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Abstract. In this article the coincidence points of a self mapping and a sequence of multivalued mappings
are found using the graphic F-contraction. This generalizes Mizoguchi-Takahashi’s fixed point theorem for
multivalued mappings on a metric space endowed with a graph. As applications we obtain a theorem in
homotopy theory, an existence theorem for the solution of a system of Urysohn integral equations, and for
the solution of a special type of fractional integral equations.

1. Introduction and Preliminaries

The study of fixed points in metric spaces endowed with a graph was initiated by Jachymski [9]. The
famous Banach contraction principle was extended to multivalued mappings by Nadler [14] in 1969. Reich
[15] studied the fixed point results for the multivalued mappings on the compact subsets of a complete
metric space. Hu [8] in 1980 extended the multivalued fixed point results to locally contractive multivalued
mappings in ε-chainable metric space. In 1989, Mizouguchi and Takahashi [13] generalized Nadler’s fixed
point theorem using the MT-function. Recently, Sultana and Vetrivel [17] used the concept of Jachymski [9]
for graphic contraction for multivalued mappings to extend the work of Mizouguchi and Takahashi [13].
Also Frigon and Dinevari [6] considered multivalued mappings on complete metric space endowed with a
directed graph.

In 2012, Wardowski [18] introduced the F-contraction and proved the uniqueness of fixed point to
extend the famous Banach contraction principle. Batra and Vashistha [4] have used the concept of graphic
contraction in connection with F-contraction for the existence of fixed point results. Fixed point results of
Hardy-Rogers type for self mappings on ordered complete metric spaces are pursued by Cosentino and
Vetro [5] in view of F-contraction. The Hardy-Rogers type fixed point results have been extended for the
multivalued mappings by Sgroi and Vetro [16]. For a metric space (X, d), by CL(X) we mean the set of
closed subsets of X, and by CB(X) we mean the set of all nonempty closed bounded subsets of X. For every
A,B ∈ CB(X), the generalized Hausdorff metric H induced by the metric d is defined as

H(A,B) = max{sup
x∈A

d(x,B), sup
y∈B

d(y,A)}.
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On CL(X) the generalized Hausdorff metric is defined which is also applicable on CB(X) [11].
Present article deals with the coincidence points of the sequence of multivalued maps using the concept

of F-contraction endowed with a graph. We follow an idea from [2] to show the existence of coincidence
points of a sequence of multivalued mappings taking into account the graphic F-contraction. It provides a
new way of generalizations of many results existing in the literature [2, 14, 17].

Let us recall some definitions from graph theory which can be found in [10]. For a metric space (X, d) let
∆ be the diagonal of the Cartesian product X × X. Consider a directed graph G such that X = V(G), where
V(G) is the set of vertices of G. The set E(G) of edges of G contains ∆, i.e. E(G) contains all the loops. If G
has no parallel edges, then we can identify G with the pair (V(G),E(G)). Further, the graph G can be viewed
as a weighted graph if to each its edge we assign the distance between its ends. Consider a directed graph
G. Then G−1 denotes the graph obtained from G by reversing the direction of edges, and if we ignore the
direction of edges in the graph G we get an undirected graph G̃. The pair (V′,E′) will be called a subgraph
of G if V′ ⊆ V(G) and E′ ⊆ E(G) and for any edge (a, b) ∈ E′, a, b ∈ V′.

A path of length K in G from a vertex p to a vertex q is a sequence {vi}
K
i=0 of K + 1 vertices such that v0 = p,

vK = q and (v j−1, v j) ∈ E(G) for j = 1, 2, ...,K. For v ∈ V(G) and K ∈N ∪ {0} by [v]K
G we denote the set

[v]K
G := {u ∈ V(G) : there is a path of lenght K from v to u }.

A graph G is called connected if there is a path between any two vertices. Graph G is weakly connected if G̃ is
connected.

The following is the definition of G-contraction by Jachymski [9].

Definition 1.1. ([9]) Let (X, d) be a metric space endowed with a graph G. We say that a mapping T : X→ X
is a G-contraction if T preserves edges of G, that is if

∀
x,y∈X

(x, y) ∈ E(G) =⇒ (Tx,Ty) ∈ E(G),

and there exists some α ∈ [0, 1) such that

∀
x,y∈X

(x, y) ∈ E(G) =⇒ d(Tx,Ty) ≤ αd(x, y).

