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Abstract. We consider the pointwise, uniform, quasi-uniform, and the almost uniform I-convergence for
a net ( fd)d∈D of functions from a topological space X into a uniform space (Y,U), where I is an ideal on D.
The purpose of the present paper is to provide ideal versions of some classical results and to extend these
to nets of functions with values in uniform spaces. In particular, we define the notion of I-equicontinuous
family of functions on which pointwise and uniformI-convergence coincide on compact sets. Generalizing
the theorem of Arzelà, we give a necessary and sufficient condition for a net of continuous functions from
a compact space into a uniform space to I-converge pointwise to a continuous function.

Introduction

In recent years, a lot of papers have been written on statistical convergence and ideal convergence in
metric and topological spaces (see, for instance, [14, 15, 17–20, 22, 23]). Recently, several researchers have
been working on sequences of real functions and of functions between metric spaces by using the idea of
statistical and I-convergence (see, for instance, [2, 3, 6–9]).

On the other hand, classical results about sequences and nets of functions have been extended from
metric to uniform spaces (see, for example, [5, 16, 21]).

In this paper, we investigate the pointwise, uniform, quasi-uniform, and the almost uniform I-
convergence for a net ( fd)d∈D of functions in a topological space X with values in a uniform space Y,
where I is an ideal on D. Particularly, the continuity of the limit of the net ( fd)d∈D is studied. Since each
metric space is a uniform space, the results of the paper remain valid in the case that Y is a metric space.

The rest of this paper is organized as follows. Section 1 contains preliminaries. In Section 2 we
introduce the pointwise, uniform and quasi-uniform I-convergence for nets of functions with values in
uniform spaces. In Section 3 we present a modification of the classical result which states that equicontinuity
on a compact metric space turns pointwise to uniform convergence. In Section 4 we extend the classical
result of Arzelà [1] to the quasi-uniform I-convergence of nets of functions with values in uniform spaces.
Finally, the concept of almost uniform I-convergence of a net of functions with values in a uniform space
is investigated in Sections 5 and 6.
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1. Preliminaries and General Notations

First, we recall some of the basic concepts related to the uniform spaces and nets of functions. We refer
to [16] for more details.

A uniformity on a set Y is a collectionU of subsets of Y × Y satisfying the following properties:
(U1) ∆ ⊆ U, for every U ∈ U, where ∆ = {(y, y) : y ∈ Y}.
(U2) If U ∈ U, then U−1

∈ U, where U−1 = {(y1, y2) : (y2, y1) ∈ U}.
(U3) If U ∈ U and U ⊆ V ⊆ Y × Y, then V ∈ U.
(U4) If U1,U2 ∈ U, then U1 ∩U2 ∈ U.
(U5) For every U ∈ U there exists V ∈ U such that V ◦ V ⊆ U, where

V ◦ V = {(y1, y2) : there exists y ∈ Y such that (y1, y) ∈ V and (y, y2) ∈ V}.

A uniform space is a pair (Y,U) consisting of a set Y and a uniformityU on the set Y. The elements ofU
are called entourages. An entourage V is called symmetric if V−1 = V. For every U ∈ U and y0 ∈ Y we use
the following notation:

U[y0] = {y ∈ Y : (y0, y) ∈ U}.

For every uniform space (Y,U) the uniform topology τU on Y is the family consisting of the empty set
and all subsets O of Y such that for each y ∈ O there is U ∈ U with U[y] ⊆ O.

If (Y, ρ) is a metric space, then the collection Uρ of all U ⊆ Y × Y for which there is ε > 0 such that
{(y1, y2) : ρ(y1, y2) < ε} ⊆ U is a uniformity on Y which generates a uniform space with the same topology
as the metric topology induced by ρ. For the special case in which Y = [0, 1] and ρ(y1, y2) = |y1 − y2|, then
we callUρ the usual uniformity for [0, 1].

A mapping f from a topological space X into a uniform space (Y,U) is called continuous at x0 if for
each U ∈ U there exists an open neighbourhood Ox0 of x0 such that f (Ox0 ) ⊆ U[ f (x0)] or equivalently
( f (x0), f (x)) ∈ U, for every x ∈ Ox0 . The mapping f is called continuous if it is continuous at every point of X.

Let D be a nonempty set. A family I of subsets of D is called an ideal on D if I has the following
properties:

(1) ∅ ∈ I.
(2) If A ∈ I and B ⊆ A, then B ∈ I.
(3) If A,B ∈ I, then A ∪ B ∈ I.

An ideal I on D is said to be non-trivial if I , {∅} and D < I. The ideal I is called admissible if it contains
all finite subsets of D.

A partially preordered set D is called directed if every two elements of D have an upper bound in D. Let
(D,6) be a directed set. We consider the family

{A ⊆ D : A ⊆ {d ∈ D : d � d0} for some d0 ∈ D}.

This family is an ideal on D which will be denoted by ID.

A net in the set YX of all functions f : X → Y is an arbitrary function s from a nonempty directed set D
to YX. If s(d) = fd, for all d ∈ D, then the net s will be denoted by the symbol ( fd)d∈D.

