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Abstract. A bounded operator T on a finite or infinite–dimensional Hilbert space is called a disjoint range
(DR) operator if R(T) ∩ R(T∗) = {0}, where T∗ stands for the adjoint of T, while R(·) denotes the range of an
operator. Such operators (matrices) were introduced and systematically studied by Baksalary and Trenkler,
and later by Deng et al. In this paper we introduce a wider class of operators: we say that T is a compatible
range (CoR) operator if T and T∗ coincide on R(T) ∩ R(T∗). We extend and improve some results about DR
operators and derive some new results regarding the CoR class.

1. Motivation and Preliminaries

It is well-known that interesting properties of a real or complex square matrix A can be described
through certain geometric relations between its column space and the column space of its adjoint matrix
A∗. For example, the column spaces R(A) and R(A∗) coincide if and only if the matrix A commutes with its
Moore-Penrose generalized inverse A†. Such matrices are known as EP matrices, and they were the subject
of many research papers (see also [6, Chapter 4]). Quite opposite, if R(A) ⊕ R(A∗) is equal to whole space,
then and only then AA† − A†A is nonsingular (hereafter, ⊕ denotes the direct, not necessarily orthogonal,
sum). Such matrices are called co-EP matrices, and they were introduced and studied by Benı́tez and
Rakočević [7]. Werner [20] studied the pairs of matrices A and B with conveniently positioned column
spaces: R(A)∩R(B) = {0} and R(A∗)∩R(B∗) = {0}. It turns out that such matrices are particulary useful with
joint systems of equations Ax = a, Bx = b, etc.

As a generalization of a class of co-EP matrices, Baksalary and Trenkler [5] introduced a new class of
matrices which merits its own name: disjoint range matrices. A matrix A ∈ Cn×n is said to be a disjoint range
(or DR) matrix if R(A) ∩ R(A∗) = {0}. They proved many properties of such matrices, of their functions and
appropriate Moore-Penrose inverses. However, their study was based on linear algebra techniques, which
are not appropriate for infinite-dimensional Hilbert spaces. The study of DR matrices, i.e. operators on
arbitrary Hilbert spaces was conducted by Deng et al. [10]. Among others, the authors in [10] studied the
classes of operators described in the following definition.

Definition 1.1. LetH be a Hilbert space, and T a bounded linear closed range operator onH . Then T is:

1) DR if R(T) ∩ R(T∗) = {0};
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2) EP if R(T) = R(T∗);

3) SR if R(T) + R(T∗) = H ;

4) co-EP if R(T) ⊕ R(T∗) = H ;

5) weak-EP if P
R(T)PR(T∗) = P

R(T∗)PR(T),

where PM denotes the orthogonal projection onto a closed subspaceM.

However, one very important class of operators is not fully contained in the union of the classes from
Definition 1.1. Namely, if P and Q are two orthogonal projections on a Hilbert space H , the operator PQ
need not to belong to any of the mentioned classes, and not only because its range need not to be closed
(see Example 3.4). This is our main motivation to extend the DR class in the following way. Note that we
do not ask for T to have a closed range, although most of the presented results will deal with closed range
operators.

Definition 1.2. Let H be a Hilbert space, and T a bounded linear operator on H . We say that T is a compatible
range operator (CoR) if T and T∗ coincide on the set R(T) ∩ R(T∗).

The second reason for such generalization comes from the results of [11–14] which describe different
properties of operators A and B which coincide on R(A∗) ∩ R(B∗) (a generalization of Werener’s condition
of weak complementarity, see [20]). Accordingly, we will present different properties of CoR operators,
regarding range additivity, some additive results for the Moore-Penrose inverse, etc. We also extend and
improve some properties of DR operators, and in the end we give a discussion regarding operators that are
products of orthogonal projections.