Mizoguchi and Takahashi [13] had defined an MT-function as follows:

Definition 1.2. ([7]) A function ϕ : [0,∞) → [0, 1) is said to be an MT-function if it satisfies Mizoguchi-
Takahashi’s condition lim supr→t+ ϕ(r) < 1 for all t ∈ [0,∞).

Clearly, if ϕ : [0,∞) → [0, 1) is a nondecreasing function or a nonincreasing function, then it is an
MT-function. ByMT we denote the set of all MT-functions.

Now we state some results from the basic theory of multivalued mappings.

Lemma 1.3. ([11]) Let (X, d) be a metric space and B ∈ CL(X). Then for each x ∈ X and q > 1 there exists an element
b ∈ B such that d(x, b) ≤ qd(x,B).

As mentioned earlier, Wardowski [18] initiated the idea of F-contractions and provided a generalization
of the Banach contraction principle. Following Wardowski [18] z denotes the set of all functions F : R+

→ R
satisfying the following three conditions:

(F1) F is strictly increasing;

(F2) For each sequence {αn}n∈N of positive real numbers limn→∞ αn = 0 if and only if limn→∞ F(αn) = −∞;

(F3) There exists k ∈ (0, 1) such that limα→0+ αkF(α) = 0.
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Definition 1.4. ([18]) Let (X, d) be a metric space and F ∈ z. A self mapping T on X is called an F-contraction
if there exists τ > 0 such that for all x, y ∈ X

d(Tx,Ty) > 0 implies τ + F(d(Tx,Ty)) ≤ F(d(x, y)).

Further Altun, Olgun and Minak [1] used F-contractions in multivalued maps to generalize the constant
τ by putting some restriction using the lim inf and prove the fixed point theorems on closed and bounded
subsets of complete metric space.

2. Main Results

Definition 2.1. ([17]) A multivalued mapping F : X → CB(X) is said to be a Mizoguchi-Takahashi G-
contraction if for all distinct x, y ∈ X with (x, y) ∈ E(G) we have:

(i) H(F(x),F(y)) ≤ ϕ(d(x, y))d(x, y), where ϕ ∈ MT ;

(ii) If u ∈ F(x) and v ∈ F(y) are such that d(u, v) ≤ d(x, y), then (u, v) ∈ E(G).

Motivated with Definition 2.1 of [17], we define in a more general setting the sequence of multivalued
F-G f -contraction for functions F ∈ z.

Definition 2.2. Let (X, d) be a metric space endowed with a graph G and let F ∈ z be right continuous.
A sequence of multivalued mappings {Tq}

∞

q=1 from X into CB(X) such that for each u ∈ X and q ∈ N,
Tq(u) ∈ CB(X), is said to be a generalized F-G f -contraction if f : X → X is a surjection such that for u, v ∈ X,
u , v and ( f u, f v) ∈ E(G) imply

2τ
(
d( f u, f v)

)
+ F(H(Tq(u),Tr(v))) ≤ F(d( f u, f v)), for all q, r ∈N for some τ > 0 , (2.1)

where

τ : (0,∞)→ (0,∞) and inf lim
t→s+

τ (t) > 0, for all s ≥ 0.

If f x ∈ Tq(u) and f y ∈ Tr(v) such that d( f x, f y) ≤ d( f u, f v), then ( f x, f y) ∈ E(G).

Theorem 2.3. Let (X, d) be a complete metric space with a graph G and {Tq}
∞

q=1 be a generalized F-G f -contraction.
Assume there exist m ∈N and v0 ∈ X such that:

(i) T1(v0) ∩ [ f v0]m
G , ∅;

(ii) For any sequence {vn} in X, if vn → v and vn ∈ Tn(vn−1)∩ [vn−1]m
G for all n ∈N, then there exists a subsequence

{vnk } of {vn} such that (vnk , v) ∈ E(G) for all k ∈N.

Then f and the sequence {Tq}
∞

q=1 have a coincidence point, i.e. there exists v∗ ∈ X such that f v∗ ∈
⋂

q∈N
Tq(v∗).