If ( fd)d∈D is a net in YX, then a net (1λ)λ∈Λ in YX is said to be a semi-subnet of ( fd)d∈D if there exists a
function ϕ : Λ → D such that 1λ = fϕ(λ), for every λ ∈ Λ. We write (1λ)ϕλ∈Λ to indicate the fact that ϕ is the
function mentioned above.

Suppose that (1λ)ϕλ∈Λ is a semi-subnet of the net ( fd)d∈D. For every ideal I of the directed set D, we
consider the family {A ⊆ Λ : ϕ(A) ∈ I}. This family is an ideal on Λ which will be denoted by IΛ(ϕ).

Now, we recall some basic types of convergence of sequences and nets of functions from a set into a
metric space.



A.C. Megaritis / Filomat 31:20 (2017), 6281–6292 6283

Definition 1.1. ([3]) Let ( fn)n∈N be a sequence of functions from a nonempty set X into a metric space (Y, ρ),
and let I be an ideal on D.

(1) ( fn)n∈N is said to I-pointwise converge to f on X if for every x ∈ X and for every ε > 0 there exists A ∈ I
such that for every n < A we have ρ( f (x), fn(x)) < ε.

(2) ( fn)n∈N is said to I-uniform converge to f on X if for every ε > 0 there exists A ∈ I such that for every
x ∈ X and for every n < A we have ρ( f (x), fn(x)) < ε.

Definition 1.2. ([1]; see also [4]) A net ( fd)d∈D of functions from a nonempty set X into a metric space (Y, ρ)
is said to converge quasi uniformly to f on X if it converges pointwise to f , and for every ε > 0 and for every
d0 ∈ D, there exists a finite number of indices d1, . . . , dk > d0 such that for each x ∈ X at least one of the
following inequalities holds:

ρ( f (x), fdi (x)) < ε, i = 1, . . . , k.

Definition 1.3. ([12]; see also [10]) A net ( fd)d∈D of functions from a nonempty set X into a metric space
(Y, ρ) is said to converge almost uniformly to f on X if for every x ∈ X, for every ε > 0, and for every d ∈ D,
there exist dx > d and an open neighbourhood Ox of x such that for every t ∈ Ox we have ρ( f (t), fdx (t)) < ε.

Finally, we give some definitions that will be used in the last section of the paper. For more details we
refer the reader to [11, 24].

A topological space X is called completely regular if X is a T1-space and for every closed subset F of X and
for every point x ∈ X \ F there exists a continuous function f : X→ [0, 1] such that f (x) = 0 and f (F) = {1}.

A topological space X (not necessarily Hausdorff) is called locally compact if for each x ∈ X there exist an
open neighbourhood U of x and a compact subset C of X such that U ⊆ C.

A topological space X (not necessarily completely regular) is called pseudocompact if every continuous
real-valued function on X is bounded. A completely regular space X is pseudocompact if and only if every
locally finite collection of nonempty open subsets of X is finite.

2. Basic Concepts

In this section we consider the pointwise, uniform and quasi-uniformI-convergence for nets of functions
with values in uniform spaces. In what follows we consider a net ( fd)d∈D of functions from a topological
space X into a uniform space (Y,U), and an ideal I on D.

Definition 2.1. The net ( fd)d∈D is said to I-converge pointwise to f on X if for every x ∈ X and for every U ∈ U

there exists A ∈ I such that for every d < A we have ( f (x), fd(x)) ∈ U. In this case we write ( fd)d∈D
I
−→ f . We

shall say that the net ( fd)d∈D I-converges pointwise on X if there is a function to which the net I-converges
pointwise.

Proposition 2.2. If ( fd)d∈D
I
−→ f , then for every semi-subnet (1λ)ϕλ∈Λ of ( fd)d∈D we have (1λ)ϕλ∈Λ

IΛ(ϕ)
−−−−→ f .

Proof. Let ( fd)d∈D
I
−→ f , (1λ)ϕλ∈Λ be a semi-subnet of ( fd)d∈D, x ∈ X, and U ∈ U. There is A ∈ I such that for

every d < A we have ( f (x), fd(x)) ∈ U. We set

AΛ = {λ ∈ Λ : ϕ(λ) ∈ A}.

Since ϕ(AΛ) ⊆ A and A ∈ I, we have ϕ(AΛ) ∈ I and, hence, AΛ ∈ IΛ(ϕ). If λ < AΛ, then ϕ(λ) < A and,

therefore, ( f (x), 1λ(x)) = ( f (x), fϕ(λ)(x)) ∈ U. Thus, (1λ)ϕλ∈Λ
IΛ(ϕ)
−−−−→ f .

Definition 2.3. The net ( fd)d∈D is said to I-converge uniformly to f on X if for every U ∈ U there exists A ∈ I

such that for every x ∈ X and for every d < A we have ( f (x), fd(x)) ∈ U. In this case we write ( fd)d∈D
I-u
−−→ f .

We shall say that the net ( fd)d∈D I-converges uniformly on X if there is a function to which the net I-converges
uniformly.
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Proposition 2.4. If ( fd)d∈D
I-u
−−→ f , then for every semi-subnet (1λ)ϕλ∈Λ of ( fd)d∈D we have (1λ)ϕλ∈Λ

IΛ(ϕ)-u
−−−−−→ f .