In the rest of this section we introduce some notation which is not yet mentioned, and we recall some
notions. Throughout the paper, H will stand for an arbitrary complex Hilbert space, that can also be
infinite-dimensional. The algebra of bounded operators on H will be denoted by B(H), and if A ∈ B(H)
then N(A) stands for the null-space of A. If H = M⊕N , whereM and N are closed subspaces, we say
that this decomposition completely reduces A ifM and N are invariant subspaces for A. In that case, A is
an isomorphism if and only if the reductions of A onM and N are both isomorphisms. We writeM	N
to denoteM∩N⊥. If A ∈ B(H) is such that R(A) is closed, then the following system of equations:

AXA = A, XAX = X, (AX)∗ = AX, (XA)∗ = XA,

has a unique solution A†, which is called the Moore-Penrose generalized inverse of A. In that case AA† is
the orthogonal projection onto R(A) and A†A is the orthogonal projection onto R(A∗).

If for A ∈ B(H) stands R(A) ⊕N(A) = H then the following system of equations has a unique solution:
AXA = A, XAX = X, XA = AX. Such A is called group-invertible, and the solution of this system is
called the group inverse of A. In [10], the list of classes of operators to be studied contains the group-
invertible operators as well. We did not include it in Definition 1.1 since this class is not defined through
interrelation between the ranges of an operator and its adjoint. We should however mention that the
product of two orthogonal projections, provided the range is closed, is indeed group-invertible (see [9,
Theorem 4.1]). We also wish to emphasize that we abbreviated compatible range as CoR, and not as CR, since
CR is commonly used for the class of closed range operators.

2. CoR Operators

The main framework for studying DR matrices and DR operators was established through certain space
and operator decompositions. In [5] the Hartwig-Spindelböck decomposition of matrix is used (see [17]),
and in case of operators on arbitrary Hilbert space, the appropriate operator decomposition is used: if
T ∈ B(H) then

T =

[
A B
0 0

]
:
[
R(T)
N(T∗)

]
→

[
R(T)
N(T∗)

]
. (1)
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The reader is referred to [15, Lemma 1.2] and the discussion therein for further properties of such decom-
positions.

If T is a closed range operator, [10, Theorem 3.5] gives necessary and sufficient conditions for T to be
DR, SR and co-EP operator, under the additional assumption that R(TT† − T†T) is closed (which will be
the subject of Lemma 2.2). The main tool in that proof is the famous Halmos’ two projections theorem (see
[8, 16]). However, this assumption is dispensable if we apply a more direct approach.

Theorem 2.1. Let T ∈ B(H) be a closed range operator, with operators A and B defined as in (1). Then:

(1) T is DR if and only if R(B) = R(T);

(2) T is SR if and only if R(B∗) = N(T∗);

(3) T is co-EP if and only if B is invertible.

Proof. (1) Since

T∗ =

[
A∗ 0
B∗ 0

]
:
[
R(T)
N(T∗)

]
→

[
R(T)
N(T∗)

]
then R(T) ∩ R(T∗) = {0} if and only if for every x ∈ R(T) the implication B∗x = 0 =⇒ A∗x = 0 holds. This is
equivalent with R(A) ⊆ R(B), which is equivalent with R(A) + R(B) = R(B).

The subspace R(T) is closed and R(T) = R(A) + R(B), so we have R(A) + R(B) ⊆ R(A) + R(B) = R(T) =

R(T) = R(A) + R(B). Hence R(A) + R(B) = R(B) if and only if R(B) = R(T) and the statement (1) is proved.

(2) First let us prove thatR(T)+R(T∗) = R(T)⊕R(B∗). For every x ∈ R(T) we have that B∗x = −A∗x+(A∗x+B∗x),
where A∗x ∈ R(T) and A∗x + B∗x ∈ R(T∗). Thus R(B∗) ⊆ R(T) +R(T∗) and so R(T)⊕R(B∗) ⊆ R(T) +R(T∗). The
other implication is clear, sinceR(T∗) ⊆ R(T)⊕R(B∗). ThusH = R(T)+R(T∗) if and only ifH = R(T)⊕R(B∗),
and R(B∗) ⊆ N(T∗), so this is equivalent with R(B∗) = N(T∗).

(3) If T is co-EP then T is DR and SR, so R(B) = R(T) and R(B∗) = N(T∗). Thus R(B∗), i.e. R(B) is
closed, R(B) = R(T) andN(B) = R(B∗)⊥ = {0}, showing that B is invertible.

