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Abstract. The aim of this work is to study optimality conditions for nonsmooth minimax programming
problems involving locally Lipschitz functions by means of the idea of convexifactors that has been used
in [J. Dutta, S. Chandra, Convexifactors , generalized convexity and vector optimization, Optimization,
53 (2004) 77-94]. Further, using the concept of optimality conditions, Mond-Weir and Wolfe type duality
theory has been developed for such a minimax programming problem. The results in this paper extend the
corresponding results obtained using the generalized Clarke subdifferential in the literature.

1. Introduction

Minimax programming problems have been the subject of immense interest in the past few years.
Some of the basic results of minimax programming problems can be found in books by Danskin [9] and
Demyanov and Molozemov [10]. It is well known that optimality and duality lay down the foundation
of algorithms for a solution of an optimization problem and hence constitute an important portion in the
study of mathematical programming. The necessary and sufficient conditions for generalized minimax
programming were first developed by Schmitendorf [23]. After the work of Schmitendorf [23], many
researchers have worked in this direction, like Ahmad and Husain [1], Ahmad et al. [2], Antczak [5], Lai et
al. [16], Jayswal et al. [14], Yang and Hou [25], etc.

As is well known, the notion of subdifferentiability plays a fundamental role in the study of nonsmooth
optimization. In recent years, an incredible arrangement of research in nonsmooth analysis has focused on
the growth of generalized subdifferentials that give sharp extremality conditions and good calculus rules for
nonsmooth functions. A fairly extensive list of references pertaining to several aspects of these generalized
subdifferentials and their importance in nonsmooth analysis and optimization is given in [7, 11, 13, 22, 24].

Very recently, the notion of convexifactor was introduced for extended real-valued functions by Jeyaku-
mar and Luc [15] and was further explored by Dutta and Chandra [12, 13] and Li and Zhang [18] to extend
various results in nonsmooth analysis and optimization. Convexifactors are important tools of nonsmooth
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analysis, as they are subsets of many well known subdifferentials such as the subdifferentials of Clarke [7],
Michel-Penot [21], Ioffe-Morduchovich [22], and Treiman [24]. For more information on convexifactors and
their application in optimization, consult [11, 17, 19].

It is clear from Dutta and Chandra [12, 13], Jeyakumar and Luc [15] that, the convexifactors are not nec-
essarily convex or compact. These relaxations allow applications to a large class of nonsmooth continuous
functions. Therefore, it should be useful and interesting to study optimality conditions for various nons-
mooth optimization problems. In this aspect, we consider the following nonsmooth minimax programming
problem to discuss optimality conditions and duality theory in terms of convexifactors:

(P) min
x∈Rn

max
1≤i≤k

fi(x)

subject to 1 j(x) ≤ 0, j = 1, 2, ...,m,

where fi : Rn
→ R, i ∈ I = {1, 2, ..., k}, 1 j : Rn

→ R, j ∈ J = {1, 2, ...,m}, are locally Lipschitz functions on Rn. The
region where the constraints are satisfied (feasibility region) is given by D = {x ∈ Rn : 1 j(x) ≤ 0, j = 1, ...,m}.

The rest of the paper is written as follows: Section 2 contains the preliminaries and basic definitions
which are used in the sequel. Section 3 is devoted to the optimality conditions. In Section 4 and 5, we
associate two duals, namely Mond-Weir type dual and Wolfe type dual, to the problem (P) and derive
duality results. Finally, conclusion and further developments are given in Section 6.

2. Preliminaries

Let Rn be the n-dimensional Euclidean space and Rn
+ be its non-negative orthant. Throughout this paper,

we shall be concerned with finite-dimensional spaces and for any A ⊂ Rn, the convex hull of A is denoted
by co(A).

In this section, we recall some basic definition and lemmas, and present some auxiliary results which
will be helpful in proving our mains results in the sequel of the paper.
Let f : Rn

→ R ∪ {+∞}, be an extended real-valued function, then

f−(x, d) = lim
t→0+

inf
f (x + td) − f (x)

t
,

f +(x, d) = lim
t→0+

sup
f (x + td) − f (x)

t
denote, respectively, the lower and upper Dini directional derivatives of f at x ∈ Rn in the direction d ∈ Rn.

Now, we begin with the definitions of convexifactor given by Dutta and Chandra [13].

Definition 2.1. A function f : Rn
→ R∪{+∞} is said to admit a lower convexifactor ∂L f (x) at x ∈ Rn if ∂L f (x) ⊂ Rn

is closed and
f +(x, d) ≥ inf

x∗∈∂L f (x)
〈x∗, d〉 , ∀d ∈ Rn,

where 〈., .〉 denotes the inner product of the vectors.

Definition 2.2. A function f : Rn
→ R ∪ {+∞} is said to admit an upper convexifactor ∂U f (x) at x ∈ Rn if

∂U f (x) ⊂ Rn is closed and
f−(x, d) ≤ sup

x∗∈∂U f (x)
〈x∗, d〉 , ∀d ∈ Rn.

A closed set ∂C f (x) is said to be a convexifactor of f at x if it is both an upper and lower convexifactor
of f at x.

Definition 2.3. A function f : Rn
→ R ∪ {+∞} is said to admit a lower regular convexifactor ∂L f (x) at x ∈ Rn if

∂L f (x) ⊂ Rn is closed and

f−(x, d) = inf
x∗∈∂L f (x)

〈x∗, d〉 , ∀d ∈ Rn.
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Definition 2.4. A function f : Rn
→ R ∪ {+∞} is said to admit an upper regular convexifactor ∂U f (x) at x ∈ Rn if

∂U f (x) ⊂ Rn is closed and

f +(x, d) = sup
x∗∈∂U f (x)

〈x∗, d〉 , ∀d ∈ Rn.

Remark 2.5. Since f−(x, d) ≤ f +(x, d), for all d ∈ Rn, an upper (lower) regular convexifactor is a convexifactor of f
at x. But the converse is not true (see, Dutta and Chandra [12]).

Remark 2.6. [18] (i) Let ∂C f (x) be a convexifactor of f at x. Then for all λ ∈ R, λ∂C f (x) is a convexifactor of λ f at
x.
(ii) Let ∂U f (x) be an upper regular convexifactor of f at x. Then for all λ > 0, λ∂U f (x) is a upper regular convexifactor
of λ f at x.
(iii) Let ∂L f (x) be a lower regular convexifactor of f at x. Then for all λ > 0, λ∂L f (x) is a lower regular convexifactor
of λ f at x.