Proof. Similar to the proof of Proposition 2.2.

Lemma 2.5. Let (Y,U) be a uniform space and U ∈ U. Then there exists a symmetric entourage V ∈ U such that
V ◦ V ◦ V ⊆ U.

Proof. By property (U5) of the uniformityU, there exists V′ ∈ U such that V′ ◦V′ ⊆ U. In the same manner
we find V′′ ∈ U such that V′′ ◦ V′′ ⊆ V′. Hence, (V′′ ◦ V′′) ◦ (V′′ ◦ V′′) ⊆ U and, therefore,

V′′ ◦ V′′ ◦ V′′ ⊆ (V′′ ◦ V′′) ◦ (V′′ ◦ V′′) ⊆ U

in view of property (U1) of the uniformityU. We set V = V′′ ∩ (V′′)−1. Then, V is a symmetric entourage
such that V ◦ V ◦ V ⊆ U.

Proposition 2.6. If ( fd)d∈D
I-u
−−→ f , the functions fd, d ∈ D are continuous, and the ideal I is non-trivial, then the

function f is continuous.

Proof. Suppose that ( fd)d∈D
I-u
−−→ f and let x0 ∈ X. We prove that f is continuous at x0. Let U ∈ U. By Lemma

2.5 there exists a symmetric entourage V ∈ U such that V ◦ V ◦ V ⊆ U. Since ( fd)d∈D
I-u
−−→ f , there exists

A ∈ I (because I is non-trivial, A , D) such that for every x ∈ X and d < A we have ( f (x), fd(x)) ∈ V. Let
d0 < A. Then,

( f (x0), fd0 (x0)) ∈ V. (2.1)

Since fd0 is continuous at x0, there exists an open neighbourhood Ox0 of x0 such that ( fd0 (x0), fd0 (x)) ∈ V, for
every x ∈ Ox0 . Let x ∈ Ox0 . Then,

( fd0 (x0), fd0 (x)) ∈ V (2.2)

and

( f (x), fd0 (x)) ∈ V. (2.3)

Therefore, using successively the relations (2.1), (2.2), and (2.3), we have ( f (x0), f (x)) ∈ V ◦ V ◦ V and the
continuity of f is proved.

Definition 2.7. The net ( fd)d∈D is said to I-converge quasi-uniformly to f on X if ( fd)d∈D
I
−→ f and for every

U ∈ U and for every A ∈ I \ {D}, there exists a finite subset {d1, . . . , dn} of D \ A such that for each x ∈ X at
least one of the following relations holds:

( f (x), fdi (x)) ∈ U, i = 1, . . . ,n.

In this case we write ( fd)d∈D
I-qu
−−−→ f . We shall say that the net ( fd)d∈D I-converges quasi-uniformly on X if there

is a function to which the net I-converges quasi-uniformly.

Proposition 2.8. If ( fd)d∈D
I
−→ f and (1λ)ϕλ∈Λ

IΛ(ϕ)-qu
−−−−−−→ f for some semi-subnet (1λ)ϕλ∈Λ of ( fd)d∈D, where IΛ(ϕ) is a

non-trivial ideal on Λ, then ( fd)d∈D
I-qu
−−−→ f .

Proof. Similar to the proof of Proposition 2.2.
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3. I -equicontinuity and Uniform I -Convergence

In this section we present a modification of the classical result which states that equicontinuity on a
compact metric space turns pointwise to uniform convergence. An extension of this result has been obtained
in [3].

Definition 3.1. ([16]) A family { fi : i ∈ I} of functions from a topological space X into a uniform space (Y,U)
is called equicontinuous at a point x0 of X if for every U ∈ U there exists an open neighbourhood Ox0 of x0
such that ( fi(x0), fi(x)) ∈ U for all i ∈ I and for all x ∈ Ox0 . The family { fi : i ∈ I} is called equicontinuous if it is
equicontinuous at each point of X.

Definition 3.2. Let ( fd)d∈D be a net of functions from a topological space X into a uniform space (Y,U) and
let I be a non-trivial ideal on D. The family { fd : d ∈ D} is called I-equicontinuous at a point x0 of X if for
every U ∈ U there exist A ∈ I and an open neighbourhood Ox0 of x0 such that ( fd(x0), fd(x)) ∈ U for all
d ∈ D \A and for all x ∈ Ox0 . The family { fd : d ∈ D} is called I-equicontinuous if it is equicontinuous at each
point of X.

Theorem 3.3. Let ( fd)d∈D be a net of functions from a topological space X into a uniform space (Y,U) and let I be a

non-trivial ideal on D such that the family { fd : d ∈ D} is I-equicontinuous. If ( fd)d∈D
I
−→ f , then the function f is

continuous. Moreover, the I-convergence is uniform on every compact subset of X.

