For any graph G of order n and any integer t > 1,

7x(S(G, 1)) 2 Y (S(Ky, 1)

As the above corollary shows, a lower bound (or a closed formula) on the Roman domination number
of S(K,, t) imposes a lower bound on y,(S(G, t)) for every graph G. Therefore, this issue definitely deserves
further research.
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