Lemma 2.7. [15] Assume that the functions f1, f2 : Rn
→ R admit upper convexifactor ∂U f1(x) and ∂U f2(x) at x,

respectively, and that one of the convexifactor is upper regular at x. Then, ∂U f1(x)+∂U f2(x) is an upper convexifactor
of f1 + f2 at x.

Similarly, if one of the convexifactors is lower regular at x. Then, ∂L f1(x) + ∂L f2(x) is a lower convexifactor of
f1 + f2 at x.

From now on, whenever we say that f admits a convexifactor at x, we shall always denote it by ∂C f (x).
Along the lines of Dutta and Chandra [12] and Li and Zhang [18], we now give the definitions of ∂C-convex,
strict ∂C-convex, ∂C-pseudoconvex, strict ∂C-pseudoconvex and ∂C-quasiconvex functions by using the
concept of convexifactors. Assume that f : Rn

→ R admits a convexifactor ∂C f (x̄) at x̄ ∈ Rn.

Definition 2.8. A function f : Rn
→ R is said to be ∂C-convex at x̄ ∈ Rn if, for all x ∈ Rn,

f (x) − f (x̄) ≥ 〈ξ, x − x̄〉 , ∀ξ ∈ ∂C f (x̄).

If strict inequality holds in above definition for x , x̄, then f is said to be strict ∂C-convex at x̄.

Definition 2.9. A function f : Rn
→ R is said to be ∂C-pseudoconvex at x̄ ∈ Rn if, for all x ∈ Rn,

f (x) < f (x̄)⇒ 〈ξ, x − x̄〉 < 0, ∀ξ ∈ ∂C f (x̄),

equivalently
〈ξ, x − x̄〉 ≥ 0⇒ f (x) ≥ f (x̄), ∀ξ ∈ ∂C f (x̄).

Definition 2.10. A function f : Rn
→ R is said to be strict ∂C-pseudoconvex at x̄ ∈ Rn if, for all x ∈ Rn, x , x̄,

f (x) ≤ f (x̄)⇒ 〈ξ, x − x̄〉 < 0, ∀ξ ∈ ∂C f (x̄),

equivalently
〈ξ, x − x̄〉 ≥ 0⇒ f (x) > f (x̄), ∀ξ ∈ ∂C f (x̄).

Definition 2.11. A function f : Rn
→ R is said to be ∂C-quasiconvex at x̄ ∈ Rn if, for all x ∈ Rn,

f (x) ≤ f (x̄)⇒ 〈ξ, x − x̄〉 ≤ 0, ∀ξ ∈ ∂C f (x̄),

equivalently
〈ξ, x − x̄〉 > 0⇒ f (x) > f (x̄), ∀ξ ∈ ∂C f (x̄).
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It is well known that the problem (P) is equivalent (see, for example, [8]) to the following parametric
optimization problem:

(EP) min v

subject to fi(x) ≤ v, i = 1, 2, ..., k, (1)

1 j(x) ≤ 0, j = 1, 2, ...,m, (2)

(x, v) ∈ Rn
× R. (3)

Let A = {(x, v) ∈ Rn
×R : fi(x) ≤ v, i = 1, 2, ..., k, 1 j(x) ≤ 0, j = 1, ...,m} be the set of all feasible solutions of (EP).

For problem (EP), we define the Lagrange function as follows

L(x, v, λ, µ) = v +

k∑
i=1

λi( fi(x) − v) +

m∑
j=1

µ j1 j(x).

The following results gives the relationship between the minimax programming problem (P) and the
corresponding parametric optimization problem (EP).

Lemma 2.12. [8] If a point (x, v) is feasible in the parametric optimization problem (EP), then x is a feasible point in
the considered minimax programming problem (P). And so, if a point x is feasible in (P), then there exists v ∈ R such
that (x, v) is a feasible point in (EP).

Lemma 2.13. [8] A point x̄ is an optimal solution in the considered minimax programming problem (P) with the
corresponding optimal value of the objective function of (P) equal to v̄ if and only if a point (x̄, v̄) is an optimal solution
in its associated parametric optimization problem (EP) with the corresponding optimal value of the objective function
of (EP) equal to v̄.

3. Optimality Conditions

In this section we give necessary and some sufficient optimality conditions for minimax programming
problem (P) in terms of convexifactors. To obtain necessary optimality conditions for minimax program-
ming problem (P), we use the following Slater-type weak constraint qualification which is defined as follows
on the lines of Mangasarian [20].

Definition 3.1. The minimax programming problem (P) is said to satisfy the Slater-type weak constraint qualification
at x̄ ∈ D, if 1 j is ∂C-pseudoconvex at x̄, and there exists an x0 ∈ Rn such that 1 j(x0) < 0 where j ∈ J(x̄) = { j ∈ J :
1 j(x̄) = 0}.

Note that, If 1 is a differentiable function at x̄ and admits an upper regular convexifactor ∂U1(x̄) at x̄,
then the above Slater-type weak constraint qualification reduces to Slater’s weak constraint qualification
given by Mangasarian [20].

Theorem 3.2 (Parametric Necessary Optimality Conditions). Let x̄ ∈ D be an optimal solution to the consid-
ered minimax programming problem (P) with the corresponding optimal value for (P) equal to v̄ and the Slater-type
weak constraint qualification be satisfied at x̄. Assume that fi, i ∈ I, 1 j, j ∈ J are continuous and admit bounded
convexifactors ∂C fi(x̄), i ∈ I, ∂C1 j(x̄), j ∈ J, respectively and that ∂C fi, i ∈ I, ∂C1 j, j ∈ J, are upper semicontinuous at

x̄. Then, there exist λ̄ ∈ Rk
+, λ̄ , 0 and µ̄ ∈ Rm

+ with
k∑

i=1
λ̄i +

m∑
j=1
µ̄ j = 1, such that (x̄, v̄, λ̄, µ̄) satisfies the following
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conditions

0 ∈
k∑

i=1

λ̄ico(∂C fi(x̄)) +

m∑
j=1

µ̄ jco(∂C1 j(x̄)), (4)

λ̄i( fi(x̄) − v̄) = 0, i = 1, 2, ..., k, (5)
fi(x̄) ≤ v̄, i = 1, 2, ..., k, (6)
µ̄ j1 j(x̄) = 0, j = 1, 2, ...,m, (7)
1 j(x̄) ≤ 0, j = 1, 2, ...,m. (8)

Proof. Let x̄ ∈ D be an optimal solution to the considered minimax programming problem (P) with the
corresponding optimal value of the objective function equal to v̄. Then, by Lemma 2.13, (x̄, v̄) is an optimal
solution in its associated parametric optimization problem (EP) with the corresponding optimal value of
the objective function equal to v̄. Therefore, if we apply Theorem 3.3 [13] to problem (EP), then there exist

λ̄ ∈ Rk
+ and µ̄ ∈ Rm

+ with
k∑

i=1
λ̄i +

m∑
j=1
µ̄ j = 1, such that the above relations (4)-(8) are satisfied.