Proof. Suppose that ( fd)d∈D I-converges pointwise to a function f . We prove that f is continuous. Let x0 ∈ X
and U ∈ U. In view of Lemma 2.5 there exists a symmetric entourage V ∈ U such that V ◦ V ◦ V ⊆ U. By
the I-equicontinuity of the family { fd : d ∈ D} at the point x0, there exist A0 ∈ I and an open neighbourhood

Ox0 of x0 such that ( fd(x0), fd(x)) ∈ V for all d ∈ D \ A0 and for all x ∈ Ox0 . Let x ∈ Ox0 . Since ( fd)d∈D
I
−→ f ,

there exist A1,A2 ∈ I such that:
(1) ( f (x0), fd(x0)) ∈ V, for every d < A1.

(2) ( f (x), fd(x)) ∈ V, for every d < A2.

We set A = A0 ∪ A1 ∪ A2. Then, A ∈ I. Since the ideal I is non-trivial, we have A , D. Let d0 < A. Then,
we have ( fd0 (x0), fd0 (x)) ∈ V, ( f (x0), fd0 (x0)) ∈ V, and ( f (x), fd0 (x)) ∈ V. Hence, ( f (x), f (x0)) ∈ V ◦ V ◦ V and
the function f is continuous.

Now, let C be a compact subset of X and U ∈ U. By Lemma 2.5 there exists a symmetric entourage
V ∈ U such that V ◦ V ◦ V ⊆ U. Let c ∈ C. Since the family { fd : d ∈ D} is I-equicontinuous at the point c,
there exist Ac ∈ I and an open neighbourhood Oc of c such that ( fd(c), fd(x)) ∈ V for all d ∈ D \Ac and for all
x ∈ Oc. Also, since the function f is continuous at c, there exists an open neighbourhood O′c of c such that
( f (c), f (x)) ∈ V for all x ∈ O′c. We set Hc = Oc ∩O′c ∩ C. The family

{Hc : c ∈ C}

is an open cover of C. By compactness of C, there are c1, . . . , cn ∈ C such that

C =

n⋃
i=1

Hci .

Since ( fd)d∈D
I
−→ f , for every i = 1, . . . ,n there exists Ai ∈ I such that for every d < Ai,

( f (ci), fd(ci)) ∈ V.

We set

A =

n⋃
i=1

Ai ∪

n⋃
i=1

Aci .
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Then, A ∈ I. Since the ideal I is non-trivial, A , D. Let x ∈ C and d < A. Then, for proper choice of i, we
have ( fd(ci), fd(x)) ∈ V, ( f (ci), f (x)) ∈ V, and ( f (ci), fd(ci)) ∈ V. Hence, ( f (x), fd(x)) ∈ V ◦ V ◦ V and the proof
is complete.

Corollary 3.4. Let ( fd)d∈D be a net of functions from a topological space X into a uniform space (Y,U), where the

family { fd : d ∈ D} is equicontinuous and let I be a non-trivial ideal on D. If ( fd)d∈D
I
−→ f , then the function f is

continuous. Moreover, the I-convergence is uniform on every compact subset of X.

4. Ideal Version of Arzelà’s Theorem for Uniform Spaces

The theorem of Arzelà [1] which gives a necessary and sufficient condition for a net of continuous
functions to converge to a continuous function plays an important role in functional analysis. In this
section we extend the classical result of Arzelà (see for instance [4]) to the quasi-uniform I-convergence of
nets of functions with values in uniform spaces.

Lemma 4.1. (see [16, Theorem 6, Chapter 6]) Let (Y,U) be a uniform space and U ∈ U. Then, there exists a
symmetric entourage W ∈ U such that:

(1) W ⊆ U.

(2) W is open in the product topology τU × τU of Y × Y.

Lemma 4.2. Let f and 1 be two continuous functions of a topological space X into a uniform space (Y,U). The
following statements are true:

(1) The function m : X→ (Y × Y, τU × τU) defined by m(x) = ( f (x), 1(x)), for every x ∈ X is continuous.

(2) If W is open in the product topology τU × τU of Y × Y, then the set {x ∈ X : ( f (x), 1(x)) ∈W} is open.

Proof. (1) Let x ∈ X and let V1[ f (x)] × V2[1(x)] be an open neighbourhood of m(x). Since f is continuous
at x, there exists an open neighbourhood Ox of x such that f (Ox) ⊆ V1[ f (x)]. Since 1 is continuous at x,
there exists an open neighbourhood O′x of x such that 1(O′x) ⊆ V2[1(x)]. We set O′′x = Ox ∩ O′x. Hence,
m(O′′x ) ⊆ f (Ox) × 1(O′x) ⊆ V1[ f (x)] × V2[1(x)].

(2) Let W be open in the product topology τU × τU of Y × Y. Since {x ∈ X : ( f (x), 1(x)) ∈ W} = m−1(W),
by statement (1) we obtain the desired result.

Lemma 4.3. Let f be a continuous function of a topological space X into a uniform space (Y,U) and let x0 ∈ X.
(1) The function m : X→ (Y × Y, τU × τU) defined by m(x) = ( f (x), f (x0)), for every x ∈ X is continuous.

(2) If W is open in the product topology τU × τU of Y × Y, then the set {x ∈ X : ( f (x0), f (x)) ∈W} is open.

Proof. It is similar to the proof of Lemma 4.2.

