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applications of the main results are given.

Abstract. In the present paper, we give some sufficient conditions for a matrix belongs to the class
B (au, Bn; Vu, 0n; ) when @ € A(p,q). Our results generalize the result of Das [4] and Yu [13]. Some

1. Introduction

Let {s,} be the partial sums of the infinite series ), a,, The Cesaro means of order a of the series )., d,
are defined by

a .
o

1 n
AT =01,
n 520

where

TFn+a+1)
A% = =
" T+ DI'(n+1) "

0,1,---.

Let (C, &) be the Cesaro matrix of order «, that is, (C, @) be the lower triangular matrix (Af,‘j /A;f) .
Das [4] defined a matrix T := (tnj) to be absolutely kth-power conservative for k > 1, denoted by
T € B(Ay), that is, if {s,,} satisfies

)

- k
an ! sy = sp-1|" < o0,

n=1

then

)

— k
an ! [ty — tial” < oo,

n=1
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where

n
t, = Z £njSj.
=0

Flett [5] introduced the concept of absolute summability of order k. A series ).~ ,a, is summable
ICal, k=1, a>-1,if
k1| . _ -« k
Z n |on71 an| < 0o,
n=0

Flett [5] established the following inclusion theorem for |C, a;. If the series )., 4, is summable |C, al;,
it is also summable for |C, a|, foreachr > k>1, a > -1, f>a+ % - % Especially, a series ), a4, which is
|C, aly summability is also |C, B|, summability fork > 1, > a > -1.

If one sets a = 0, from the above inclusion result, we have

Theorem A. Let k > 1, then (C, a) € B (Ay) for a > 0.

As we know, the k—th power conservative matrices actually are results of comparison of summability
fields of absolute summability methods. Many mathematicians have obtained a lot of important results by
comparing different absolute summability methods. Here we remind readers some interesting papers of
Sarigol ([8]-[11]). For example, take a, = s, —s,-1, so = 0. Denoted by t, and T, the Riesz means (R, p,)
and (R, g,) of the sequence {s,}, respectively. It is called that a series ) a, or a sequence s, is summable
R, pu|, (k > 1) (see [10]), if {£;} € Iy, where

ty = 0%ty — b)) =

1/k n

n

Pr va_lav.
PnPn—l =)

Since
1 n—-1 qy qn )
Tn:—ZA Pvtv tn:Zd tv/
" v=1 v Qupn —

where N .

Inlolv-1 -1

Qnanle»A (Pv—l )r 1 S < 1’[,

dnv = 3’—7;;/ v=n,
0’ 0 >n.

It is easy to see that D € B(Ay) iff (R, p,,|k = IR, q,,|k. The author is indebted to Professor Sarigol in Pamukkale
University for providing this nice example.

There are many works have done to generalize the results of Das [4] and Flett [S](see [1]-[3], [12]-[16],
for examples). Among them, we [13] generalized the concept of the absolutely kth-power conservative to
the following

Definition 1.1. Let ¢ (x) be a nonnegative function defined on [0, 00), {a,}, {Bn}, {yn} and {0,} be nonnegative
sequences. We say that a matrix

T = (tn]) [S B (anrﬁn;yn/ 671/(p)/

Z an@ (ﬁn Isn - Sn—1|) <0
n=1

implies that

N 70 Gt = tyal) < 0.
n=1
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Ifay=y,=nt, Bu=0,=n, p(x)= x*, k> 1, then B (an, Bu; Vn, On; @) reduces to B (Ay) .
LetT := (tn j) be a lower triangular matrix, A = {A,} be a positive sequence. Set

n n-1 .
T Zj:itnj—Zj:i ti1j, 0<is<n-—-1,
ni = .
tun, 1=n,

S
Tn (A) = Z TI
j=1
We [13] established the following general result:

Theorem 1.2. Let ¢ (x) be a nonnegative convex function defined on [0, o), T := (tnj) be a lower triangular matrix
satisfying Y.i_o taj = 1, and let {a,} be a nonnegative sequence. If A = {A,} is a positive sequence such that

A Bl (B ) =0, 21,

j=n

then
— -1
TeB (A,,,)\n; t, (To (1) ;<P)-

Theorem 1.2 can be applied to test whether a Cesaro matrix or a Riesz matrix belong to B (e, B, Y, On, @)
or not. Especially, we [13] generalized Theorem A by applying Theorem 1.2 (see Theorem 3.3 in [13]).