Proof. Choose v1 ∈ X such that f v1 ∈ T1(v0) ∩ [ f v0]m
G then there exists a path from f v0 to f v1, i.e.

f v0 = f u1
0, . . . , f u1

m = f v1 ∈ T1(v0), and
(

f u1
i , f u1

i+1

)
∈ E(G)

for all i = 0, 1, 2, . . . ,m−1. Without any loss of generality, we assume that f u1
k , f u1

j for each k, j ∈ {0, 1, 2, ...,m}
with k , j.

Since ( f u1
0, f u1

1) ∈ E(G), we get

2τ
(
d( f u1

0, f u1
1)
)

+ F(H(T1(u1
0),T2(u1

1))) ≤ F(d( f u1
0, f u1

1)). (2.2)
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As F is continuous from right, for τ
(
d( f u1

0, f u1
1)
)
> 0 there exists a real number q > 1, such that,

F(qH(T1(u1
0),T2(u1

1))) < F(H(T1(u1
0),T2(u1

1))) + τ
(
d( f u1

0, f u1
1)
)
. (2.3)

Rename f v1 as f u2
0. Using Lemma 1.3, for each f u2

0 ∈ T1(u1
0) and q > 1 we can find some f u2

1 ∈ T2(u1
1) such

that

d( f u2
0, f u2

1) < qH(T1(u1
0),T2(u1

1))

which implies

F(d( f u2
0, f u2

1)) < F(qH(T1(u1
0),T2(u1

1))). (2.4)

From (2.2), (2.3) and (2.4) we have

τ
(
d( f u1

0, f u1
1)
)

+ F(d( f u2
0, f u2

1)) < F(H(T1(u1
0),T2(u1

1))) + 2τ
(
d( f u1

0, f u1
1)
)

< F(d( f u1
0, f u1

1)),

which implies

F(d( f u2
0, f u2

1)) < F(d( f u1
0, f u1

1)) − τ
(
d( f u1

0, f u1
1)
)
.

So we have

d( f u2
0, f u2

1) < d( f u1
0, f u1

1), which implies ( f u2
0, f u2

1) ∈ E(G).

Since ( f u1
1, f u1

2) ∈ E(G), we have

2τ
(
d( f u1

1, f u1
2)
)

+ F(H(T2(u1
1),T2(u1

2))) ≤ F(d( f u1
1, f u1

2)). (2.5)

As F is continuous from right, for τ
(
d( f u1

1, f u1
2)
)
> 0 there is a real number q > 1 such that

F(qH(T2(u1
1),T2(u1

2))) < F(H(T2(u1
1),T2(u1

2))) + τ
(
d( f u1

1, f u1
2)
)
. (2.6)

Again by using Lemma 1.3, for each f u2
1 ∈ T2(u1

1) and q1 > 1 we can find some f u2
2 ∈ T2(u1

2) such that

d( f u2
1, f u2

2) < q1H(T2(u1
1),T2(u1

2)).

This implies

F(d( f u2
1, f u2

2)) < F(q1H(T1(u1
0),T2(u1

1))). (2.7)

From (2.5), (2.6) and (2.7) we obtain

τ
(
d( f u1

1, f u1
2)
)

+ F(d( f u2
1, f u2

2)) < F(H(T2(u1
1),T2(u1

2))) + 2τ
(
d( f u1

1, f u1
2)
)

< F(d( f u1
1, f u1

2)),

and from here

F(d( f u2
1, f u2

2)) < F(d( f u1
1, f u1

2)) − τ
(
d( f u1

1, f u1
2)
)
.

Therefore, we have

d( f u2
1, f u2

2) < d( f u1
1, f u1

2) which implies ( f u2
1, f u2

2) ∈ E(G).
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Thus we obtain m + 1 vertices { f u2
0, f u2

1, f u2
2, . . . , f u2

m} in X such that f u2
0 ∈ T1(u1

0) and f u2
s ∈ T2(u1

s ) for
s = 1, 2, . . . ,m, with

d( f u2
s , f u2

s+1) < d( f u1
s , f u1

s+1),

for s = 0, 1, 2, . . . ,m − 1. As ( f u1
s , f u1

s+1) ∈ E(G) for all s = 0, 1, 2, . . . ,m − 1, we get ( f u2
s , f u2

s+1) ∈ E(G) for all
s = 0, 1, 2, . . . ,m − 1.