It is remaining to show λ̄ , 0. Suppose to contrary that λ̄ = 0, then by
k∑

i=1
λ̄i +

m∑
j=1
µ̄ j = 1, we have that

m∑
j=1
µ̄ j = 1.

Also by (4), it is clear that there exists ζ j ∈ co(∂C1 j(x̄)), j = 1, 2, ...,m such that

m∑
j=1

µ̄ jζ j = 0. (9)

On the other hand, by assumption, the Slater-type weak constraint qualification is satisfied at x̄, therefore,
taking into account the structure of the constraint in problem (EP), the same constraint qualification is
satisfied at (x̄, v̄) in problem (EP), and hence, we have that 1 j is ∂C-pseudoconvex at x̄, and there exists an
x0 ∈ Rn such that

1 j(x0) < 0, j ∈ J(x̄) = { j ∈ J : 1 j(x̄) = 0},

which intern implies that 1 j(x0) < 0 = 1 j(x̄), j ∈ J(x̄).
From using ∂C- pseudoconvexity of 1 j, j ∈ J(x̄), we get〈

ζ j, x0 − x̄
〉
< 0, ζ j ∈ ∂

C1 j(x̄), j ∈ J(x̄).

Now, equation (7) gives µ̄ j = 0 for j < J(x̄) and from µ̄ ∈ Rm
+ ,

m∑
j=1
µ̄ j = 1, we obtain

〈 m∑
j=1

µ̄ jζ j, x0 − x̄
〉
< 0, ζ j ∈ ∂

C1 j(x̄).

This clearly shows that 〈 m∑
j=1

µ̄ jζ j, x0 − x̄
〉
< 0, ζ j ∈ co(∂C1 j(x̄)),

which contradicts (9). Hence, λ̄ , 0.

Remark 3.3. Since the convex hull of a convexifactor can be properly contained in the Clarke sub-differential (see
[15]), therefore the above optimality conditions expressed in terms of convexifactors are generally sharper than those
expressed in terms of Clarke sub-differential. Also, note that the convex hull appearing before the convexifactors in
Theorem 3.2 cannot be removed in general (see Example 3.1 in Dutta and Chandra [13]).
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Remark 3.4. On compare the above results those in [4], we observe that our parametric necessary optimality
conditions are close to those of Theorem 13 [4] and also generalizes them in view of Remark 3.3.

In the following example we give a nonsmooth minimax programming problem and investigate the para-
metric necessary optimality conditions in terms of convexifactors.

Example 3.5. Consider the following nonsmooth minimax optimization problem:

(P) min
x∈R

max
1≤i≤2

fi(x) = (x2
− i |x − 1|)

subject to 1(x) = 1 − x ≤ 0.

Note that the set of feasible solutions of (P) is D = [1,∞), and the optimal objective value is achieved at x̄ = 1, where
the corresponding optimal value of the objective function equal to v̄.
Consider the bounded convexifactors of fi, i = 1, 2 and 1 at x̄ = 1 are ∂C f1(1) = {0, 3}, ∂C f2(1) = {0, 4} and
∂C1(1) = {−1}. It is easy to observe that ∂C fi, i = 1, 2 and ∂C1 are upper semicontinuous at x̄ = 1.
Now, by simple calculation, for all x ∈ R, we have

1(x) < 1(x̄)⇒ 〈ζ, x − x̄〉 < 0, ∀ζ ∈ ∂C1(x̄),

or,
〈ζ, x − x̄〉 ≥ 0⇒ 1(x) ≥ 1(x̄), ∀ζ ∈ ∂C1(x̄).

It means that 1 is ∂C-pseudoconvex at x̄ = 1. Thus, clearly, we can observe that the Slater-type weak constraint
qualification holds at x̄ = 1.
Since all assumptions of Theorem 3.2 are fulfilled, then, it is easy to see that there exist λ̄ = (λ̄1, λ̄2) ∈ R2

+, λ̄ , 0 and

µ̄ ≥ 0 with
2∑

i=1
λ̄i + µ̄ = 1 such that the parametric necessary optimality conditions (4)-(8) are satisfied.

In a subsequent part, we can see that parametric necessary optimality conditions are sufficient under
generalized convexity.

Theorem 3.6 (Sufficient Optimality Conditions). Let (x̄, v̄, λ̄, µ̄) with x̄ ∈ D, v̄ ∈ R, λ̄ ∈ Rk
+, λ̄ , 0 and µ̄ j ∈ Rm

+ ,
satisfying the conditions (4)-(8). Further, assume that the functions fi(.), i ∈ I(x̄) = {i ∈ I : λ̄i > 0}, and 1 j(.), j ∈ J(x̄)
are ∂C-convex at x̄ on D. Then x̄ is an optimal point in (P) with the corresponding optimal objective value equal to v̄.

Proof. We proceed by contradiction. Suppose that x̄ is not an optimal solution for (P), then there exists a
feasible point x̃ for (P), such that

fi(x̃) < fi(x̄), i = 1, 2, ..., k. (10)

Since fi(.), i ∈ I(x̄) and 1 j(.), j ∈ J(x̄) are ∂C-convex at x̄ on D, then, by Definition 2.8, the following inequalities

fi(x) − fi(x̄) ≥ 〈ζi, x − x̄〉 , i ∈ I(x̄), (11)

1 j(x) − 1 j(x̄) ≥
〈
ξ j, x − x̄

〉
, j ∈ J(x̄), (12)

hold for any ζi ∈ ∂C fi(x̄), i ∈ I(x̄), any ξ j ∈ ∂C1 j(x̄), j ∈ J(x̄), and all x ∈ D. Therefore, they are also satisfied
for x = x̃. Multiplying (11) by λ̄i > 0, i ∈ I(x̄), (12) by µ̄ j ≥ 0, j ∈ J(x̄), we get

λ̄i fi(x̃) − λ̄i fi(x̄) ≥
〈
λ̄iζi, x̃ − x̄

〉
, ∀ζi ∈ ∂

C fi(x̄), i ∈ I(x̄),

µ̄ j1 j(x̃) − µ̄ j1 j(x̄) ≥
〈
µ̄ jξ j, x̃ − x̄

〉
, ∀ξ j ∈ ∂

C1 j(x̄), j ∈ J(x̄).

