Filomat 31:14 (2017), 46514663
https://doi.org/10.2298/FIL1714651A

Published by Faculty of Sciences and Mathematics,
University of Nis, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

A Note on Positivity of Two-Dimensional Differential Operators

Allaberen Ashyralyev®’*, Sema Akturk?

*Department of Mathematics, Near East University, Nicosia, TRNC, Mersin 10, Turkey
YInstitute of Mathematics and Mathematical Modeling, 050010, Almaty, Kazakhstan
¢Peoples Friendship University Russia, Ul Miklukho Maklaya 6, Moscow 117198, Russia
dYakuplu, the Neighborhood Street Kubilay, 34524, Istanbul, Turkey

Abstract. We consider the two-dimensional differential operator A® u(t, x) = —ay; (t, x) uy —ax(t, )iy, +ou
defined on functions on the half-plane R* X R with the boundary condition u(0, x) = 0, x € R where a;(t, x),
i = 1,2 are continuously differentiable and satisfy the uniform ellipticity condition a3, (f,x) + a3,(t, x) >

5 >0, 0 > 0. The structure of fractional spaces E, (L1 (R* x R) ,A(”)) generated by the operator A®? is
investigated. The positivity of A®® in L, (Wf"‘(IR‘r X ]R)) spaces is established. In applications, theorems on
well-posedness in L, (Wf“ (R* x IR)) spaces of elliptic problems are obtained.

1. Introduction

The theory of positivity of differential and difference operators in Hilbert and Banach spaces is important
in the study of various properties of boundary value problems for partial differential equations, of difference
schemes for partial differential equations, and of summation Fourier series converging in C — norm (see, for
examples, [1]-[3] ).

Let us give the definition of positive operators and introduce the fractional spaces and preliminary facts
that will be needed in the sequel.

An operator A densely defined in a Banach space E with domain D(A) is called positive in E, if its
spectrum o4 lies in the interior of the sector of angle ¢, 0 < ¢ < 1, symmetric with respect to the real axis,
and moreover on the edges of this sector S; (p) = {pe' : 0 < p < o0 } and S, () = {pe™™ : 0 < p < 0}, and
outside of the sector the resolvent (A — AI) ! is subject to the bound (see, [1])

M

=207 < T

The infimum of all such angles ¢ is called the spectral angle of the positive operator A and is denoted by
¢p(A) = p(A, E). The operator A is said to be strongly positive in a Banach space E if (A, E) < 7.

Throughout the present paper, we will indicate with M positive constants which can be different from
time to time and we are not interested in precise. We will write M(a, §, - - ) to stress the fact that the constant
depends onlyona, 3, .
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The theory of differential and difference operators and their related applications have been investigated
by many researchers (see, for example,[4]-[15], [24]-[31]).

For a positive operator A in the Banach space E, 1, let us introduce the fractional spaces E,1 = E,1(E, A)
(0 < a < 1) consisting of those v € E for which norms

(9]

1y dA
lolle,, = f AMIA(A + AI) 10||E7 +lolle
0

are finite. Clearly, the positive operator commutes A and its resolvent (A — AI)~!. By the definition of the
norm in the fractional space E,1 = E;1(E, A) (0 < a < 1), we get

A = AD Mg, -E,, < A = AD gk 1)

Thus, from the positivity of operator A in the Banach space E it follows the positivity of this operator in
fractional spaces E,1 = Eo1(E, A) (0 <a < 1).

Theorem 1.1. ([30]) Let p and q be mutually conjugate exponents, that is, % + % =1,p>1,andlet f,g: Ry - R

be any two non-negative Lebesque measurable functions such that 0 < f fP(x)dx < 00 and 0 < f 97 (y)dy < co.
0 0
Then, the following Hilbert’s inequality holds:

1
q

([ f@a) (z) oA,
Of(f T+ < mcsc ; Off (x) dx Ofg (y)dy| . )

S.I. Danelich in [13] considered the positivity of a difference analog A; of the 2m-th order multi-
dimensional elliptic operator A* with dependent coefficients on half-spaces R* X R""1.

The positivity of differential and difference operators 2m — th order in Holder spaces and structure of
fractional spaces generated by these operators were established in [16, 17].