Let f u2
m = f v2. Then the set of points f v1 = f u2

0, f u2
1, f u2

2, . . . , f u2
m = f v2 ∈ T2(v1) is a path from f v1 to

f v2. Rename f v2 as f u3
0. Then by the same procedure we obtain a path

f v2 = f u3
0, f u3

1, f u3
2, . . . , f u3

m = f v3 ∈ T3(v2)

from f v2 to f v3. Inductively, for some h ∈Nwe obtain

f vh = f uh+1
0 , f uh+1

1 , f uh+1
2 , . . . , f uh+1

m = f vh+1 ∈ Th+1(vh)

with

2τ(d( f uh
t , f uh

t+1)) + F(H(Th+1(uh
t ),Th+1(uh

t+1))) ≤ F(d( f uh
t , f uh

t+1)).

Similarly since f uh+1
t ∈ Th+1(uh

t ), and again using Lemma 1.3, one can find some f uh+1
t+1 ∈ Th+1(uh

t+1) such that

F(d( f uh+1
t , f uh+1

t+1 )) < F(d( f uh
t , f uh

t+1)) − τ(d( f uh
t , f uh

t+1)), (2.8)

which implies that,

d( f uh+1
t , f uh+1

t+1 ) < d( f uh
t , f uh

t+1), (2.9)

and hence ( f uh+1
t , f uh+1

t+1 ) ∈ E(G) for t = 0, 1, 2, . . . ,m − 1.
Consequently, we construct a sequence { f vh}

∞

h=1 of points of X with

f v1 = f u1
m = f u2

0 ∈ T1(v0),

f v2 = f u2
m = f u3

0 ∈ T2(v1),

f v3 = f u3
m = f u4

0 ∈ T3(v2),
...

f vh+1 = f uh+1
m = f uh+2

0 ∈ Th+1(vh),

for all h ∈N.
Now from (2.8) we have

F
(
d( f uh+1

t , f uh+1
t+1 )

)
< F

(
d( f uh

t , f uh
t+1)

)
− τ

(
d( f uh

t , f uh
t+1)

)
< F(d( f uh−1

t , f uh−1
t+1 )) − τ

(
d( f uh−1

t , f uh−1
t+1 )

)
− τ

(
d( f uh

t , f uh
t+1)

)
...

< F(d( f u1
t , f u1

t+1)) − τ
(
d( f uh

t , f uh
t+1)

)
− τ

(
d( f uh−1

t , f uh−1
t+1 )

)
− ... − τ

(
d( f u1

t , f u1
t+1)

)
︸                                                                         ︷︷                                                                         ︸

h terms

< F(d( f u1
t , f u1

t+1)) − h min
{
τ
(
d( f uh−1

t , f uh−1
t+1 )

)
, τ

(
d( f uh

t , f uh
t+1)

)
, ..., τ

(
d( f u1

t , f u1
t+1)

)}
< F(d( f u1

t , f u1
t+1)) − hτmin
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As h→∞we get lim
h→∞

F(d( f uh+1
t , f uh+1

t+1 ))→ −∞ then from (F2) lim
h→∞

d( f uh+1
t , f uh+1

t+1 ) = 0.

Now from (F3), there exists some k ∈ (0, 1) such that

lim
h→∞

d
(

f uh+1
t , f uh+1

t+1

)k
F
(
d
(

f uh+1
t , f uh+1

t+1

))
= 0.

Now from consequences of (2.2) we have

F
(
d
(

f uh+1
t , f uh+1

t+1

))
≤ F(d( f u1

t , f u1
t+1)) − hτmin for all h ∈N,

which implies that

d
(

f uh+1
t , f uh+1

t+1

)k
F
(
d
(

f uh+1
t , f uh+1

t+1

))
− d

(
f uh+1

t , f uh+1
t+1

)k
F(d( f u1

t , f u1
t+1))

≤ d
(

f uh+1
t , f uh+1

t+1

)k (
F
(
d
(

f uh+1
t , f uh+1

t+1

))
− hτmin

)
− d

(
f uh+1

t , f uh+1
t+1

)k
F(d( f u1

t , f u1
t+1))

= −hτmind
(

f uh+1
t , f uh+1

t+1

)k
≤ 0.