Denote by A (p,q) (0 < g < p) the set of all nonnegative functions ¢ (x) defined on [0, o) such that ¢ (0) =
0, ¢ (x) /%" is nonincreasing and ¢ (x) /x7 is nondecreasing. It is clear that A(p,q) € A(p,0) for 0 < q < p.
For example, A (p, 0) contains the function ¢ (x) = log(1+x), # € A(p,p) and #log(1+t) c A(p +1,p) for
p>0.

We will establish two general results similar to Theorem 1.2 when ¢ € A (p,q) in section 2 (Theorem 2.1
and Theorem 2.3), some applications of these two general results will be given in section 3.

Throughout the paper C, denotes a positive constant depending only on ¢, their values may be different
even in the same line. a, =~ f8, means that there is a positive constant C such that c! Bn < ay < CBy.

2. Main Results

Firstly, we have

Theorem 2.1. Let ¢ (x) € A(p,q) 0<g<p), T := (tnj) be a lower triangular matrix satisfying Z?:o tej = 1.
Assume that {a,}, {Bn} and A = {A,,} are positive sequences satisfying the following conditions:
(A) There is a positive constant Ky such that at least one of the conditions inf f, > Ky and sup B, < Kj holds;
(B) There is a positive constant K, such that inf A,, > K, > 0;
©

i B (T ) Bl =0 (A7), iz 1, (1)

where p* := max (1, p) and

9::{ g, if infp, =0,

p,  otherwise.
Then
TeB (0(;1, ﬁn} YV, Au; (P) . (2)
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To prove Theorem 2.1, we need some properties of A (p, q) :

Lemma 2.2. ([7]) Let @ (x) € A(p,q) (0<qg<p)andt; >0, j=1,2,---.Then
(@) PO(t) <D (nt) <n1d(t) for0<n<1,t>0;
(b) D (nt) < PO(t) forn>1, t >0;
©@(LL ) < (X o (1))
(d) ® (x) is nondecreasing.

Remark. From (a) and (b) in Lemma 2.2, we have

D(Bat) = O(L)BRO(D),

when sup 8, < Kj, and
D(Bat) = O(1)B,D(H),

when inf B, > Kj. In other words, we have
D(But) = O(L)BID(E).

Proof of Theorem 2.1 Since (set s_1 := 0)
n n J

th = Z tnjsj = Z tnj [Z (si — Si—l)]
j=0 j=0 i=0

= Z (si — si-1) [Z fnj],

i=0 j=i

then
n n n—1 n—1
th —tp1 = Z (si —si-1) Z tnj|— Z (si —si-1) Z tn-1,j
=0 j=i i=0 j=i

n n
= Z ti (5 —8i-1) = Z tni (si — si-1),
i=0 P

where in the last inequality, we used the fact Eo = 0, which follows from Z;LO tsj = 1 and the definition of

tno-

Since inf A, > K, > 0 and T is a lower triangular matrix satisfying Z?:o tsj = 1, we see that [%’l =0(@1).
Then, by Lemma 2.2 and (1), we get

Z an@ (Bultn = taal) < Z an@p [ﬁn Z A;'_l [En) (Ailsi — 5i—1|)]
=1 n=1 i=1

=0 afly [Z A7 | A lsi - si_1|>]
n=1 i=1
0 n v
=0() Z By [Z Q' (Ai_l [£i| (A Isi — Si—1|)>]
n=1 i=1
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0 |~ | aly’ 7
=0 Y af [Z [ ¥ ] o7 (Ailsi - s,-_1|)]
n=1 i=1 .
Z[l’;l'] @ (Ailsi _5i1|)]

-0() ianﬁ [Z m]p ) 2

n=1 i=1

(by Holder’s inequality)

(o]