From (7), (10) and from the feasibility of x̃ in problem (P), we get〈
λ̄iζi, x̃ − x̄

〉
< 0, ∀ζi ∈ ∂

C fi(x̄), i ∈ I(x̄),
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µ̄ jξ j, x̃ − x̄

〉
≤ 0, ∀ξ j ∈ ∂

C1 j(x̄), j ∈ J(x̄).

On adding both sides of the above inequalities, we obtain〈∑
i∈I(x̄)

λ̄iζi +
∑
j∈J(x̄)

µ̄ jξ j, x̃ − x̄
〉
< 0, ∀ζi ∈ ∂

C fi(x̄), i ∈ I(x̄), ξ j ∈ ∂
C1 j(x̄), j ∈ J(x̄).

This clearly shows that〈∑
i∈I(x̄)

λ̄iζi +
∑
j∈J(x̄)

µ̄ jξ j, x̃ − x̄
〉
< 0, ∀ζi ∈ co(∂C fi(x̄)), i ∈ I(x̄), ξ j ∈ co(∂C1 j(x̄)), j ∈ J(x̄),

which contradicts (4). This completes the proof.

Theorem 3.7 (Sufficient Optimality Conditions). Let (x̄, v̄, λ̄, µ̄) with x̄ ∈ D, v̄ ∈ R, λ̄ ∈ Rk
+, λ̄ , 0 and µ̄ j ∈ Rm

+ ,
satisfying the conditions (4)-(8). Further, assume that the functions fi(.), i ∈ I are ∂C-pseudoconvex and µ̄ j1 j(.), j ∈ J
are ∂C-quasiconvex at x̄ on D. Then x̄ is an optimal point in (P) with the corresponding optimal objective value equal
to v̄.

Proof. We proceed by contradiction. Suppose that x̄ is not an optimal solution for (P), then there exists a
feasible point x̃ for (P), such that

fi(x̃) < fi(x̄), i = 1, 2, ..., k,

which by ∂C-pseudoconvex of fi(.), i ∈ I at x̄ on D, gives

〈ζi, x̃ − x̄〉 < 0, ∀ζi ∈ ∂
C fi(x̄), i ∈ I.

Since 0 , λ̄ ∈ Rk
+, then we obtain〈 k∑

i=1

λ̄iζi, x̃ − x̄
〉
< 0, ∀ζi ∈ ∂

C fi(x̄), i ∈ I. (13)

On the other hand, from the feasibility of x̃ to (P), µ̄ ∈ Rm
+ and equality (7), we have

µ̄ j1 j(x̃) ≤ µ̄ j1 j(x̄), j ∈ J,

which by ∂C-quasiconvexity of µ̄ j1 j(.), j ∈ J at x̄ on D, gives〈
ξ
′

j, x̃ − x̄
〉
≤ 0, ∀ξ

′

j ∈ ∂
C(µ̄ j1 j)(x̄), j ∈ J.

The above inequality together with Remark 2.6 yields〈
µ̄ jξ j, x̃ − x̄

〉
≤ 0, ∀ξ j ∈ ∂

C1 j(x̄), j ∈ J.

Thus,〈 m∑
j=1

µ̄ jξ j, x̃ − x̄
〉
≤ 0, ∀ξ j ∈ ∂

C1 j(x̄), j ∈ J. (14)

On adding the inequalities (13) and (14), we obtain〈 k∑
i=1

λ̄iζi +

m∑
j=1

µ̄ jξ j, x̃ − x̄
〉
< 0, ∀ζi ∈ ∂

C fi(x̄), i ∈ I, ξ j ∈ ∂
C1 j(x̄), j ∈ J.
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This clearly shows that〈 k∑
i=1

λ̄iζi +

m∑
j=1

µ̄ jξ j, x̃ − x̄
〉
< 0, ∀ζi ∈ co(∂C fi(x̄)), i ∈ I, ξ j ∈ co(∂C1 j(x̄)), j ∈ J,

which contradicts (4). This completes the proof.

Theorem 3.8 (Sufficient Optimality Conditions). Let (x̄, v̄, λ̄, µ̄) with x̄ ∈ D, v̄ ∈ R, λ̄ ∈ Rk
+, λ̄ , 0 and µ̄ j ∈ Rm

+ ,
satisfying the conditions (4)-(8). Further, assume that the functions fi(.), i ∈ I are strict ∂C-pseudoconvex and
µ̄ j1 j(.), j ∈ J are ∂C-quasiconvex at x̄ on D. Then x̄ is an optimal point in (P) with the corresponding optimal objective
value equal to v̄.

Proof. The proof follows along similar lines as the proof of Theorem 3.7 and hence is omitted.

Theorem 3.9 (Sufficient Optimality Conditions). Let (x̄, v̄, λ̄, µ̄) with x̄ ∈ D, v̄ ∈ R, λ̄ ∈ Rk
+, λ̄ , 0 and µ̄ j ∈ Rm

+ ,
satisfying the conditions (4)-(8). Further, assume that the functions fi(.), i ∈ I are ∂C-quasiconvex and the functions
1 j(.), j ∈ J(x̄), j , l are ∂C-quasiconvex at x̄ on D and each 1l(.) is strict ∂C-pseudoconvex at x̄ on D with µ̄l > 0. Then
x̄ is an optimal point in (P) with the corresponding optimal objective value equal to v̄.

Proof. We proceed by contradiction. Suppose that x̄ is not an optimal solution for (P), then there exists a
feasible point x̃ for (P), such that

fi(x̃) < fi(x̄), i = 1, 2, ..., k,

which by ∂C-quasiconvex of fi(.), i ∈ I at x̄ on D, gives

〈ζi, x̃ − x̄〉 ≤ 0, ∀ζi ∈ ∂
C fi(x̄), i ∈ I.