Letting h→∞we deduce that,

lim
h→∞

hd
(

f uh+1
t , f uh+1

t+1

)k
= 0. (2.10)

It follows from (2.10) that there exists some h1 ∈N such that

hd
(

f uh+1
t , f uh+1

t+1

)k
≤ 1 for all h > h1. (2.11)

This implies that

d
(

f uh+1
t , f uh+1

t+1

)
≤

1

h
1
k

for all h > h1.

Now for p > h > h1 consider,

d( f vh, f vp) ≤
p−1∑
i=h

d
(

f vi, f vi+1
)
≤

p−1∑
i=h

1

i
1
k

. (2.12)

Since 0 < k < 1 therefore series in (2.12) converges, and so for all t ∈ {0, 1, 2, ...,m − 1}, it follows that
{ f vh = f uh

m} is a Cauchy sequence.
Since (X, d) is complete, there is v∗ ∈ X such that f vh → f v∗. Since f vh ∈ Th(vh−1) ∩ [vn−1]m

G for all n ∈ N,
there exists a subsequence { f vhk } such that ( f vhk , f v∗) ∈ E(G) for all k ∈N. Thus

2τ(d( f vhk−1 , f v∗)) + F(H(Thk (vhk−1 ),Tq(v∗)) ≤ F(d( f vhk−1 , f v∗))
F(H(Thk (vhk−1 ),Tq(v∗))) < F(d( f vhk−1 , f v∗)).

Since F is an increasing function we have

H(Thk (vhk−1 ),Tq(v∗)) < d( f vhk−1 , f v∗). (2.13)

By (2.13), for all q ∈Nwe have

d( f v∗,Tq(v∗)) ≤ d( f v∗, f vhk ) + d( f vhk ,Tq(v∗))
≤ d( f v∗, f vhk ) + H(Thk (vhk−1 ),Tq(v∗))
< d( f v∗, f vh+1) + d( f vhk−1 , f v∗).

Letting k → ∞ in the above inequality, we get d( f v∗,Tq(v∗)) → 0, which implies f v∗ ∈ Tq(v∗) for all q ∈ N.
Hence, f v∗ ∈

⋂
q∈N

Tq(v∗) as required.
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Corollary 2.4. Let (X, d) be a complete metric space with a graph G, T : X → CB(X) and f : X → X a surjection.
If u, v ∈ X are such that u , v and ( f u, f v) ∈ E(G) imply

τ
(
d( f u, f v)

)
+ F(H(T(u),T(v))) ≤ F(d( f u, f v)),

where τ : (0,∞)→ (0,∞) with inf lim
t→s+

τ (t) > 0, for all s ≥ 0.

Also if F is right continuous and there exist m ∈N and v0 ∈ X such that:

(i) T(v0) ∩ [ f v0]m
G , ∅;

(ii) For any sequence {vn} in X, if vn → v and vn ∈ T(vn−1) ∩ [vn−1]m
G for all n ∈ N, there exists a subsequence

{vnk } such that (vnk , v) ∈ E(G) for all k ∈N,

then f and T have a coincidence point, i.e., there exists v∗ ∈ X such that f v∗ ∈ T(v∗).

Corollary 2.5. Let (X, d) be a complete metric space with a graph G, T : X → CB(X). If u, v ∈ X are distinct
elements such that (u, v) ∈ E(G) implies

τ (d(u, v)) + F(H(T(u),T(v))) ≤ F(d(u, v)),
where τ : (0,∞)→ (0,∞) with inf lim

t→s+
τ (t) > 0, for all s ≥ 0.

Also if F is right continuous and there exist m ∈N and v0 ∈ X such that:

(i) T(v0) ∩ [v0]m
G , ∅;

(ii) For any sequence {vn} in X, if vn → v and vn ∈ T(vn−1) ∩ [vn−1]m
G for all n ∈ N, there exists a subsequence

{vnk } such that (vnk , v) ∈ E(G) for all k ∈N,

then T has a fixed point v∗.

If we consider F(t) = ln t in Corollary 2.5, then we arrive at Theorem 3 on multivalued maps of [17].
The following are the consequence for the case of self mappings with τ is taken as a positive real constant

in Theorem 2.1.