The structure of fractional spaces generated by positive multi-dimensional differential and difference
operators on space R” in Banach spaces has been well investigated (see [21]-[23] and the references given
therein).

In papers [18]-[20], the structure of fractional spaces generated by positive one-dimensional differential
and difference operators in Banach spaces was studied. Note that the structure of fractional spaces generated
by positive multi-dimensional differential and difference operators with local and nonlocal conditions on
Q c IR" in Banach spaces L;(€2) has not been well studied.

In the present paper, we will study the structure of fractional spaces generated by the two-dimensional
differential operator

A(t/X)u(t/ x) = —a1 (t/ x)utt (t/ x) - aZZ(tl x)uxx(tl x) + 6u(tl x)/ (3)

defined over the region R2 = R* x R with the boundary condition #(0,x) = 0, x € R. Here, the coefficients
a;i(t,x), i = 1,2 are continuously differentiable and satisfy the uniform ellipticity

a%l(t, X) + a%z(t, xX)=20>0, 4)

and ¢ > 0.
In the space L1 = L1(R%) of all absolutely integrable functions ¢(t, x) defined on R? with the norm

loll ey = | [ tote oiaeas
0 —oo
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we will consider the problem of finding the resolvent of the operator —A®*?
Ay (t,x) + Au(t,x) = f(t,x), t,x € R, (5)

Following the paper [13], passing limit when i — 0 in the special case m = 1 and n = 2, we get that there
exists the inverse operator (A®¥ + AI)~! for all A > 0 and the following formula

(A" + ADT f(t,x) = G(t,x,p,s,7) f(p,s)dsdp ©
I

is valid. Here G (¢, x, p,s, A) is the Green'’s function of differential operator (5).

Lemma 1.2. The following identities hold:

fG(O, x,p,s,A)dsdp =0,
0 —o

1
fG(t,x,p,s,A)dsdp—m(l—v(t,x)), t>0, xeR, (7)
0 —o

where v (t, x) is the solution of the following problem
—a11(t, X)0i(t, X) = an(t, )or(t, x) + (A +0) v(t, x) = 0
v(0,x) =0, x e R. 8)

We have the following estimates of the Green’s function G (t,x,p, s; A) and its derivatives

|G (txps; )\)' )

< Cexp{-a(d+ )" (|t - p| + Ix - s])} (1 +1In {1 +((A+8)" (|t = p| +lx - sl))_l})
and

|Gt (t,x,p,s,A)

G: (t,x,p,s, A)) (10)

4

< Cexp {—a A+ 6)1/2 (|t - p| + |x - sl)} (|t - p| + |x - sl)_1
hold. Here a = a(0).

Note that under the assumption (4) there exists a unique solution v (¢, x) of problem v (¢, x) (8) and the
following estimate holds:

[ (¢, )| < Cexp {-a (A +6)"/ (t] + [x])}. (11)

Here, the structure of fractional spaces generated by the operator A*) is investigated. The positivity
of At in Holder spaces is studied. The organization of the present paper is as follows. In section 2, the
positivity of A®¥) in Holder spaces is established. In section 3, the main theorem on the structure of fractional

spaces E 1 (L1 (]R_%) , A(t'x)) generated by A% is investigated. In section 4, applications on theorems on well-

posedness in L; (Wf”‘ (]Ri)) space of elliptic problems are presented. Finally, the conclusion is given.
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2. Positivity of A% in L, (IRi) Spaces

Theorem 2.1. A" is the positive operator in the Banach space Ly (]R_%)

Proof. Applying formula (6), the triangle inequality, the definition of L;-norm, we get

|(A(t,X) + AI)’lf(t,x)| < ff|G(t,x,p,s, )\)‘ ’f(p,s dsdp.
0 —o

Using estimate (9), we obtain

ff|(A(”‘ + AD7f(t, x)| dxdt

0o 0 0 o0

—u(A+5)”2(|t— [+x=s]) 1
Of_[f_i‘ 4 [1+ln{ ()\+6)1/2((t—]0(+|x—s|)]]|f(p's

Before, by Hilbert’s inequality, we have

ffe a(A+8)"2(|t=p|+1x—sl) 1+Inl1+ — 1 dxdt
) J (A +06)" (|t = p| + x =)
(i) 1
e\ 1+In{1+ ——||dudz
p+z
0

M £ —a(u+2) ff@-a(wz) 1
S)\+6Iffe dudz + Tz 1+In 1+y+z dudz
00

< 15 17l

dsdpdxdt.