Since 0 , λ̄ ∈ Rk
+, then we obtain〈 k∑

i=1

λ̄iζi, x̃ − x̄
〉
≤ 0, ∀ζi ∈ ∂

C fi(x̄), i ∈ I. (15)

On the other hand, from the feasibility of x̃ to (P) and j ∈ J(x̄), we have

1 j(x̃) ≤ 0 = 1 j(x̄),

which by ∂C-quasiconvex of 1 j(.), j ∈ J(x̄), j , l and strict ∂C-pseudoconvex of 1l(.) at x̄ on D, we have,
respectively〈

ξ j, x̃ − x̄
〉
≤ 0, ∀ξ j ∈ ∂

C1 j(x̄), j ∈ J(x̄), j , l, (16)

〈ξl, x̃ − x̄〉 < 0, ∀ξl ∈ ∂
C1l(x̄). (17)

Since µ̄ j ≥ 0,∀ j ∈ j(x̄), µ̄l > 0 and µ̄ j = 0 for j ∈ J \ J(x̄), therefore, from (16) and (17), we have〈 m∑
j=1

µ̄ jξ j, x̃ − x̄
〉
< 0, ∀ξ j ∈ ∂

C1 j(x̄), j ∈ J. (18)

On adding the inequalities (15) and (18), we obtain〈 k∑
i=1

λ̄iζi +

m∑
j=1

µ̄ jξ j, x̃ − x̄
〉
< 0, ∀ζi ∈ ∂

C fi(x̄), i ∈ I, ξ j ∈ ∂
C1 j(x̄), j ∈ J.

This clearly shows that〈 k∑
i=1

λ̄iζi +

m∑
j=1

µ̄ jξ j, x̃ − x̄
〉
< 0, ∀ζi ∈ co(∂C fi(x̄)), i ∈ I, ξ j ∈ co(∂C1 j(x̄)), j ∈ J,

which contradicts (4). This completes the proof.
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4. Mond-Weir Type Duality

Using necessary optimality conditions of Theorem 3.2, we introduce Mond-Weir type dual (MWD) to
the problem (EP) in terms of convexifactors as follows:

(MWD) Max q

subject to 0 ∈
k∑

i=1

λico(∂C fi(y)) +

m∑
j=1

µ jco(∂C1 j(y)), (19)

λi( fi(y) − q) ≥ 0, i = 1, 2, ..., k, (20)

µ j1 j(y) ≥ 0, j = 1, 2, ...,m, (21)

where 0 , λ ∈ Rk
+, µ ∈ Rm

+ , y ∈ Rn, q ∈ R.
Let W denote the set of all feasible points of (MWD). Further, we denote by Y the set Y = {y ∈ Rn :
(y, q, λ, µ) ∈W}.
Now, we establish duality theorems relating (EP) and (MWD) under suitable generalized convexity with
respect to convexifactor assumptions. Since (EP) is equivalent to (P), this implies the duality theorems
relate (P) and (MWD) also.

Theorem 4.1 (Weak Duality). Let (x, v) and (y, q, λ, µ) be feasible solutions in problems (EP) and (MWD), respec-
tively. Further, assume that fi(.), i ∈ I(y), and 1 j(.), j ∈ J(y) are ∂C-convex at y on A ∪ Y. Then v ≥ q.

Proof. We proceed by contradiction, suppose v < q. Then, by (1) and (20), we get

fi(x) < fi(y), i = 1, 2, ..., k. (22)

Since fi(.), i ∈ I(y) and 1 j(.), j ∈ J(y) are ∂C-convex at y on A ∪ Y, then, by Definition 2.8, the following
inequalities

fi(x) − fi(y) ≥
〈
ζi, x − y

〉
, i ∈ I(y), (23)

1 j(x) − 1 j(y) ≥
〈
ξ j, x − y

〉
, j ∈ J(y), (24)

hold for any ζi ∈ ∂C fi(y), i ∈ I(y), any ξ j ∈ ∂C1 j(y), j ∈ J(y), and all x ∈ A ∪ Y. Multiplying (23) by
λi > 0, i ∈ I(y), (24) by µ j ≥ 0, j ∈ J(y), we get

λi fi(x) − λi fi(y) ≥
〈
λiζi, x − y

〉
, ∀ζi ∈ ∂

C fi(y), i ∈ I(y),

µ j1 j(x) − µ j1 j(y) ≥
〈
µ jξ j, x − y

〉
, ∀ξ j ∈ ∂

C1 j(y), j ∈ J(y).

From (21), (22) and from the feasibility of x in problem (P), we get〈
λiζi, x − y

〉
< 0, ∀ζi ∈ ∂

C fi(y), i ∈ I(y),〈
µ jξ j, x − y

〉
≤ 0, ∀ξ j ∈ ∂

C1 j(y), j ∈ J(y).

On adding both sides of the above inequalities, we obtain〈∑
i∈I(y)

λiζi +
∑
j∈J(y)

µ jξ j, x − y
〉
< 0, ∀ζi ∈ ∂

C fi(y), i ∈ I(y), ξ j ∈ ∂
C1 j(y), j ∈ J(y).

This clearly shows that〈∑
i∈I(y)

λiζi +
∑
j∈J(y)

µ jξ j, x − y
〉
< 0, ∀ζi ∈ co(∂C fi(y)), i ∈ I(y), ξ j ∈ co(∂C1 j(y)), j ∈ J(y),

which contradicts (19). This completes the proof.
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Theorem 4.2 (Weak Duality). Let (x, v) and (y, q, λ, µ) be feasible solutions in problems (EP) and (MWD), respec-
tively. Further, assume that fi(.), i ∈ I are ∂C-pseudoconvex and µ j1 j(.), j ∈ J are ∂C-quasiconvex at y on A∪Y. Then
v ≥ q.

Proof. We proceed by contradiction, suppose v < q. Then, by (1) and (20), we get

fi(x) < fi(y), i = 1, 2, ..., k,

which by ∂C-pseudoconvex of fi(.), i ∈ I at y on A ∪ Y, we have〈
ζi, x − y

〉
< 0, ∀ζi ∈ ∂

C fi(y), i ∈ I.

Since 0 , λ ∈ Rk
+, then we obtain〈 k∑

i=1

λiζi, x − y
〉
< 0, ∀ζi ∈ ∂

C fi(y), i ∈ I. (25)

On the other hand, from the feasibility of x to (EP), µ ∈ Rm
+ , and inequality (21), we have

µ j1 j(x) ≤ µ j1 j(y), j ∈ J,

which by ∂C-quasiconvexity of µ j1 j(.), j ∈ J at y on A ∪ Y, gives〈
ξ
′

j, x − y
〉
≤ 0, ∀ξ

′

j ∈ ∂
C(µ j1 j)(y), j ∈ J.