Corollary 2.6. Let (X, d) be a complete metric space with a graph G, {Tq}
∞

q=1 be a sequence of the self mappings on X,
and f : X→ X a surjection. Suppose that for distinct elements u and v in X, ( f u, f v) ∈ E(G) implies

τ + F(d(Tq(u),Tr(v))) ≤ F(d( f u, f v))

for all q, r ∈N, and there exist m ∈N and v0 ∈ X such that:

(i) T1(v0) ∩ [ f v0]m
G , ∅;

(ii) For any sequence {vn} in X such that vn → v and vn = Tn(vn−1) ∩ [vn−1]m
G for all n ∈ N, there exists a

subsequence {vnk } of {vn} such that (vnk , v) ∈ E(G) for all k ∈N.

Then f and the sequence {Tq}
∞

q=1 have a coincidence point, i.e., there exists v∗ ∈ X such that f v∗ =
⋂

q∈N
Tq(v∗).

Corollary 2.7. Let (X, d) be a complete metric space with a graph G, T : X→ X, and f : X→ X a surjection. Let u
and v be distinct elements in X such that ( f u, f v) ∈ E(G) implies

τ + F(d(T(u),T(v))) ≤ F(d( f u, f v)), (2.14)

and let there exist m ∈N and v0 ∈ X, such that:

(i) T(v0) ∩ [ f v0]m
G , ∅;
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(ii) For any sequence {vn} in X converging to v ∈ X and such that vn = T(vn−1)∩ [vn−1]m
G for all n ∈N there exists

a subsequence {vnk } of {vn} such that (vnk , v) ∈ E(G) for all k ∈N.

Then f and T have a coincidence point, i.e., there exists v∗ ∈ X such that f v∗ = Tv∗.

Corollary 2.8. Let (X, d) be a complete metric space with a graph G, T : X→ X. Assume that for distinct u, v ∈ X,
(u, v) ∈ E(G) implies

τ + F(d(T(u),T(v))) ≤ F(d(u, v)), (2.15)

and that there exist m ∈N and v0 ∈ X such that:

(i) T(v0) ∩ [v0]m
G , ∅;

(ii) For any sequence {vn} in X which converges to v ∈ X and satisfies vn = T(vn−1) ∩ [vn−1]m
G for all n ∈ N there

is a subsequence {vnk } such that (vnk , v) ∈ E(G) for all k ∈N.

Then T has a fixed point v∗.

Remark 2.9. Using the notion from [9], G0 is the graph associated with metric space (X, d) with E (G) = X×X.
If we assume the graph G = G0 and F(t) = ln t in Corollary 2.8, then the contractive condition (2.15) is
applicable for all u and v in X. Thus Corollary 2.8 reduces to the Banach contraction principle.

3. Applications

A. Homotopy theory
By using some ideas from [12], we give an application in homotopy theory as a consequences of Corollary

2.8 with G = G0.

Theorem 3.1. Let (X, d) be a complete metric space, W an open subset of X, and U : [0, 1] × W → CB(X) a
multivalued mapping satisfying the following conditions:

(a) α < U(µ, α) for each α ∈ ∂W, where ∂W is the boundary of W, and µ ∈ [0, 1];

(b) U(µ, ·) : W → CB(X) is a multivalued map such that;

τ + F(H(U(µ, α),U(µ′, β)) ≤ F(d(α, β))

for each µ, µ′ ∈ [0, 1], α, β ∈ X ;

(c) there exists a continuous increasing function ψ : (0, 1]→ R such that

F(H(U(λ, α),U(µ, β))) ≤ F(ψ(λ) − ψ(µ)),

for all λ, µ ∈ [0, 1] and all α, β ∈W.

Then U(0, ·) has a fixed point if and only if U(1, ·) has a fixed point.

Proof. Suppose U(0, ·) has a fixed point p, so p ∈ U(0, p); it follows from (a), p ∈W.
Define

A := {(µ, α) ∈ [0, 1] ×W : α ∈ U(µ, α)}.

Clearly A , ∅. We define the partial ordering in A as follows:

(µ, α) - (λ, β)⇐⇒ µ ≤ λ and d(α, β) ≤
2

1 − e−τ
(ψ(λ) − ψ(µ)) := r.
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Claim 1. A has a maximal element.

Let L be a totally ordered subset of A and

µ∗ = sup{µ : (µ, α) ∈ L}.