A+6

IA
+
0%8

(12)

From (12) inequality that it follows

oo o0 M
A L ANV, x)| dxdt <
ff|( + ADTL£(t, x)| dx S

0 —o

Then,

s|dsdp < 2= 1],

0

s < 35
Lol = A 4+6
This finishes the proof of Theorem 2.1. [

[|A® + A1)

We will introduce the Banach space W2*(IR?) (0 < u < 1) of all functions ¢ defined on R? and satisfying
a Holder condition for which the following norm is finite:

o0 00 0

”(Pnga(lRi) = ff|(p(t x))dxdt+ffff |(P(t - /S))Ilmdxdtdsdp

0 0 t—)+| [

f f|<p<t ,x) = <p<o x>|




A. Ashyralyev, S. Akturk / Filomat 31:14 (2017), 4651-4663 4655

3. On Structure of Space E, (Ll (IRi) ,A(tf"))
In this section, we prove the following theorem on structure of space E, 1 (L1 (]R_%) ,A(t'x)) .

Theorem 3.1. E,; (L1 (]R_%),A(t"‘)) = W2(IR3) for all 0 < 2a < 1.

Proof. Assume that f € W2%(R?) . Let (f,x) € R} and A > 0 be fixed. From formulas (6) and (7) it follows
that

A (AW) + )u)_1 f(t,x)

1 rr A
—mf(t,x)+/\ffG(t,x,p,s;A)(f(t,x)—f(p,s))dsdp+mv(t,x)f(t,x). (13)
0 _

Using equation (13) and the triangle inequality, we obtain
J l‘

CrC( ~ ~ Aa+1
a+l . _
+!_£!_£/\ (G(t,x,p,S,/\)Hf(t,x) f(p,s)(dsdpdxdt+f!A_HS|v(t,x)||f(t,x)|dxdt.

0 -

tx)+A f(t x)'dxdt<ff—|f(t x)|dxdt

Consequently,
IRE
0 0 -

o0 (o) Aa
f f L [0 (01 |f (¢ 0| dxdt
0 —o

=L +DL+1. (14)

AED (A9 4 2) f(tx)|dxdd7)\§fff/\(/\ 5 |f (t, x)| dxdtdA
0 0 —o0

A% |G t,x,p,s; /\)| |f (t,x) - f(p,s)| dsdpdxdtdA

+
s
s
=
Y

+
0%8

We will estimate [;, i = 1,2, 3, separately. First, let us estimate I;. Since

f a(l a)

(o)

1
f)\(/\+1 Of

0

we get

i f f 6l <~ - @9
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Second, let us estimate I,. From estimate (9) it follows that

M1Ofbf_iOf_l/\ae—a\/m(lf—rﬂlﬂx—sl)[1+1n[1+ \/m('t—lp(ﬂx—sl)]]

X|f (t,x) = f (p,s)| dsdpdxdtdA

I

IA

=M, f f f I(t,x,p,9) |f (t, %) — f (p, 5)| dsdpdxdtdA
0 —c0 () —o
where

(]

I(t,x,p,5) = | A% @VA+o(lplts) |1 4 n |1 ! da.
(t,x,p,s) f e (+n[ + /\+6(|t—p)+|x—s|)]]

0

Since In (1 + x) < x, for all x > —1 we have that

(e8] (e8]

1
I(tx,p,s) < f/\“e_” VA(lt=pl+ie=s) g7 + f/\“e"’ VA(t=p+x=s)) da.
\/X(|t—p)+|x—s|)

0 0

Applying the change of the variable a2 VA (|t - p| +|x - sl) = Y, we can write

I(t,x,p,s) < 2 — f ey + 2 _ fe_yyzady
a2a+2 (|t - p| +]x - sl) N a2a+l (|t - p| +|x — sl) Y

2T 2o +2) . 2T 2a + 1)

2a+2

2a+2

aa+2 <|t - p| +|x — sl) a2a+l ()t - p( +lx - sl)