RS A C0)) B

n=i

1l
—_

Ik

=0() Z yip (Ailsi = sizal),
i=1
which implies (2).
Theorem 2.3. Let T = (tnj) be a lower triangular matrix with the entries t,; having the form %, where p; > 0
forO<j<nand P, =3} ,p;>0. Letp € A(p,q) (0<q<p)and{a,}, A= {A,} be positive sequences. If

s D. -q . -q
Zai(iu)%) =O(nan(Tn<A>%) ) o)

i=n

then
— -1
TeB (Bn, Ani o, (To (1)) ;<P)

where

= PN\
Bn:n”an(Tn(/\)p—") A1

Lemma 2.4. ([6]) Letp >1,a, 20, A, >0, then

i)\ [ZakJ <va)\”’(Z ]p o

n=1 k=1 k=n

Proof of Theorem 2.3 First, we have

_ n n—1
bni = Z tnj - Z tnj
j=i j=i

Pn Pn
—_— - P,
Pn Pnpn—l ( n-1 i 1)
pnpi—l
,1<i<n-1, 4
Pnpn—l ( )
and
B0 =0, Ty = 2 (5)
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Noting that
) [ <1,0<i<n,
A

by Lemma 2.2 and Lemma 2.4, we have

Z ay@ ((ﬁ (/\))_1 |tn - tn—1|)
A ((7:; (/\))_1 Z AT ] (A Isi = Si—1|)]
a { ) o ((Tn W) A [f] Aslsi = Si—ll))]

) n X , P
= Zan[ (T )™ ™ 7 (il —si_1|>]

00 - n " v
=0} (T~ (A) &) ' {Z (A7 Pia)"” @ (Al - s,-_1|)]

i=1

S PnPn—l —q)l_l’*
=0(1 | T (A) ——
()2(a( = )

= (= o \1Y
X (A;l Pn_l)q ® Ay lsn = su1]) X [Z o (Ti ) Pl?_l) )

. 1
=n

U P A
=0 (1) n? ay, (Tn (A) _n) /\nq(P (/\n s, — Sn—ll) ’
L (0,
which completes the proof of Theorem 2.3.

3. Applications of The Main Results

We will use the following estimate frequently (see [17]):

a

Theorem 3.1. Let ¢ (x) € A(p,q) (0 < q <p), {an}, {Bn} be positive sequences satisfying
(i) There is a positive constant K such that at least one of the conditions inf 8, > K and sup B, < K holds;

(i1) am = atn, P = Pu for any n < m < 2n;
(lll) Z:IO:ZH{ n—z(q_p»+1)+y(1—p*)an’82 =0 (i—z(q_l’*+1)+}l(1_}7*)+1aiﬁie) i
Then
(C a)eB(anBu;ynnt;p), a>0,0<u<2,
where
w0 80 a(pr-q-1)<p -q,

Vn = n—(1+y)q+p* (log 7’1) an‘Bgl a (P* —q- 1) = p* —-4q
w10, 00 (- -1)>p—q

4708
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Proof. Let
a-1

tnj L IZ;], j:Olll
n

-on a> =1,

Thenfor0<i<n-1,

s [ ol 1N e
bi= 2 DA~ LA
n n—

=i L
1 n—i 1 n—1-i
- a=1 _ a-1
T AQ XAJ Al Z AJ‘
=0 n-1 =0
AY Al ,Aa—l
— n—i " n-1-i — i n—i
AZ A T m AL
and
(R
"TTAy Ay

Taking A, =n*, n>1,0 < u <2, by (6)-(8), we have

n

ZA huil = Z ] _ ’117% ;P*P‘Aﬁj
=0 (n_l_"‘) (n“‘l f R A Zn: (n—v+ 1)"‘_1]

i=1 i=n/2+1
=0m™").
Therefore,
iaﬁe[i |-t-nv|]P*—1 ‘q p+1: [Zaﬁ " ,u(p 1)|-|q p+1]
n=i o v=1 /\U

(o8]

n=i

o)L T

n=i  n=2i+1
=1 + .