Theorem 4.4. Let ( fd)d∈D be a net of continuous functions from a topological space X into a uniform space (Y,U) and
letI be a non-trivial ideal on D. If the net ( fd)d∈D I-converges pointwise to a continuous limit, then theI-convergence
is quasi-uniform on every compact subset of X. Conversely, if the net ( fd)d∈D I-converges quasi-uniformly on a subset
of X, then the limit is continuous on this subset.

Proof. Suppose that ( fd)d∈D I-converges pointwise to a continuous function f on X. Let C be a compact
subset of X. We prove that the net ( fd)d∈D I-converges quasi-uniformly to f on C. In view of Definition 2.7,
it suffices to prove that for every U ∈ U and for every A ∈ I \ {D}, there exists a finite subset {d1, . . . , dn} of
D \ A such that for each x ∈ C at least one of the following relations holds:

( f (x), fdi (x)) ∈ U, i = 1, . . . ,n.

For that purpose we take arbitrary elements U ∈ U and A ∈ I (since I is non-trivial, A , D). By Lemma
4.1 there exists a symmetric entourage W ∈ U such that:
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(1) W ⊆ U.

(2) W is open in the product topology τU × τU of Y × Y.

Let c ∈ C. Since ( fd)d∈D
I
−→ f , there exists Ac ∈ I such that for every d < Ac,

( f (c), fd(c)) ∈W. (4.1)

Then, Ac ∪ A ∈ I. Since the ideal I is non-trivial, Ac ∪ A , D. Choose dc < Ac ∪ A and set

Oc = {x ∈ X : ( f (x), fdc (x)) ∈W}.

Since fdc and f are continuous, by Lemma 4.2, Oc is an open set. Moreover, by relation (4.1), the set Oc
contains c. Thus, the family

{Oc ∩ C : c ∈ C}

is an open cover of C. By compactness of C, there are c1, . . . , cn ∈ C such that

C =

n⋃
i=1

Oci ∩ C.

By the choice of the elements dc1 , . . . , dcn of D, the set {dc1 , . . . , dcn } is a finite subset of D \ A. Moreover, for
each x ∈ C at least one of the following relations holds:

( f (x), fdci
(x)) ∈W, i = 1, . . . ,n.

Indeed, let x ∈ C. Then, there exists i ∈ {1, . . . ,n} such that x ∈ Oci ∩ C. Therefore, by the definition of the
set Oci , we have ( f (x), fdci

(x)) ∈ W. Since W ⊆ U, for each x ∈ C it holds ( f (x), fdci
(x)) ∈ U for at least one

i = 1, . . . ,n. Thus, ( fd)d∈D
I-qu
−−−→ f on C.

Conversely, suppose that ( fd)d∈D I-converges quasi-uniformly to f on a subset X′ of X. Let x0 ∈ X′. We
prove that f is continuous at x0. Let U ∈ U. By Lemma 2.5 there exists a symmetric entourage V ∈ U such
that V ◦ V ◦ V ⊆ U. By Lemma 4.1 there exists a symmetric entourage W ∈ U such that:

(1) W ⊆ V.

(2) W is open in the product topology τU × τU of Y × Y.
Let

A0 = {d ∈ D : ( f (x0), fd(x0)) <W}.

Since ( fd)d∈D
I
−→ f , there exists A ∈ I such that for every d < A we have ( f (x0), fd(x0)) ∈ W. Hence, A0 ⊆ A

and, therefore, A0 ∈ I. Moreover, since the ideal I is non-trivial, A0 , D. By assumption, there exists a
finite subset {d1, . . . , dn} of D \ A0 such that for each x ∈ X′ at least one of the following relations holds:

( f (x), fdi (x)) ∈W, i = 1, . . . ,n. (4.2)

Since {d1, . . . , dn} ⊆ D \ A0, by the definition of A0, we have

( f (x0), fdi (x0)) ∈W, i = 1, . . . ,n. (4.3)

Let

Oi = {x ∈ X : ( fdi (x0), fdi (x)) ∈W}, i = 1, . . . ,n. (4.4)

Since the functions fdi , i = 1, . . . ,n are continuous, by Lemma 4.3, the sets Oi, i = 1, . . . ,n are open in X and
contain x0. We set

Ox0 = X′ ∩
n⋂

i=1

Oi.
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The set Ox0 is open in X′ and contains x0. Let x ∈ Ox0 . Then, x ∈ Oi, for every i = 1, . . . ,n. Since x ∈ X′, by
relation (4.2), there exists i ∈ {1, . . . ,n} such that ( f (x), fdi (x)) ∈ W. For this i, by relations (4.3) and (4.4), we
have ( f (x0), fdi (x0)) ∈W and ( fdi (x0), fdi (x)) ∈W. Therefore, for every x ∈ Ox0 , using relations (4.2), (4.3), and
(4.4), for proper choice of i, we obtain

( f (x0), f (x)) ∈W ◦W ◦W ⊆ V ◦ V ◦ V ⊆ U.

Thus, f (Ox0 ) ⊆ U[ f (x0)]. We conclude that f is continuous at x0 completing the proof of the theorem.