If B is invertible, from (1) and (2) we conclude that T is in the same time DR and SR, so it is co-EP.

Lemma 2.2. If T ∈ B(H) is a closed range operator, thenR(TT†−T†T) is closed if and only ifR(T)+R(T∗) is closed,
if and only if R(B) is closed, where B is as in (1).

Proof. Operators TT† and T†T are orthogonal projections, so from [18, Lemma 2.4] we have thatR(TT†−T†T)
is closed iff R(TT†) + R(T†T) is closed, iff R(T) + R(T∗) is closed.

As in the proof of statement (2) in Theorem 2.1 we have that R(T) + R(T∗) = R(T) ⊕ R(B∗). Since R(T) is
closed and R(B∗) ⊆ (R(T))⊥ we have that R(T) ⊕ R(B∗) is closed iff R(B∗) is closed, i.e. iff R(B) is closed.

It is clear from Lemma 2.2 that [10, Theorem 3.5, (i)] follows from Theorem 2.1, while the other statements
of [10, Theorem 3.5] hold verbatim without additional assumptions.

A natural connection between CoR and DR operators is described by the following statements.

Lemma 2.3. Let T ∈ B(H) be a closed range CoR operator. Then T(R(T) ∩ R(T∗)) = R(T) ∩ R(T∗), T(R(T∗) 	
(R(T) ∩ R(T∗))) = R(T) 	 (R(T) ∩ R(T∗)), and consequently, T((R(T) ∩ R(T∗))⊥) ⊆ (R(T) ∩ R(T∗))⊥.

Proof. Follows directly from [11, Lemma 2.1], applied to T and T∗.

Theorem 2.4. Let T ∈ B(H) be a closed range CoR operator. There exists a Hilbert space H1, a bounded linear
surjection π : H →H1 and an operator T1 ∈ B(H1) such that:

(1) T1 has a closed range and it is DR;
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(2) For every x ∈ H , π(Tx) = T1π(x), and π(T∗x) = T∗1π(x);

(3) N(π) = R(T) ∩ R(T∗);

(4) For every x ∈ H , ||π(x)|| = ||(I − PR(T)∩R(T∗))x||.

If π satisfies these conditions, andM is a subspace ofH such that R(T) ∩ R(T∗) ⊆ M thenM is closed inH if and
only if π(M) is closed inH1.

Proof. Let H1 be the orthogonal complement of R(T) ∩ R(T∗) in H and π : H → H1 defined as π(x) =
(I − PR(T)∩R(T∗))x. In that case π is a bounded linear surjection which satisfies (3) and (4).

Usgin Lemma 2.3 it is not difficult to see that the operator T1 : H1 →H1 defined as T1x = Tx, for every
x ∈ H1, is a well–defined operator, with a closed range, satisfying all the given conditions. This is easily
seen from T((R(T) ∩ R(T∗))⊥) ⊆ (R(T) ∩ R(T∗))⊥, R(T1) = π(R(T)) = R(T) 	 (R(T) ∩ R(T∗)), etc.

To prove the last statement, note that ifM is a closed subspace of H such that R(T) ∩ R(T∗) ⊆ M and
N = (R(T) ∩ R(T∗))⊥ ∩ M, then M = (R(T) ∩ R(T∗)) ⊕ N , N⊥R(T) ∩ R(T∗) and according to (4), π is an
isometry on N . SoM is closed iff N is closed, iff π(N) is closed, iff π(M) is closed, since according to (3)
we have π(N) = π(M).

Remark 2.5. The converse of Theorem 2.4 is not true: if there exist suchH1, π and T1, the operator T need not to be
CoR. However, in that case we can conclude that T(R(T) ∩ R(T∗)) ⊆ R(T) ∩ R(T∗), and similarly for T∗, and so the
decompositionH = (R(T) ∩ R(T∗)) ⊕ (R(T) ∩ R(T∗))⊥ completely reduces both T and T∗. This further yields that T
is an isomorphism on R(T) ∩ R(T∗) although it is not necessarily self–adjoint.