By (6) and (ii), we have

| Aa- 1 q-p'+1
L ﬂ P+l Za pon( 1)( v ]

2i |Aa— 7-p'+1
q—pr+1 o 0 —u(p—1 —i
= O(z‘i P+, p0iH(r ))Z(#]
n=i n
2i
-0 (iq—p‘+1+(1+a)(p*—q—1)+#(1—p*)aiﬁ@) Z (n+1 - i)lrv+)eD
1
n=i

-0 (iﬂ(p'—q—l)w(l—p*)ailgi@ Ai) ,

n-i

a-1 q-p"+1
n ]

o) [Z =

4709

©)

(10)

(11)
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where
7+ )eDel (g 1) (= 1) > -1,
A= log i, G-p+)@-1)=-1, (12)
1 G-r+)@-1)<-1
By (6) and (iii), we have

> (= ) (Tr)eD

L=0(i"7*) anfOni(-7)

S e

o) Y a2 D), g0

n=2i+1
=0 (ilﬂ*fqﬂt(lfp*)ailgi@) ) (13)
Therefore, by (10)-(13) and Theorem 2.1, we prove Theorem 3.1. [J

A non-negative sequence {a,} is said to be almost decreasing, if there is a positive constant K such that
a, > Kay, for all n < m, and it is said to be quasi-f—power increasing with some real number p, if

Corollary 3.2. Let ¢ (x) = x*, then
(a) If {a,} is quasi-e-power decreasing with some € > 0 and satisfies the condition (ii) in Theorem 3.1, then

(C a) € B(an, n; an,1; ) (14)
fora >0, p > 1. Especially, if 6 < ;17, Y €R, then

(Ca)eB (nép‘1 log” n,n;n ' log” n,n; (p) (15)

fora>0,p>1
(b) If {a,} is quasi-e-power decreasing for some € > 1 — p and satisfies the condition (ii) in Theorem 3.1, then (14)
holds for a > 0, 0 < p < 1. Especially, if 6 < 1,y € R, then (15) holds for « >0, 0 <p < 1.

Proof. (a) Since ¢ (x) = x7, p > 1, we may take g = p = p". To prove (14), by Theorem 2.3, we only need
to verify that (iii) in Theorem 3.1 holds with 8, = n,u = 1 (6 = p in this case). Since {a,} is quasi-e-power
decreasing with ¢ > 0, then

Y, w2 ) = 0) Y na
n=2i+1 n=2i+1
=Oaii®) Y w7
n=2i+1
=0 (i_ll){i) ’

which means (iii).

If § < 7, then there is an ¢ > 0 such that 5p — 1 + & <0, hence {nbp‘l log” n} is quasi-e—power decreasing
for any y € R. Now, applying (14), we get (15).

(b) Since ¢ (x) =x”, 0 <p <1, wemay takeqg =p, p* = 1. Let §, = n, u = 1 (0 = p again), then

(o) [oe]
Y, e gl = 01) Y ntntay
n=2i+1 n=2i+1
[oe]
=0 (ia;) Z nF¢
n=2i+1

=0 (i""a;)
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for € > 1 — p, which implies (iii), and hence (14).

4711

If 5 <1, then 6p — 1+ 1 —p < 0, which implies that there exists an € > 1 —p such that 6p — 1 + ¢ < 0. Thus

=n5’7‘1 log” n} is quasi-e—power decreasing for any y € R. (15) is proved. [J

Remark. Theorem A is the special case when 6 =y = 0 in (15).

Theorem 3.3. Let ¢ (x) € A(p,q) (0 < q <p), {an}, {Bn} be nonnegative sequences satisfying (i), (ii) in Theorem

3.1 and
(iv) Z;:”:zm n—Z(q_p*+1)+(y+a)(1—p*)an’82 -0 (i_z(q_p*+1)+(y+a)(1_p*)+1ai‘8i9) .

Then

(C a) € B(an, Bu;ynnt;9), —-1<a<0,0<u<2,

where
n(l—a)P*‘(H”)qManﬁgl a (p* -q- 1) < p* -q,
Vi = n(l—a)p*—(1+p)q+a (log n) (Xn,Bgz a (p* -q- 1) = p* -4,
Vlf(yﬂy)qanﬁg/ a (p* —q- 1) > P* -9

Proof. Similar to (9), we have

n n/2 n
Z )\;1 '-[m| =0 (n_l_“) (n“‘l Z iH 4l Z m-v+1)*"=0®m*+),
i=1 i=1 i=n/2+1
hence
. o[V |?"v| o q-p'+1 3 0, —(u+a)(p—1 g-p+1
Za”ﬁn Z 1 [E;”‘ =0 Z anﬁnn (F )(p ) [t-m|
n=i =1 "7 n=i

0 a—1|\TP+1
=0 (iq_’“l) [; a,fon(p+a)(1=r) [%) ]
2i o
-0+ 3|
n=i  n=2i+1
=1+ 2.