1

(|t o[ +1x- SIZ)a+1

<M

Therefore,

L <M, f f f f 0= f G /S)lﬂdsdpdxdtd)\SM3||f||Wm. (16)
0 00

o (fe-pf s

Third, let us estimate I3. By estimate (11), we have

00 00 0

I; < M; f f f %e—mﬂfl“xb |f (¢, )| dxdtdA
0 0 -

=M J(t,x,p,5) |f (t,x)| dxdtd A
[
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where
J(t,x,p,s) = AT VIR g
T A+1 :
0

Using the change of the variable a VA(H + x)) = Y, we obtain

00

2 2I' (2
- 2 2a fyza_le_ydyz 2 ( 0() 20 < M 20
a% (|t] + |x1) J a* (|t] + |x]) (It + Ix1)

Consequently,

f
f f |)t|+||>2a 10 < M [ .

Combining estimates (15), (16), and (17), we get
N
0 0 -

From estimate (18) yield

A (409 4 2)7 £ (¢, x)|dxdt (18)

(1 @) ”fHWZ“ :

W3A(R2) C Eqj (L1 (R}), A®Y).

Now we will proof E, 1 (L1 (]R_%) ,A(t"‘)) C Wf"‘ (]R_%) Using the definition of E, (L1 (]R_%) ,A(t"()), we obtain

fflf(t,x)ldtdx < ”fh”Ea,l(Ll(Ri),A“'*))'

0 -

By Theorem 2, A% is a positive operator in the Banach space E, 1 (L1 (]Ri),A(t'x)). Hence, for positive
operator A**) we have

f= f A (A £ A1) fdA. (19)
0

Then, using formula (6) and equation (19), we get

o

£t ) = f (A £ A1) ACD (A £ A1) £ (¢, x)dA
0

00 00 00

= f f f G(t,x,p,sA) AW (A(“‘)+/\I) f(p,s)dsdpdA. (20)
0 —00

Without loss of generality, we can put 7, i > 0. Using formula (20) and the triangle inequality yield

|f(t+7x+1) - f(t,)]

(TZ + h2)1+a
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fff|G(t+T,x+h,A)—G(t,x,/\)l)\a
A@ (72 + h2)'
0 0 -x

Thus, from inequality (21), we obtain

~rrr t+1,x+h (t,x
[ [ [ P
(T2 + h2) "
Q0 —c0 () —o0
ffﬁffff)G(t+T,x+h,p,s;A)—G(t,x,p,s;/\)|)\a
Aa (22 + p2)1H
0 —c0 0 -0 0 0 —oo

We will estimate two cases 7> + h* > 1 and 7 + h* < 1 separately. First, let us estimate 7> + h? > 1. Then

[ el

IA

469 (A + A1) £ (p, )| dsdpdd, (21)

(a0 4 1) £ (p, s)’ dsdpdAdhddxdt.

—00 72442>1
~r oo|G(1f+T,x+h,]o,s;/\)|+G(i,‘,x,p,s;)\) 4
f f f f f f f prVE A% A (A 4 AT) £ (p, s)| dsdpdAdhdrdxdt
—oo 24)2>1 0 0 —o /\ (T + )
o (] [ rromsms
24221 0 0 -0 0 —co
-1
X|1+In|1+ ! e (A(t"‘) ’ /U) f(p’S)'dxdtdsdpd)\dth
)\+6()t+f—p|+|x+h—s|) Aa (72 + h2)1H
f fffffe—a(/\+6)1/2(|t—p|+|x—s|)
24231 0 0 o0 0 —oo
) A A€ (A9 4 A1) £ ()|
X|1+In|1+ : dxdtdsdpdAdhdt
V/\+6()t—p|+|x—s|) A (12 4 p2)

< M[Il + 12]

Now, we will estimate [;, i = 1,2, separately. Let us estimate I;. By estimate (12), we obtain

I <M, ff fff T A%
J Ae (/\+(S(72+h2)+“

2+h2>1
1 [2%
ff (2 +h2)1+0‘ dhd A (A + 6)A

o0 0 ®
e[ f]
0 0 —oo \e2+h2>1

DA + ML) f (p, )| ddtdsdpd Adh

At (A(t'x) + /\I)_1 f(p, s)| dsdpdA.
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Using the change of variables 7 = rsin 6, h = rcos 0, ”>1,0<6<2n, we get