Corollary 4.5. On a compact topological space, the limit of a pointwise I-convergent net ( fd)d∈D of continuous
functions from a topological space into a uniform space is continuous if and only if the I-convergence is quasi-
uniform, when I is a non-trivial ideal on D.

Corollary 4.6. Let X be a compact topological space, and suppose that the net ( fd)d∈D of continuous functions from
the topological space X into a uniform space (Y,U) I-converges pointwise to a continuous function f , where I is a
non-trivial ideal on D. Then, f is continuous in any topology on X in which all the functions fd, d ∈ D are continuous.

Proof. By Corollary 4.5, ( fd)d∈D
I-qu
−−−→ f . Let τ be a topology on X which makes all the functions fd, d ∈ D

continuous. By Theorem 4.4, the function f : (X, τ)→ (Y,U) is continuous.

Lemma 4.7. (see [16, Theorem 8, Chapter 6]) Let (Y,U) be a uniform space and U ∈ U. Then, there exists a
symmetric entourage K ∈ U such that:

(1) K ⊆ U.

(2) K is closed in the product topology τU × τU of Y × Y.

Theorem 4.8. Let M be a dense subset of a compact topological space X, and suppose that the net ( fd)d∈D of continuous
functions from X into the uniform space (Y,U) I-converges pointwise to a continuous limit f on M, where I is a
non-trivial ideal on D. The following statements are true:

(1) If ( fd)d∈D I-converges pointwise to f on X, then every semi-subnet (1λ)ϕλ∈Λ of ( fd)d∈D IΛ(ϕ)-converges quasi-
uniformly to f on X, in the case where IΛ(ϕ) is a non-trivial ideal on Λ.

(2) If every semi-subnet (1λ)ϕλ∈Λ of ( fd)d∈D IΛ(ϕ)-converges quasi-uniformly to f on M, then ( fd)d∈D I-converges
pointwise to f on X.

Proof. (1) Suppose that ( fd)d∈D I-converges pointwise to f on X. Then, by Proposition 2.2, every semi-
subnet (1λ)ϕλ∈Λ of ( fd)d∈D IΛ(ϕ)-converges pointwise to f on X. Therefore, in view of Theorem 4.4, every
semi-subnet (1λ)ϕλ∈Λ of ( fd)d∈D IΛ(ϕ)-converges quasi-uniformly to f on X, in the case where IΛ(ϕ) is a
non-trivial ideal on Λ.

(2) Suppose that ( fd)d∈D does not I-converge pointwise to f on X. Then, there exist x0 ∈ X \M and
U ∈ U such that for every A ∈ I there exists dA < A with

( f (x0), fdA (x0)) < U. (4.5)

By Lemma 4.7 there exists a symmetric entourage K ∈ U such that:
(i) K ⊆ U.

(ii) K is closed in the product topology τU × τU of Y × Y.
Let Λ be the set I. For A1,A2 ∈ Λ, define A1 6 A2 if and only if A1 ⊆ A2. Then, (Λ,6) is a directed set. We
consider the function ϕ : Λ→ D, where ϕ(A) = dA, for every A ∈ Λ and the net (1λ)ϕλ∈Λ, where 1λ = fϕ(λ), for
every λ ∈ Λ. Let AΛ ∈ IΛ(ϕ) \ {Λ}. Since (1λ)ϕλ∈Λ IΛ(ϕ)-converges quasi-uniformly to f on M, there exists a
finite subset {A1, . . . ,An} of Λ \ AΛ such that for each x ∈M at least one of the following relations holds:

( f (x), 1Ai (x)) = ( f (x), fϕ(Ai)(x)) = ( f (x), fdAi
(x)) ∈ K, i = 1, . . . ,n. (4.6)
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We set
Oi = {x ∈ X : ( f (x), fdAi

(x)) ∈ (Y × Y) \ K}, i = 1, 2, . . . ,n.

Since the functions fdAi
and f are continuous, by Lemma 4.2, Oi is an open set for i = 1, . . . ,n. Moreover,

since K ⊆ U, by relation (4.5) we have

( f (x0), fdAi
(x0)) ∈ (Y × Y) \U ⊆ (Y × Y) \ K, i = 1, 2, . . . ,n.

Hence, Oi is an open set containing x0 for i = 1, . . . ,n. Sine M is dense in X, there exists m ∈M∩O1∩ . . .∩On.
For this point m we have

( f (m), fdAi
(m)) < K, i = 1, . . . ,n,

but this contradicts the relations (4.6). Thus, ( fd)d∈D I-converges pointwise to f on X.

5. Almost Uniform I -Convergence

In this section we give the notion of almost uniform I-convergence of a net of functions with values
in a uniform space and we prove that the almost uniform I-convergence preserves continuity of its limit.
Modifications of this result have been obtained in [10, 13].

Definition 5.1. A net ( fd)d∈D of functions in a topological space X with values in a uniform space (Y,U) is
said to I-converge almost uniformly to f on X if for every x ∈ X and for every U ∈ U there exist A ∈ I and an
open neighbourhood Ox of x such that for every d < A and for every t ∈ Ox we have ( f (t), fd(t)) ∈ U. In this

case we write ( fd)d∈D
I-au
−−−→ f . We shall say that the net ( fd)d∈D I-converges almost uniformly on X if there is a

function to which the net I-converges almost uniformly.