In order to state the characterization of CoR operators similar to that in Theorem 2.1, let:

P
R(T)∩R(T∗) =

[
P 0
0 0

]
:
[
R(T)
N(T∗)

]
→

[
R(T)
N(T∗)

]
, (2)

where P ∈ B(R(T)) is the orthogonal projection with the rangeR(T)∩R(T∗) and the null-spaceR(T)	R(T)∩
R(T∗). Also, if R(T) is closed and A and B defined as in (1), then AA∗ + BB∗ ∈ B(R(T)) is invertible, and as in
[10] we denote ∆ = (AA∗ + BB∗)−1.

Theorem 2.6. Let T ∈ B(H) be an operator with A and B defined as in (1). The operator T is CoR if and only if A
and A∗ coincide on R(T) ∩ R(T∗) and R(T) ∩ R(T∗) ⊆ N(B∗). In that case, we have:

(1) PAP = AP = A∗P = PA∗P. If R(T) is closed, then also P∆P = ∆P;

(2) N(B∗) = R(T) ∩ R(T∗), i.e. R(B) = R(T) 	 (R(T) ∩ R(T∗)).

Proof. The operator T is CoR if and only if (T − T∗)P
R(T)∩R(T∗) = 0, i.e.[

(A − A∗)P 0
−B∗P 0

]
= 0.

From here the first statement of the theorem follows directly.
Suppose now that T is a CoR operator.

(1) We already have AP = A∗P, and R(P) ⊆ N(B∗). If x ∈ R(P) = R(T) ∩ R(T∗) is arbitrary, then:

T∗x =

[
A∗ 0
B∗ 0

] [
x
0

]
=

[
A∗x

0

]
∈ R(T).

Since T∗x ∈ R(T) ∩ R(T∗), we have that A∗x ∈ R(T) ∩ R(T∗). This proves PA∗P = A∗P, but A∗P = AP, so
PAP = AP also. From here we also obtain (I − P)A(I − P) = A(I − P), and (I − P)A∗(I − P) = A∗(I − P), so
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R(T)	(R(T)∩R(T∗)) is also invariant for A and A∗. The equality B∗P = 0 impliesR(B) ⊆ R(T)	(R(T)∩R(T∗)).
Finally, if R(T) is closed, we see that the subspaces R(T)∩R(T∗) and R(T)	 (R(T)∩R(T∗)) are invariant also
for AA∗ + BB∗ which is an isomorphism. Therefore P∆P = ∆P.
(2) If x ∈ R(T) 	 (R(T) ∩ R(T∗)) is such that B∗x = 0, then T∗x ∈ R(T), i.e. T∗x ∈ R(T) ∩ R(T∗). Therefore,
TT∗x ∈ R(T) ∩ R(T∗), and so 0 = 〈x,TT∗x〉 = ||T∗x||2, giving x = 0. ThusN(B∗) = R(T) ∩ R(T∗).

In order to give a formula for (T + T∗)† when T is CoR, we first prove the following result regarding
range additivity, explaining when does (T + T∗)† exist (see also [11, Theorem 2.4]).

Theorem 2.7. Let T ∈ B(H) be a closed range CoR operator. ThenR(TT†−TT†) is closed if and only ifR(T)+R(T∗)
is closed if and only if R(T + T∗) is closed. In that case R(T) + R(T∗) = R(T + T∗).

Proof. The first equivalence follows from Lemma 2.2, so we prove the second equivalence.
Suppose first thatR(T)+R(T∗) is closed. LetH1, π and T1 be defined as in the proof of Theorem 2.4. Then

T1 is a closed range DR operator. Note thatR(T1)⊕R(T∗1) = π(R(T)+R(T∗)), andR(T)∩R(T∗) ⊆ R(T)+R(T∗),
so using Theorem 2.4 we have thatR(T1)⊕R(T∗1) is also closed. According to [2, Theorem 3.10], we have that
R(T1 + T∗1) = R(T1) ⊕ R(T∗1), so R(T1 + T∗1) is also closed. We can easily prove that R(T1 + T∗1) = π(R(T + T∗)),
and since T is CoR, R(T)∩R(T∗) = T(R(T)∩R(T∗)) ⊆ R(T + T∗) (Lemma 2.3). Thus, again from Theorem 2.4
we get that R(T + T∗) is also closed.