Consider a sequence {(µn, αn) }
n≥0

in L such that, (µn, αn) - (µn+1, αn+1) and µn → µ∗ as n → ∞. Then for

m > n, we have

d(αm, αn) ≤
2

1 − e−τ
(ψ(µm) − ψ(µn))→ θ, as n,m→∞,

which means that {αn} is a Cauchy sequence. Since (X, d) is a complete metric space, there exists ζ ∈ X, such
that αn → ζ.

Now consider

τ + F(H(U(µn, αn),U(µ∗, ζ))) ≤ F(d(αn, ζ))

which implies

H(U(µn, αn),U(µ∗, ζ)) < d(αn, ζ)

Since αn+1 ∈ U(µn, αn) we have

d(αnk+1 ,U(µ∗, ζ)) < d(αn, ζ).

By [8, Lemma 3] there exists ζnk ∈ U(µ∗, ζ) such that

d(αn+1, ζnk ) < d(αn, ζ).

Further,

d(ζ, ζn) ≤ d(ζ, αn+1) + d(αn+1, ζn)
< d(ζ, αnk+1 ) + ad(αnk , ζ)→ 0 for all n→∞.

Thus ζn → ζ ∈ U(µ∗, ζ) and since U(µ∗, ζ) ∈ CB(X)), ζ ∈W. From here we get (µ∗, ζ) ∈ A. Thus (µ, α) - (µ∗, ζ)
for all (µ, α) ∈ Ω, which means that (µ∗, ζ) is an upper bound of Ω. Hence by Zorn’s Lemma, A has the
maximal element (µ∗, ζ). This completes the proof of Claim 1.

Claim 2. µ∗ = 1.

Suppose that µ∗ < 1 and choose µ ≥ µ∗ such that

Bd(ζ, r) ⊂W, where r = ψ(µ∗) − ψ(µ).

For any ξ ∈ Bd(ζ, r), we have

d(α, ζ) < r.

Now for any ξ ∈ Bd(ζ, r) consider

τ + F(H(U(µ∗, ζ),U(µ, α))) ≤ F(d(α, ζ))

which implies

H(U(µ̊, ζ),U(µ, α)) < d(α, ζ) < r.
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Thus the contractive condition holds for multivalued map U(µ, α) : Bd(ζ, r) → CB(X) in the complete
metric space (Bd(ζ, r), d). By Corollary 2.8, for each µ ∈ [0, 1], there exist some α ∈ Bd(ζ, r), such that
α ∈ U(µ, α). As

d(ζ, α) < r = ψ(µ∗) − ψ(µ),

we have

(µ∗, ζ) - (µ, α),

a contradiction. Thus µ∗ = 1 and hence U(·, 1) has a fixed point.
Conversely, if U(1, ·) has a fixed point, then in a similar way we prove that U(0, ·) has a fixed point.

B. System of integral equations
Consider the system of Urysohn integral equations

f x(t) =

∫
Ω

Ki(t, s, x(s))ds + hi(t), t ∈ Ω and i ∈N, (3.1)

where Ω is a closed and bounded subset of a finite dimensional Euclidean space and x, hi are in C[Ω,Rn].
(1) Suppose that Ki : Ω2

×Rn
→ Rn for i = 1, 2, . . . ,n are such that Fi,x ∈ C[Ω,Rn] for each x ∈ X, where

Fi,x(t) =

∫
Ω

Ki(t, s, f x(s))ds, for all t ∈ Ω and i ∈N.

(2) There is τ > 0 such that for every x, y in C[Ω,Rn] it holds∣∣∣Fm,x(t) − Fn,y(t) + hn(t) − hq(t)
∣∣∣ ≤ e−τ

∣∣∣ f x(t) − f y(t)
∣∣∣ , for all m,n ∈N.

Theorem 3.2. Under the assumptions (1) and (2) the system of Urysohn integral equations (3.1) have a unique
common solution in C[Ω,Rn].

Proof. Consider a space X = C[Ω,Rn] with the metric dτ : X × X→ R defined by:

dτ(x, y) = max
t∈Ω
|x(t) − y(t)|.

For each i ∈N define Si : X→ X by

Six = Fi,x + hi.