The above inequality together with Remark 2.6 yields〈
µ jξ j, x − y

〉
≤ 0, ∀ξ j ∈ ∂

C1 j(y), j ∈ J.

Thus,〈 m∑
j=1

µ jξ j, x − y
〉
≤ 0, ∀ξ j ∈ ∂

C1 j(y), j ∈ J. (26)

On adding the inequalities (25) and (26), we obtain〈 k∑
i=1

λiζi +

m∑
j=1

µ jξ j, x − y
〉
< 0, ∀ζi ∈ ∂

C fi(y), i ∈ I, ξ j ∈ ∂
C1 j(y), j ∈ J.

This clearly shows that〈 k∑
i=1

λiζi +

m∑
j=1

µ jξ j, x − y
〉
< 0, ∀ζi ∈ co(∂C fi(y)), i ∈ I, ξ j ∈ co(∂C1 j(y)), j ∈ J,

which contradicts (19). This completes the proof.

Theorem 4.3 (Strong Duality). Let (x̄, v̄) be an optimal point for (EP). Assume that the hypotheses of Theorem 3.2
hold for the problem (EP). Then, there exist λ̄ ∈ Rk

+ and µ̄ ∈ Rm
+ such that (x̄, v̄, λ̄, µ̄) is feasible for (MWD) and the

corresponding objective values of (EP) and (MWD) are equal. Further, if the hypotheses of the weak duality theorem
(Theorem 4.1 or Theorem 4.2) hold for all feasible solutions of (MWD), then (x̄, v̄, λ̄, µ̄) is optimal for (MWD).

Proof. Since (x̄, v̄) is optimal for (EP) and all the assumptions of Theorem 3.2 are satisfied for the problem
(EP), therefore, there exist 0 , λ̄ ∈ Rk

+ and µ̄ ∈ Rm
+ , such that the conditions (4)-(8) hold, which implies that

(x̄, v̄, λ̄, µ̄) is feasible for (MWD) and the objective values of (EP) and (MWD) are equal. By weak duality
theorem (Theorem 4.1 or 4.2), for any feasible solution (y, q, λ, µ) of (MWD), we have v̄ ≥ q. It follows that
(x̄, v̄, λ̄, µ̄) is optimal for (MWD).
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Theorem 4.4 (Strict Converse Duality). Let (x̄, v̄) and (ȳ, q̄, λ̄, µ̄) be optimal in (EP) and (MWD), respectively.
Assume that the hypothesis of Theorem 3.2 is fulfilled. Further, assume that fi(.), i ∈ I(ȳ), and 1 j(.), j ∈ J(ȳ) are
respectively strict ∂C-convex and ∂C-convex at ȳ on A ∪ Y. Then (x̄, v̄) = (ȳ, q̄).

Proof. We proceed by contradiction. Suppose that (x̄, v̄) , (ȳ, q̄). According to Theorem 4.3, we know that
there exist 0 , λ̄ ∈ Rk

+ and µ̄ ∈ Rm
+ such that (x̄, v̄, λ̄, µ̄) is feasible for (MWD) and

v̄ = q̄,

which by (1) and (20), we have

fi(x̄) ≤ fi(ȳ), i = 1, 2, ..., k.

Now, proceeding as in Theorem 4.1, we see that the strict ∂C-convex of fi(.), i ∈ I(ȳ), and ∂C-convex of
1 j(.), j ∈ J(ȳ) at ȳ on A ∪ Y, yields the following inequality〈 k∑

i=1

λ̄iζi +

m∑
j=1

µ̄ jξ j, x̄ − ȳ
〉
< 0, ∀ζi ∈ co(∂C fi(ȳ)), i ∈ I, ξ j ∈ co(∂C1 j(ȳ)), j ∈ J,

which contradicts (19). This completes the proof.

Theorem 4.5 (Strict Converse Duality). Let (x̄, v̄) and (ȳ, q̄, λ̄, µ̄) be optimal in (EP) and (MWD), respectively.
Assume that the hypothesis of Theorem 3.2 is fulfilled. Further, assume that fi(.), i ∈ I are strict ∂C-pseudoconvex and
µ̄ j1 j(.), j ∈ J are ∂C-quasiconvex at ȳ on A ∪ Y. Then (x̄, v̄) = (ȳ, q̄).

Proof. The proof follows on the similar lines of Theorem 4.2 and 4.4.

5. Wolfe Type Duality

Before presenting Wolf type dual model for (P), we first state the following parameter-free necessary
optimality conditions. This can be obtained by replacing v̄ with fi(x̄) and rewriting the result of Theorem
3.2 as follows.

Theorem 5.1 (Parameter-free Necessary Optimality Conditions). Let x̄ ∈ D be an optimal solution to problem
(P) and the Slater-type weak constraint qualification be satisfied at x̄. Assume that fi, i ∈ I, 1 j, j ∈ J are continuous
and admit bounded convexifactors ∂C fi(x̄), i ∈ I, ∂C1 j(x̄), j ∈ J, respectively and that ∂C fi, i ∈ I, ∂C1 j, j ∈ J, are upper

semicontinuous at x̄. Then, there exist λ̄ ∈ Rk
+, λ̄ , 0 and µ̄ ∈ Rm

+ with
k∑

i=1
λ̄i +

m∑
j=1
µ̄ j = 1, such that (x̄, λ̄, µ̄) satisfies

the following conditions

0 ∈
k∑

i=1

λ̄ico(∂C fi(x̄)) +

m∑
j=1

µ̄ jco(∂C1 j(x̄)), (27)

µ̄ j1 j(x̄) = 0, j = 1, 2, ...,m, (28)
1 j(x̄) ≤ 0, j = 1, 2, ...,m. (29)

Now, we formulate a parametric-free Wolfe type dual (WD) to (P) in terms of convexifactors as follows:

(WD) Max
k∑

i=1

λi fi(y) +

m∑
j=1

µ j1 j(y)

subject to 0 ∈
k∑

i=1

λico(∂C fi(y)) +

m∑
j=1

µ jco(∂C1 j(y)), (30)

λ ∈ Rk
+,

k∑
i=1

λi = 1, µ ∈ Rm
+ , y ∈ Rn. (31)
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Remark 5.2. It can be observed easily, by the definition of the Lagrange function for problem (EP), that a parametric-
free Wolfe type dual for (P) and a parametric Wolfe type dual for (EP) have the same form.