Suppose now that R(T + T∗) is closed. From [11, Corollary 2.1] we have that R(T + T∗) = R(T) + R(T∗),
so R(T) + R(T∗) is also closed. This also proves the second statement of the theorem.

Thus the range additivity R(T + T∗) = R(T) +R(T∗) which appears in [10, Theorem 3.9 (ii)] is also present
in the case when operators are DR and not necessarily SR. For matrices, this was noted in [5, p. 1229], but
the technique used therein relies on notions which are not accessible in infinite-dimensional Hilbert spaces.

Theorem 2.8. If T is a closed range CoR operator and if any of the (equivalent) conditions is satisfied: R(B) is closed,
R(T + T∗) is closed, R(T) + R(T∗) is closed, or R(TT† − T†T) is closed, then:

(T + T∗)† =

[
1
2 A∗∆P (B∗)†

B† −B†(A + A∗)(B∗)†

]
, (3)

where operators A,B,∆ and P are defined as in the previous discussion.

Proof. Denote by X the operator on the right in (3). By direct multiplication, we obtain:

(T + T∗)X =

[
1
2 (A + A∗)A∗∆P + BB† (A + A∗)(B∗)† − BB†(A + A∗)(B∗)†

1
2 B∗A∗∆P (B∗)(B∗)†

]
.

From Theorem 2.6 we have B∗P = 0, BB† = I−P, P(B∗)† = 0, P(A+A∗) = (A+A∗)P = 2AP, AA∗P = (AA∗+BB∗)P,
∆P = P∆P. Hence:

1
2

(A + A∗)A∗∆P + BB† =
1
2

(A + A∗)PA∗P∆P + I − P

= AA∗P∆P + I − P
= (AA∗ + BB∗)P∆P + I − P
= I,

also (A+A∗)(B∗)†−BB†(A+A∗)(B∗)† = (A+A∗)(B∗)†− (I−P)(A+A∗)(B∗)† = 0, and 1
2 B∗A∗∆P = 1

2 B∗PA∗P∆P = 0.
So we conclude:

(T + T∗)X =

[
I 0
0 PR(B∗)

]
:
[
R(T)
N(T∗)

]
→

[
R(T)
N(T∗)

]
.

From Theorem 2.7 and the proof of statement (2) in Theorem 2.1 we have that R(T + T∗) = R(T) + R(T∗) =
R(T)⊕R(B∗). So (T + T∗)X is the orthogonal projection onto R(T + T∗). It is also true that X is self–adjoint. To
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see this, note that ∆ is self–adjoint and that A∗P = PA∗ = PA∗P commutes with (AA∗+BB∗)P = P(AA∗+BB∗) =
P(AA∗ + BB∗)P, and so it commutes with ∆P. Thus A∗∆P = ∆A∗P = ∆AP = P∆A. Hence, X(T + T∗) is also
the orthogonal projection onto R(T + T∗). This proves X = (T + T∗)†.

Formula (3) generalizes the result from [10, Theorem 3.9] regarding the formula for (T + T∗)†, and we
have T(T + T∗)†T = T − 1

2 PR(T)∩R(T∗)TPR(T)∩R(T∗), while 2T(T + T∗)†T∗ = 2T∗(T + T∗)†T = PR(T)∩R(T∗)TPR(T)∩R(T∗).
In fact, the last expression gives the parallel sum of T and T∗ as defined in [1], and in the same time the
infimum of T and T∗ with respect to the star partial order on B(H) (see [11]).

There are few results from [5] for DR matrices that can be easily proved for CoR operators in the Hilbert
space setting. For example, [5, Theorem 4, Theorem 5] are also true for CoR operators, and [5, Theorem 8]
can be extended using [11, Theorem 2.4]. However, we can not have elegant characterizations as the one in
[5, Theorem 1], since the CoR class is not defined only by mutual positioning of the ranges of appropriate
operators. When we make a transition from operators T and T∗ to the orthogonal projections P = P

R(T) and
Q = P

R(T∗), we lose the information of the way T and T∗ act on these subspaces which determines whether
T is CoR.