0o 00 o0 21
r 1 a
L SMgfff[ffrz(Ha)drde] /\“(/\+5)A
0 0 - \0 1

1A
SM“fffﬁAa(Am)A
0 —00

AlaM5 N
= SU S 2 OfA

At (A(t"‘) + /\I)_1 f(p,s)' dsdpdA

ne ( Al )u)_l f (p,s)| dsdpd%

AC) (A 4 A1) f”

= 204
Similarly,

L <

From estimates (22) and (23), we obtain

T I e

—00 72442>1

Second, let estimate 7% + h? < 1. By the triangle inequality, we have

[ [ e st

—00 72442<]

00 00 00 00

ff fffffm|G(t+T,x+h,p,s;)L)—G(t,x,p,s;)\)|
Aa (T2+h2)1+a

24i2<1 0 —0 0 0

XA% -

A (A 1+ 2)7 £ (p )| dsdpd dhddxds

f)Gt(t+q,x+h DS /\)|d f|Gx(t,x+y,p,s;)\)|d ‘

8 ff ffofbfi . Aa (Tz_,_hz)lm Aa (T2+h2)1+a

2+h2<1 0 —o

XAY

A0 (A + 1) £ (p, )| dsdpdAdudtdh
Using the triangle inequality, estimates (10), the following estimate
%<1, u>0,0€[0,1],

the Lagrange theorem, Hilbert’s inequality, we obtain

ff|Gt(t+q,x+h p,s; A)'dxdt<ff|Gt(t+q,x+h p.s; /\)|dxdt

0 —00 —00

4659

(22)

(23)

(24)

(25)
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o= a(A+8)" " (|t=pl+e—sl) M
ff dxdt < ——.
VA +06 |t+q—p|+|x+h—s|) A+0

—00 —00

Similarly, we get

ff|Gx(t,X+y,p,s;)\)|dxdt§—

0 -

ff st L

—00 124)2<1
o o oof T h
& |4t (a0 4 ) | dsdpdAdn
(T2 +h2)1+0( + (Tz +h2)1+a f(P/S) sap T
2+h2<1 0 0 L 0

0o 00 0

- . y B
(tx) (A EX)
ff fff (22 + )+ + (12+h2)1*”]A'A (A +/\) f(p,s)|dsdpdAdth_

T2+h2<1 0

Applying the change of variables T = rsin0, h =rcos 6, r* > 1, 0 < 6 < 21, we have

ff ff |ft+7x +h%;))1+5 (t, x)|dthdth

=00 24)2<1

2n

o0 (o) o0 1
72 (sin O + cos 0) )  At)
SMfff[ff poTE) drdo (/\ 5 'A ) (Alx +/\) f(p,s)|dsdpd/\
0 0 -0 \0 0
leff(l 2a) /\"‘(/\+6)A
0 0 -

IA

At (A(t,x) + /\)_1 f(p,s)| dsdpd%

)\1 a = 1 ar
tx) 4 edd
/\>O A +o(1- 20( bf A /\) f E,i A
2
=a- 2a 171 (26)
Combining estimates (24) and (26), we get

oooooooo|f(if+7x+h) f(t,) M

f f f f (12 + h2)1*e dhdvdxdt < 52 (1-2a) If Eur (27)

0 0

From estimate (27), we obtain
Eon (L1 (R2), A"Y) c Wi*(R2).
This finishes the proof of Theorem 3.1. [

From the positivity of an elliptic operator A®*) in the Banach space Li(IR2) and estimate (1) it follows
the positivity of this operator in Banach spaces W3*(IR?).
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4. Applications

In this section, we consider some applications of Theorem 3.1. First, we will consider the boundary
value problem for the elliptic equation

Pu(y,x1,x2) u(y,x1,x2) Pu(y,a1x2)
_—gyz - all(xll xZ) gxz_ - a22(x1,x2)gT + Gu(y, .X'l,XZ)
1

= f(y,x1,x2), 0<y<T, x1 € R, x2 €R,
fly y 08)

u(OI xlrx2) = ﬁo(xlz x2)/ M(T, xl/x2) = ll)(xl/ xZ)l X1 € R+/ X € R/

u(y101x2) = 0/ 0 S]/S T, X2 e R.