In the proofs of duality results in the sense of Wolfe, we need the following lemma.

Lemma 5.3. [3] For each x ∈ Rn, one has

max
1≤i≤k

fi(x) = max
λ∈Λ

k∑
i=1

λi fi(x),

where Λ = {λ = (λ1, λ2, ..., λk) ∈ Rk
+ :

k∑
i=1
λi = 1}.

Let W̃ denote the set of all feasible points of (WD). Further, we denote by Ỹ the set Ỹ = {y ∈ Rn : (y, λ, µ) ∈ W̃}.
We shall now prove the weak, strong and strict converse duality results.

Theorem 5.4 (Weak Duality). Let x and (y, λ, µ) be feasible solutions in problems (P) and (WD), respectively.
Further, assume that fi(.), i ∈ I(y), and 1 j(.), j ∈ J(y) are ∂C-convex at y on D ∪ Ỹ. Then,

max
1≤i≤k

fi(x) ≥
k∑

i=1

λi fi(y) +

m∑
j=1

µ j1 j(y).

Proof. We proceed by contradiction, suppose

max
1≤i≤k

fi(x) <
k∑

i=1

λi fi(y) +

m∑
j=1

µ j1 j(y).

Thus, by Lemma 5.3, we have

k∑
i=1

λi fi(x) <
k∑

i=1

λi fi(y) +

m∑
j=1

µ j1 j(y). (32)

On the other hand, since fi(.), i ∈ I(y) and 1 j(.), j ∈ J(y) are ∂C-convex at y on D ∪ Ỹ, then, by Definition 2.8,
the following inequalities

fi(x) − fi(y) ≥
〈
ζi, x − y

〉
, i ∈ I(y), (33)

1 j(x) − 1 j(y) ≥
〈
ξ j, x − y

〉
, j ∈ J(y), (34)

hold for any ζi ∈ ∂C fi(y), i ∈ I(y), any ξ j ∈ ∂C1 j(y), j ∈ J(y), and all x ∈ D ∪ Ỹ. Multiplying (33) by
λi > 0, i ∈ I(y), (34) by µ j ≥ 0, j ∈ J(y), we get

λi fi(x) − λi fi(y) ≥
〈
λiζi, x − y

〉
, ∀ζi ∈ ∂

C fi(y), i ∈ I(y), (35)

µ j1 j(x) − µ j1 j(y) ≥
〈
µ jξ j, x − y

〉
, ∀ξ j ∈ ∂

C1 j(y), j ∈ J(y). (36)

On adding both sides of the above inequalities, we obtain∑
i∈I(y)

[λi fi(x) − λi fi(y)] +
∑
j∈J(y)

[µ j1 j(x) − µ j1 j(y)] ≥
〈∑

i∈I(y)

λiζi +
∑
j∈J(y)

µ jξ j, x − y
〉
,

∀ζi ∈ ∂
C fi(y), i ∈ I(y), ξ j ∈ ∂

C1 j(y), j ∈ J(y).
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This clearly shows that∑
i∈I(y)

[λi fi(x) − λi fi(y)] +
∑
j∈J(y)

[µ j1 j(x) − µ j1 j(y)] ≥
〈∑

i∈I(y)

λiζi +
∑
j∈J(y)

µ jξ j, x − y
〉
,

∀ζi ∈ co(∂C fi(y)), i ∈ I(y), ξ j ∈ co(∂C1 j(y)), j ∈ J(y).

By (30), it follows that∑
i∈I(y)

λi fi(x) −
∑
i∈I(y)

λi fi(y) +
∑
j∈J(y)

µ j1 j(x) −
∑
j∈J(y)

µ j1 j(y) ≥ 0.

Thus, ∑
i∈I(y)

λi fi(x) +
∑
j∈J(y)

µ j1 j(x) ≥
∑
i∈I(y)

λi fi(y) +
∑
j∈J(y)

µ j1 j(y).

From the feasibility of x to (P), it follows
∑

j∈J(y)
µ j1 j(x) ≤ 0. Hence, we obtain

∑
i∈I(y)

λi fi(x) ≥
∑
i∈I(y)

λi fi(y) +
∑
j∈J(y)

µ j1 j(y),

which contradicts (32). This completes the proof.

Theorem 5.5 (Weak Duality). Let x and (y, λ, µ) be feasible solutions in problems (P) and (WD), respectively.
Assume that for some i, and some j, ∂C fi(y), ∂C1 j(y) are respectively upper regular convexifactors of fi(.), i = 1, 2, ..., k
and 1 j(.), j = 1, 2, ...,m at y on D ∪ Ỹ, and for some i0 , i, j0 , j, ∂C fi0 (y), ∂C1 j0 (y) are respectively lower regular

convexifactors of fi0 (.) and 1 j0 (.) at y on D ∪ Ỹ. Also, assume that
k∑

i=1
λi∂C fi(y) is an upper regular convexifactor of

k∑
i=1
λi fi(.) and

m∑
j=1
µ j∂C1 j(y) is a lower regular convexifactor of

m∑
j=1
µ j1 j(.) at y on D∪Ỹ. Further, if

k∑
i=1
λi fi(.)+

m∑
j=1
µ j1 j(.)

is ∂C-pseudoconvex at y on D ∪ Ỹ, then,

max
1≤i≤k

fi(x) ≥
k∑

i=1

λi fi(y) +

m∑
j=1

µ j1 j(y).

Proof. Since for some i, and some j, ∂C fi(y), ∂C1 j(y) are respectively upper regular convexifactors of fi(.), i =

1, 2, ..., k and 1 j(.), j = 1, 2, ...,m at y on D ∪ Ỹ, and for some i0 , i, j0 , j, ∂C fi0 (y), ∂C1 j0 (y) are respectively
lower regular convexifactors of fi0 (.) and 1 j0 (.) at y on D∪ Ỹ, using Remark 2.6 and Lemma 2.7, we have that
k∑

i=1
λi∂C fi(y),

m∑
j=1
µ j∂C1 j(y) are convexifactor of

k∑
i=1
λi fi(.) and

m∑
j=1
µ j1 j(.) at y on D ∪ Ỹ, respectively. Also, since

k∑
i=1
λi∂C fi(y) is an upper regular convexifactor of

k∑
i=1
λi fi(.) and

m∑
j=1
µ j∂C1 j(y) is a lower regular convexifactor

of
m∑

j=1
µ j1 j(.) at y on D ∪ Ỹ, using Lemma 2.7, we have that

k∑
i=1
λi∂C fi(y) +

m∑
j=1
µ j∂C1 j(y) is a convexifactor of

k∑
i=1
λi fi(.) +

m∑
j=1
µ j1 j(.) at y on D ∪ Ỹ.