Consider,∣∣∣Smx(t) − Sny(t)
∣∣∣ =

∣∣∣Fm,x(t) − Fn,y(t) + hm(t) − hn(t)
∣∣∣ : m , n

≤ max
t∈Ω

∣∣∣Fm,x(t) − Fn,y(t) + hm(t) − hn(t)
∣∣∣

≤ e−τ max
t∈Ω

∣∣∣ f x(t) − f y(t)
∣∣∣ .

Equivalently we have

dτ(Smx,Sny) ≤ e−τdτ( f x, f y) for all m,n ∈N.

Further,

ln(dτ(Smx,Sny)) ≤ −τ + ln(dτ( f x, f y))
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or

τ + ln(dτ(Smx,Sny)) ≤ ln(dτ( f x, f y)).

Now we observe that the function F : R+
→ R defined by F(t) = ln t for each t in Ω, and τ > 0 is in z. Thus

all conditions of Corollary 2.6 of Theorem 2.1 are satisfied, so the system of Urysohn integral equations (3.1)
and f have a coincidence point as a solution.

C. Fractional differential equation

In the next application, we discuss a generalization of a fractional differential equation described in
[3]. For the function 1 ∈ C(I) and a continuous function f : I × R → R, where I = [0, 1] and C(I) is the
Banach space of continuous real-valued functions on I with the uniform topology, consider the fractional
differential equation

Dαx(t) + f (t, 1(x(t))) = 0 (0 ≤ t ≤ 1, α > 1, x ∈ C(I)) (3.2)

with boundary conditions x(0) = x(1) = 0. Note that the associated Green function with the problem (3.2)
is:

G(t, s) =

{
(t(1 − s))α−1

− (t − s)α−1 0 ≤ s ≤ t ≤ 1,
(t(1−s))α−1

Γ(α) 0 ≤ t ≤ s ≤ 1.

Theorem 3.3. Let 1 : R→ R and f : I × I→ R be continuous functions which satisfy

(i)
∣∣∣( f (s, 1(x(s))) − f (s, 1(y(s))))

∣∣∣ ≤ ∣∣∣1(x(s)) − 1(y(s))
∣∣∣ for all s ∈ I;

(ii) supt∈I

1∫
0

G(t, s)ds ≤ e−τ for some τ > 0.

Then the problem (3.2) has a unique solution.

Proof. For the space X = C(I) we have d(x, y) = max
t∈[0,1]

∣∣∣x(t) − y(t)
∣∣∣ for x and y in X. It is well known that

x ∈ (X,R) is a solution of (3.2) if and only if it is a solution of the integral equation

x(t) =

1∫
0

G(t, s) f (s, (1x)(s))ds for all t ∈ I.

Define the operators F : X→ X and S : X→ X by

Fx(t) =

1∫
0

G(t, s) f (s, (1x)(s))ds for all t ∈ I,

and

Sx(t) = (1x)(t) for t ∈ I.
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Thus, for finding a solution of (3.2) it is sufficient to show that F and 1 have a coincidence point. Let
x, y ∈ C(I). For all t, s ∈ I we have

∣∣∣Fx(t) − Fy(t)
∣∣∣ =

∣∣∣∣∣∣∣∣
1∫

0

G(t, s)( f (s, (1x)(s)) − f (s, (1y)(s)))ds

∣∣∣∣∣∣∣∣
≤

1∫
0

|G(t, s)|
∣∣∣( f (s, (1x)(s)) − f (s, (1y)(s)))

∣∣∣ ds

≤

1∫
0

|G(t, s)|
∣∣∣(1x)(s) − (1y)(s)

∣∣∣ ds

≤

∣∣∣(Sx)(s) − (Sy)(s)
∣∣∣ sup

t∈I

1∫
0

|G(t, s)| ds

≤ e−τ
∣∣∣(Sx)(s) − (Sy)(s)

∣∣∣ .
This implies that for each x, y ∈ X we have

ln d(Fx,Fy) ≤ −τ + ln d(Sx,Sy).

Observe that the function F : R+
→ R defined by F(t) = ln t, t ∈ I, and τ > 0 is in z. Thus by using Corollary

2.7 with graph G = G0 we have x∗ ∈ X such that Fx∗ = Sx∗ with (Sx∗)(t) = (1x∗)(t) for t ∈ I. Thus x∗ is the
required coincidence point of F and 1.
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