Theorem 5.2. Let ( fd)d∈D be a net of continuous functions from a topological space X into a uniform space (Y,U)

and let I be a non-trivial ideal on D. If ( fd)d∈D
I-au
−−−→ f , then the function f is continuous.

Proof. Suppose that ( fd)d∈D I-converges almost uniformly to a function f . We prove that f is continuous.
Let x ∈ X and U ∈ U. By Lemma 2.5 there exists a symmetric entourage V ∈ U such that V ◦ V ◦ V ⊆ U.

Since ( fd)d∈D
I-au
−−−→ f , there exist A ∈ I and an open neighbourhood Ox of x such that for every d < A and

for every t ∈ Ox we have ( f (t), fd(t)) ∈ V. Let d0 < A. Then, ( f (x), fd0 (x)) ∈ V. Since the function fd0 is
continuous at x, there exists an open neighbourhood O′x of x such that ( fd0 (x), fd0 (t)) ∈ V, for all t ∈ O′x. We
set Hx = Ox ∩ O′x. Then, Hx is an open neighbourhood of x. For every t ∈ Hx we have ( f (t), fd0 (t)) ∈ V.
Therefore, ( f (x), f (t)) ∈ V ◦ V ◦ V and the continuity of f is proved.

Theorem 5.3. Let ( fd)d∈D be a net of functions from a topological space X into a uniform space (Y,U) and let I be a

non-trivial ideal on D such that the family { fd : d ∈ D} is I-equicontinuous. If ( fd)d∈D
I
−→ f , where the function f is

continuous, then the I-convergence is almost uniform.

Proof. Suppose that ( fd)d∈D I-converges pointwise to a continuous function f . Let x ∈ X and U ∈ U. By

Lemma 2.5 there exists a symmetric entourage V ∈ U such that V ◦ V ◦ V ⊆ U. Since ( fd)d∈D
I
−→ f , there

exists Ax ∈ I such that
( f (x), fd(x)) ∈ V, for every d < Ax.

By theI-equicontinuity of the family { fd : d ∈ D} at the point x, there exist A′x ∈ I and an open neighbourhood
Ox of x such that

( fd(x), fd(t)) ∈ V, for all d ∈ D \ A′x and for all t ∈ Ox.

Since the function f is continuous at x, there exists an open neighbourhood O′x of x such that

( f (x), f (t)) ∈ V, for all t ∈ O′x.
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We set
Hx = Ox ∩O′x.

Then, Hx is an open neighbourhood of x. We set

A = Ax ∪ A′x ∈ I.

For every d < A and for every t ∈ Hx we have ( f (t), fd(t)) ∈ V ◦ V ◦ V. Thus, the net ( fd)d∈D I-converges
almost uniformly to f .

Corollary 5.4. Let ( fd)d∈D be a net of functions from a topological space X into a uniform space (Y,U), where the

family { fd : d ∈ D} is equicontinuous and let I be a non-trivial ideal on D. If ( fd)d∈D
I
−→ f , where the function f is

continuous, then the I-convergence is almost uniform.

6. Comparison of the Uniform and Almost Uniform I -Convergence

In this section we prove that the uniformI-convergence and the almost uniformI-convergence coincide
on compact spaces. We will give examples to indicate that this is not true for non-compact spaces.

Proposition 6.1. Let ( fd)d∈D be a net of functions from a topological space X into a uniform space (Y,U). If

( fd)d∈D
I-u
−−→ f , then ( fd)d∈D

I-au
−−−→ f .

Proof. Follows easily from Definitions 2.3 and 5.1.

Theorem 6.2. Let ( fd)d∈D be a net of functions from a compact space X into a uniform space (Y,U) and let I be a

non-trivial ideal on D. If ( fd)d∈D
I-au
−−−→ f , then ( fd)d∈D

I-u
−−→ f .

Proof. Suppose that ( fd)d∈D
I-au
−−−→ f and let U ∈ U. For every x ∈ X there exist Ax ∈ I and an open

neighbourhood Ox of x such that for every d < Ax and for every t ∈ Ox we have ( f (t), fd(t)) ∈ U. Hence, the
family {Ox : x ∈ X} is an open cover of X. By compactness of X, there are x1, . . . , xn ∈ X such that

X =

n⋃
i=1

Oxi .

We set

A =

n⋃
i=1

Axi .

Then, A ∈ I. For every x ∈ X and for every d < A we have ( f (x), fd(x)) ∈ U, so ( fd)d∈D
I-u
−−→ f .

Based on the ideas of Theorems 2.2 and 2.5 of [12], consider the following two examples.

Example 6.3. Let X be a completely regular non-pseudocompact space. We construct a net ( fd)d∈D of
functions from X into the real unit interval [0, 1] endowed with the usual uniformity such that for every
admissible non-trivial ideal I on D, ( fd)d∈D I-converges almost uniformly to a continuous function f but
( fd)d∈D does not I-converge uniformly to f .