Here, a11(x1,x2), ax(x1,%2), @(x1,%2), ¥(x1,%2), and f(y,x1,x;) are sufficiently smooth functions and they
satisfy every compatibility conditions which guarantee problem (28) has a smooth solution u(y, x1, x2).
Assume that the assumption of the uniform ellipticity holds.

Theorem 4.1. Let 0 < 2« < 1. Then, for the solution of boundary value problem (28), we have the following coercive
stability inequality

||uyy||L1(w§w(1Ri)) + [, ||L1(wffX(R§)) + ||Mx2x2||L1(wfﬂ(R3))
< M(O‘) [”@hh”Wf%]Ri) + ||(pX2X2||W%“(]Ri) + ||1,bx1x1||w%a(11{3)

H P llweere) + Hf”Ll(Wf‘*(]RE))] y

where M(a) is independent of ¢,y and f.

The proof of Theorem 4.1 is based on Theorem 3.1 on the structure of the fractional spaces E, 1 (L1 (IR_%) ,AEY ),

Theorem 2.1 on the positivity of the operator A“¥, on the following theorems on coercive stability of bound-
ary value for the abstract elliptic equation and on the structure of the fractional space E/ | = E41(E, A'/?)
which is the Banach space consists of those v € E for which the norm

(e8]

— 2%
M%—IA

0

AV (A +A2) || d%

is finite.

Theorem 4.2. ([21]) The spaces E,(E, A) and Eéal(Al/z, E) coincide for any 0 < a < %, and their norms are
equivalent.

Theorem 4.3. ([3]) Let A be positive operator in a Banach space E and f € L1([0, T] ,E"m) (0 <a<1). Then, for
the solution of the nonlocal boundary value problem

—u"(t) + Au(t) = f(t), 0<t<T,
(29)
u©0) =¢, u(T) =y
in a Banach space E with positive operator A the coercive inequality

"Iy o117, + AUl o1 E, )
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M
< MI|I|A . +|A PR S ,
< MA@l + 1AV, + =Sl

holds.
Second, we will consider the nonlocal-boundary value problem for the elliptic equation

Pu(y,x1,x%2) P%u(y,x1,x2) Pu(y,x1,%2)
—ar - —an(, x2) =55 — an(xy, X2) =57 + ou(y, X1, %2)
1 2

= ( ,xl,xz), O<y< T, X1 €]R+, X2 E]R,
fly y 30)

u(0,x1,x2) = w(T, x1,x2), uy(0,x1,%2) = uy(T,x1,x2), x1 € RY, 12 € R,

u(y,0,x)=0,0<y<T, xR

Here, a11(x1, x2), ax(x1,x2), and f(y,x1,x2) are sufficiently smooth functions and they satisfy every compatibility
conditions which guarantee problem (30) has a smooth solution u(y,x1,x2). Assume that the assumption of the
uniform ellipticity holds.

Theorem 4.4. Let 0 < 2w < 1. Then, for the solution of boundary value problem (30), we have the following coercive
stability inequality

gyl waeqreyy + Wbl owzeray) + ko Ny vz ez

< M(Of)”f”Ll(wfa(]Ri))

where M(«) is independent of f.

The proof of Theorem 4.4 is based on Theorem 3.1 on the structure of the fractional spaces E, 1 (L1 (IR_%) , A(t'x)),
Theorem 2.1 on the positivity of the operator A*¥, Theorem 5 on the structure of the fractional space

E’ | = Es1(E,AY?) and on the following theorem on coercive stability of nonlocal boundary value for the

abstract elliptic equation.

Theorem 4.5. ([27]) Let A be positive operator in a Banach space E and f € C([0,T],E ;) (0 < a <1). Then, for
the solution of the nonlocal boundary value problem '

—u"(t) + Au(t) = f(t), 0< t<T,
(31)
u(0) = w(T), u'(0) = u'(T)

in a Banach space E with positive operator A the coercive inequality

M
"
Nz, o1 e, ) + AU o 11E, ) < mll fllzqomE,,)

holds.

5. Conclusion

In the present article, the structure of the fractional spaces E, (L1 (Rﬁ),A(t’x))generated by the two-

dimensional elliptic differential operator A¢¥ is investigated. The positivity of this operator A**) in Banach
spaces is established. Of course, the difference operator A; approximates of the operator At can be
presented. The positivity of this operator A} in Banach spaces can be established.
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