3. Products of Orthogonal Projections

If A andB are two classes of operators fromB(H) there is a natural problem of characterizing operators
which belong to the class A · B = {A · B | A ∈ A, B ∈ B}, or to the class A∞ =

⋃
k A

k, where Ak stands for
A · A · ... · A. Such problems are commonly known as factorization problems, and the reader is referred to
[3, 9, 19, 21] for some prominent results and further reference on this subject.

LetP denote the class of all orthogonal projections fromB(H). We have the following results regarding
the factors from P.

Theorem 3.1. Let P,Q ∈ P and T = P1P2...Pk such that P1,P2, ...,Pk ∈ {P,Q}. Then T is a CoR operator.

Proof. Since P and Q are idempotents, we can exchange multiple consecutive appearances of P, i.e. Q, with
only one P, i.e. Q. Thus we can suppose that T = PQPQ...S or T = QPQP...S where S is equal to P or Q.

Suppose that T = PQPQ...S. If S = P, then T = T∗ and the assertion follows. If S = Q, then T∗ = QPQP...P,
so R(T) ⊆ R(P) = R(P), R(T∗) ⊆ R(Q) and R(T) ∩ R(T∗) ⊆ R(P) ∩ R(Q). On the other hand, it is clear that
R(P) ∩ R(Q) ⊆ R(T) ∩ R(T∗) ⊆ R(T) ∩ R(T∗). Thus R(T) ∩ R(T∗) = R(P) ∩ R(Q) and both T and T∗ are equal
to identity on R(T) ∩ R(T∗). The case when P = QPQP...S is, of course, the same.

Corollary 3.2. The class P2 belongs to the class of CoR operators.

Proof. Follows directly from Theorem 3.1.

Corollary 3.3. If P and Q are orthogonal projections such thatR(PQ · · ·PQ) is closed, thenR(PQ · · ·PQ+QP · · ·QP)
is closed if and only if R(PQ · · ·PQ) + R(QP · · ·QP) is closed. In that case R(PQ · · ·PQ) + R(QP · · ·QP) =
R(PQ · · ·PQ + QP · · ·QP). (Here PQ...PQ and QP...QP have the same length.)

Proof. Directly from Theorem 3.1 and Theorem 2.7.

Note that Corollary 3.3 generalizes [4, Corollary 4] in infinite-dimensional setting and for products of
arbitrary length.

Example 3.4. Let us show that there exists T ∈ P2 such that T is not in any of the classes described in Definition
1.1. LetH = C4 and:

P =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , Q =


3
4 0

√
3

4 0
0 1 0 0
√

3
4 0 1

4 0
0 0 0 0

 .
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Then P,Q ∈ P, while for T = PQ ∈ P2 we have:

T =


3
4 0

√
3

4 0
0 1 0 0
0 0 0 0
0 0 0 0

 , T∗ =


3
4 0 0 0
0 1 0 0
√

3
4 0 0 0
0 0 0 0

 .
We readily check that T does not belong to any of the classes EP, DR, SR, co-EP, weak-EP.

Example 3.5. We will show now that the class P3 is not contained in the CoR class. LetH = C4 and:

P =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , Q =


1
2 0 0 1

2
0 1 0 0
0 0 0 0
1
2 0 0 1

2

 , R =


1 0 0 0
0 3

4 0
√

3
4

0 0 1 0
0

√
3

4 0 1
4

 .
Then P,Q,R ∈ P, while for T = PQR ∈ P3 we have:

T =


1
2

√
3

8 0 1
8

0 3
4 0

√
3

4
0 0 0 0
0 0 0 0

 , T∗ =


1
2 0 0 0
√

3
8

3
4 0 0

0 0 0 0
1
8

√
3

4 0 0

 .
We can now check that x = (1, 0, 0, 0) ∈ R(T) ∩ R(T∗), however Tx , T∗x, and so T is not CoR.
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