Since X is not pseudocompact, there exists a locally finite family F of nonempty open sets which is not
finite. Let � be a well-order in F and let α be the order type of (F ,�). By D we denote the directed set of
all ordinal numbers less than α. Hence, the family F can be presented as {Ud : d ∈ D}. For each d ∈ D we
select a point xd ∈ Ud. Since X is completely regular, there exists a continuous function fd : X→ [0, 1] such
that fd(xd) = 0 and fd(X \Ud) = {1}. Consider the function f : X→ [0, 1] defined by f (t) = 1, for every t ∈ X.
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LetI be an admissible non-trivial ideal on D andU be the usual uniformity for [0, 1]. We shall prove that

( fd)d∈D
I-au
−−−→ f . Let x ∈ X and U ∈ U. Since the family F is locally finite, there exist an open neighbourhood

Ox of x and a finite subset {d1, . . . , dn} of D such that

Ox ∩Udi , ∅, i = 1, . . . ,n

and
Ox ∩Ud = ∅, for every d ∈ D \ {d1, . . . , dn}.

We set A = {d1, . . . , dn}. Since I is admissible, A ∈ I. For every d < A and for every t ∈ Ox we have
fd(t) = f (t) = 1 and, therefore, ( f (t), fd(t)) ∈ U.

Now, we prove that ( fd)d∈D does not I-converge uniformly to f . Indeed, let

U = {(y1, y2) ∈ [0, 1] × [0, 1] : |y1 − y2| <
1
2
}

and A be an arbitrary element of I. Since I is non-trivial, there exists d < A such that xd ∈ Ud. Hence,
| f (xd) − fd(xd)| = 1 and, therefore, ( f (xd), fd(xd)) < U.

Example 6.4. Let X be a completely regular space which is not locally compact. We construct a net ( fd)d∈D
of functions from X into the real unit interval [0, 1] endowed with the usual uniformity such that ( fd)d∈D
ID-converges uniformly to a continuous function f on compact sets but ( fd)d∈D does notID-converge almost
uniformly to f .

Since X is not locally compact, there exists x ∈ X such that for each open neighbourhood O of x and for
each compact set C we have O * C. Let O(x) be the family of all open neighbourhoods of x and let C be the
family of all nonempty compact subsets of X. We consider the directed set (D,6), where D = O(x) × C and

(O1,C1) 6 (O2,C2) if and only if O2 ⊆ O1 and C1 ⊆ C2.

For each d = (O,C) ∈ D we select a point xd ∈ O \C. Since X is completely regular, there exists a continuous
function fd : X → [0, 1] such that fd(xd) = 0 and fd((X \ O) ∪ C) = {1} (C is closed because it is a compact
subset of the Hausdorff space X). We consider the function f : X → [0, 1] defined by f (t) = 1, for every
t ∈ X.

LetU be the usual uniformity for [0, 1]. We shall prove that ( fd)d∈D
ID-u
−−−→ f on every compact subset of

X. Let K be a compact subset of X and U ∈ U. Let Ox be an arbitrary open neighbourhood of x. We set
d0 = (Ox,K) and A = {d ∈ D : d � d0}. By the definition of ID we have A ∈ ID. For every t ∈ K and for every
d = (U,C) < A we have

fd(t) ∈ fd(K) ⊆ fd(C) = {1}.

Therefore, ( f (t), fd(t)) ∈ U.
Now, we prove that ( fd)d∈D does not ID-converge almost uniformly to f . Indeed, let x ∈ X and

U = {(y1, y2) ∈ [0, 1] × [0, 1] : |y1 − y2| <
1
2
}.

It suffices to prove that for every A ∈ ID and for every open neighbourhood Ox of x there exist d < A and
t ∈ Ox such that ( f (t), fd(t)) < U. Let A ∈ ID and Ox be an open neighbourhood of x. By the definition of ID
there exists d0 = (O0,C0) ∈ D such that A ⊆ {d ∈ D : d � d0}. We set d = (O0 ∩ Ox,C0). Since O0 ∩ Ox ⊆ O0,
we have d > d0. Hence, d < A. Moreover, xd ∈ Ox and fd(xd) = 0. We conclude that | f (xd)− fd(xd)| = 1. Thus,
( f (xd), fd(xd)) < U.

Acknowledgements

I would like to thank the referee for the careful review and the valuable comments.



A.C. Megaritis / Filomat 31:20 (2017), 6281–6292 6292

References

[1] C. Arzelà, Intorno alla continuità della somma d’infinità di funzioni continue, Rend. dell’Accad. di Bologna (1883-1884) 79–84.
[2] E. Athanassiadou, A. Boccuto, X. Dimitriou, N. Papanastassiou, Ascoli-type theorems and ideal (α)-convergence, Filomat 26

(2012) 397–405.
[3] M. Balcerzak, K. Dems, A. Komisarski, Statistical convergence and ideal convergence for sequences of functions, J. Math. Anal.

Appl. 328 (2007) 715–729.
[4] R.G. Bartle, On compactness in functional analysis, Trans. Amer. Math. Soc. 79 (1955) 35–57.
[5] T. Bı̂nzar, On some convergences for nets of functions with values in generalized uniform spaces, Novi Sad J. Math. 39 (2009)

69–80.
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