Now, by means of contradiction, suppose

max
1≤i≤k

fi(x) <
k∑

i=1

λi fi(y) +

m∑
j=1

µ j1 j(y).
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Thus, by Lemma 5.3, we have

k∑
i=1

λi fi(x) <
k∑

i=1

λi fi(y) +

m∑
j=1

µ j1 j(y). (37)

Using the feasibility of x in (P) and µ j ≥ 0, j = 1, 2, ...,m, we have

m∑
j=1

µ j1 j(x) ≤ 0. (38)

By (37) and (38), it follows that

k∑
i=1

λi fi(x) +

m∑
j=1

µ j1 j(x) <
k∑

i=1

λi fi(y) +

m∑
j=1

µ j1 j(y),

which by ∂C-pseudoconvex of
k∑

i=1
λi fi(.) +

m∑
j=1
µ j1 j(.) at y on D ∪ Ỹ, gives

〈 k∑
i=1

λiζi +

m∑
j=1

µ jξ j, x − y
〉
< 0, ∀ζi ∈ ∂

C fi(y), i ∈ I, ξ j ∈ ∂
C1 j(y), j ∈ J.

This clearly shows that〈 k∑
i=1

λiζi +

m∑
j=1

µ jξ j, x − y
〉
< 0, ∀ζi ∈ co(∂C fi(y)), i ∈ I, ξ j ∈ co(∂C1 j(y)), j ∈ J,

which contradicts (30). This completes the proof.

Theorem 5.6 (Strong Duality). Let x̄ be an optimal point for (P). Assume that the hypotheses of Theorem 5.1 hold.
Then, there exist λ̄ ∈ Rk

+ and µ̄ ∈ Rm
+ such that (x̄, λ̄, µ̄) is feasible for (WD) and the corresponding objective values

of (P) and (WD) are equal. Further, if the hypotheses of the weak duality theorem (Theorem 5.4 or Theorem 5.5) hold
for all feasible solutions of (WD), then (x̄, λ̄, µ̄) is optimal for (WD).

Proof. Since x̄ is optimal for (P) and all the assumptions of Theorem 5.1 are satisfied for the problem (P),
therefore, there exist 0 , λ̄ ∈ Rk

+ and µ̄ ∈ Rm
+ , such that the conditions (27)-(29) hold, which implies that

(x̄, λ̄, µ̄) is feasible for (WD) and the objective values of (P) and (WD) are equal. Optimality of (x̄, λ̄, µ̄) for
(WD) follows from weak duality theorem (Theorem 5.4 or 5.5).

Theorem 5.7 (Strict Converse Duality). Let x̄ and (ȳ, λ̄, µ̄) be optimal in (P) and (WD), respectively. Assume
that the hypothesis of Theorem 5.1 is fulfilled. Further, assume that fi(.), i ∈ I(ȳ), and 1 j(.), j ∈ J(ȳ) are respectively
strict ∂C-convex and ∂C-convex at ȳ on A ∪ Ỹ. Then x̄ = ȳ.

Proof. We proceed by contradiction. Suppose that x̄ , ȳ. According to Theorem 5.6, we know that there
exist 0 , λ̄ ∈ Rk

+ and µ̄ ∈ Rm
+ such that (x̄, λ̄, µ̄) is feasible for (WD) and

max
1≤i≤k

fi(x̄) =

k∑
i=1

λ̄i fi(ȳ) +

m∑
j=1

µ̄ j1 j(ȳ).

Thus, by Lemma 5.3, we have

k∑
i=1

λ̄i fi(x̄) ≤
k∑

i=1

λ̄i fi(ȳ) +

m∑
j=1

µ̄ j1 j(ȳ). (39)
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Now, proceeding as in Theorem 5.4, we see that the strict ∂C-convex of fi(.), i ∈ I(ȳ), and ∂C-convex of
1 j(.), j ∈ J(ȳ) at ȳ on A ∪ Ỹ, yields the following inequality∑

i∈I(ȳ)

λ̄i fi(x̄) >
∑
i∈I(y)

λ̄i fi(ȳ) +
∑
j∈J(ȳ)

µ̄ j1 j(ȳ),

which contradicts (39). This completes the proof.

Theorem 5.8 (Strict Converse Duality). Let x̄ and (ȳ, λ̄, µ̄) be optimal in (P) and (WD), respectively. Assume
that for some i, and some j, ∂C fi(ȳ), ∂C1 j(ȳ) are respectively upper regular convexifactors of fi(.), i = 1, 2, ..., k and
1 j(.), j = 1, 2, ...,m at ȳ on D ∪ Ỹ, and for some i0 , i, j0 , j, ∂C fi0 (ȳ), ∂C1 j0 (ȳ) are respectively lower regular

convexifactors of fi0 (.) and 1 j0 (.) at ȳ on D ∪ Ỹ. Also, assume that
k∑

i=1
λ̄i∂C fi(ȳ) is an upper regular convexifactor of

k∑
i=1
λ̄i fi(.) and

m∑
j=1
µ̄ j∂C1 j(ȳ) is a lower regular convexifactor of

m∑
j=1
µ̄ j1 j(.) at ȳ on D∪Ỹ. Further, if

k∑
i=1
λ̄i fi(.)+

m∑
j=1
µ̄ j1 j(.)

is strict ∂C-pseudoconvex at ȳ on D ∪ Ỹ and the hypothesis of Theorem 5.1 is fulfilled. Then x̄ = ȳ.

Proof. The proof follows on the similar lines of Theorem 5.5 and 5.7.

6. Conclusion

In this paper, we have derived optimality conditions for a nonsmooth minimax programming problem
by using generalize convex functions in terms of convexifactors. We associate two dual problems, namely
Mond-Weir type dual and Wolfe type dual, with nonsmooth minimax programming problem and establish
various duality results. These results generalize several results appeared in the literature (see, for instance,
[3, 4, 6]). Duality theory by using convexifactor will be studied for nonsmooth variational and nonsmooth
control problems, which will orient the future research of the authors.
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