Similar to (11) and (13), we have

2i | Aa-1 q-p'+1
Ji=0 (iqiwl) nZ:f apon(pra)(1=p) (_njﬁl_gl ]
= O (iq_pv_Fl_F(lLH,a)(l_pV)aiﬁieAi) 7

and

J» = o(ﬂ—p‘ﬂ) Z g+ 1)+ () (19 60
n=2i+1

-0 (ip”—w(wa)(l—zf*)aiﬁi@) )

where A; is defined by (12). Therefore, we prove Theorem 3.3 by (16)-(18) and Theorem 2.3. O

(16)

(17)

(18)
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Corollary 3.4. Let ¢ (x) = x7, then
(a) If {av,} 1s quasi-e-power decreasing for some € > o — ap and satisfies the condition (iv) in Theorem 3.3, then
(14) holds for all =1 < a < 0, p > 1. Especially, if 6 < H“p”*“, y € R, then (15) holds forall -1 < a <0, p > 1.
(b) If {a,} is quasi-e-power decreasing for some € > 1 — ap and satisfies the condition (iv) in Theorem 3.3, then
(14) holds for -1 < @ <0, 0 < p < 1. Especially, if 0 <1,y € R, then (15) holds for -1 <a <0, 0 <p < 1.

Proof. It can be proved in a way similar to Corollary 3.2, we omit the details here. [J

Theorem 3.5. Let ¢ (x) e A(p,q) (0<g<p), T= (tn]-) be a lower triangular matrix with the members t,; having
the form 1%' wherep; > 0for 0 < j<nand P, = ):;’zo pj >0, A = {A,} be a positive sequence. If

(v) npy, = Py,

(0) Koy Bt = O(152),

(vii) Ty a0 TP = O (a7 P,

then

TeB (anr ﬁn} YV, Ay; (P) ’

where y, = a;IA
Proof. By (4), (5) and (vi), we have

ZF__ P Pv—l_o(npn)
=1 /\v PnPn—l =1 /\v Pn/\n ’

Therefore, by (v) and (vii), we get

RE)y r"”']p [T

n=i

qg-p+1 npn )p*_l( Pn )’Hﬂl
=0 )Z_‘ onf ”(P An PyPy
—p*+1 1-p* g1 P —q-1
= O (P Y el R
n=i

- O{ufal )= 0 (a7 (a7 ),

which together with Theorem 2.3 implies Theorem 3.5. ]

Corollary 3.6. Let p(x) =x7, p>0,T = (tn ]-) be a lower triangular matrix with the members t,; having the form

lf—fl, where p; 2 0 for 0 < j < nand P, = Yo p; > 0. If {pu} and {a,} satisfy (v), (vi) in Theorem 3.5 with A, = n,
and

Y anPy!y = O(iaiP), whenp > 1, (19)
and

Y P =O(iaiP "), when 0 <p <1, (20)
Then

T € B(an, m;yn,1;9), (21)

where y, = a, when p > 1and y, = n'Pa,,.
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Proof. We only prove the case when p > 1, the case when 0 < p < 1 can be proved similarly. Letf, = A, = n,
by (19), we have

(o] (o]
041-P p—g-1pp—9-1 _ -1 _ . p-1
Z APy, " TITP T = Z a,Pl = O(zaciPH),

n=i n=i

which means that the condition (vii) of Theorem 3.5 holds, and thus (21) is proved. O

Corollary 3.7. Under the conditions of Corollary 3.6 with p, = (n +1)*, a > —1, we have

(a)ifo < 1%, p =1, then
Te B(nép_l,n; né”_l,n;(p).
D)ifo6<1+a,0<p<1,then

sp=1 . op—p ..
TeB(n” ,n,np”,n,qo).

Proof. It is easy to verify that (19) and (20) are satisfied under the condition of (a) and the condition of (b)
respectively. [

Acknowledgement: The author is very grateful to Professor Ali Sarig6l for his valuable suggestions.
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