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Abstract. In this paper, we determine the coefficient bounds for functions in certain subclasses of close-
to-convex functions of complex order, which are introduced here by means of a certain non-homogeneous
Cauchy-Euler-type differential equation of order m. Relevant connections of some of the results obtained
with those in earlier works are also provided.

1. Introduction, Definitions and Preliminaries
Let R = (-0, c0) be the set of real numbers, C : = C'U {0} be the set of complex numbers,
N:=1{1,2,3,...} = No\ {0}
be the set of positive integers and
IN*:=IN\{1} ={2,3,4,...}.

Let A denote the class of functions of the form
f@)=z+) a2" (1)
n=2

which are analytic in the open unit disk
U={z:zeC and |z|<1}.

Recently Xu et al. [12] introduced the subclasses S, (A,y) and K, (A,y,m;u) of analytic functions
of complex order y € C*, and obtained the coefficient bounds for the Taylor-Maclaurin coefficients for
functions in each of these new sublasses S, (A,y) and K, (A, y,m;u) of complex order y € C*, which is
given by Definitions 1.1 and 1.2 below.
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Definition 1.1. (see [12]) Let ¢ : U — C be a convex function such that
p0)=1 and R(p(z)>0 (zeU).
We denote by S, (A, y) the class of functions f € A satisfying

141 (z [1-A) f @)+ Azf @)
1-A)f@)+Azf" (2)

4
where0 <A <1, yeC.

—1)e(p(1U) (ze 1),

Definition 1.2. (see [12]) A function f € A is said to be in the class K, (A,y, m;u) if it satisfies the following
non-homogenous Cauchy-Euler differential equation:

d"w (m A" w m\ 17 1
m — m- oo i = 7
ot (1 ) wm+m-1)z ) + 4 (m)w ]IZOI (u+7j)=h(z) ,I:(,l m+j+1)

(w:f(z) €A, heSy(Ay); me N, ueR\ (—oo,—]]).

Making use of Definitions 1.1 and 1.2, Xu et al. [12] proved the following coefficient bounds for the
Taylor-Maclaurin coefficients for functions in the sublasses S, (4, ) and K,, (A, y, m; u) of analytic functions
of complex order y € C*.

Theorem 1.3. (see [12]) Let the function f € A be defined by (1). If f € Sy, (A, ), then

n-2

L+ lor o) ]
lan| < —

Tm=-D'[1+A(m-1)]

(n e IN).

Theorem 1.4. (see [12]) Let the function f € A be defined by (1). If f € K, (A, v, m;u), then

n-2 m—1 .
I [+ Jo O - pyl] T Gt i+ 1)
la,| < — Iz (m,n € IN),

m-D'[1+A(n-1)] "ﬁl(u+j+n)
j=0

(0<A<1, yel; ueR\(-oo,-1]).

Here, in our present sequel to some of the aforecited works (especially [12]), we first introduce the
following subclasses of analytic functions of complex order y € C*.

Definition 1.5. Let ¢ : U — C be a convex function such that
p0) =1 and R(p(z)>0 (ze ).
We denote by SQ,, (A, y, 6, 7) the class of functions f € A satisfying

1 z[A=A) f2) + Azf' @)
Y\ 1=-N)g@)+Azg (2)

where g € Sy, (6,7); 0<A,060<1; y,TeC.

1+

~1)ep) (e,
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Definition 1.6. A function f € A is said to be in the class KQ, (A, 7,0, T, m;u) if it satisfies the following non-
homogenous Cauchy-Euler differential equation of order m :

d"w (m A w m\ 17 =
m — m=1_____ e 1) = /
z T + (1 ) u+m-1)z T +oe (m)w ]Izol (u+7j)=h(z) ]Izol u+j+1)

(w =fz) e A; he SQ, (A, y,0,1); meN'; u € R\ (—oo,—l]).

Remark 1. There are many choices of the function ¢ which would provide interesting subclasses of analytic
functions of complex order y € C*. In particular,
(i) if we let

1+Az

= —-1< <1
@ (2) T+ B2 (-1<B<A<1,zel),

then it is easy to verify that ¢ is a convex function in U and satisfies the hypotheses of Definition 1.5.
Therefore we obtain the new classes

SQ, (A, y,6,1)=KQ(A,y,0,7,A,B) and KQ, (A, y,0,t,mu)=DK(A,y,o,1,A B mu).

For 6 = A and 7 = 1, these classes introduced and studied by Ul-Hagq et al. [10].
(ii) if we let

1+(1-
<p(2)=—+(1_22ﬁ)z

then we obtain the new classes
SQ, (A, y,6,1) =KQ(A,y,6,t,p) and  KQy(A,y,0,1,mu)=BK(A,y,01pu).

For 6 = A, t =1 and m = 2, these classes are introduced and studied by Ul-Hagq et al. [9].

In this paper, by using the subordination principle between analytic functions, we obtain coefficient
bounds for the Taylor-Maclaurin coefficients for functions in the substantially more general function classes
8Q, (A,y,6,7) and KQ, (A,y,0,7,m;u) of analytic functions of complex order y € C*, which we have
introduced here.

Our results presented here would generalize and improve the corresponding results obtained earlier
by (for example) Altintas et al. [1], Nasr and Aouf [4], Robertson [5], Srivastava et al. [7] and Ul-Haq et al.
[9, 10], (see also [2, 3, 8, 11]).

In our investigation, we shall make use of the principle of subordination between analytic functions,
which is explained in Definition 1.7 below.

(0<B<1;,zel),

Definition 1.7. For two functions f and g, analytic in U, we say that the function f is subordinate to g in U, and
write

f@<g@ (e,
if there exists a Schwarz function w, analytic in U, with

w(0)=0 and lw(z)] < 1 (ze )
such that

f@=g@@) ().
Indeed, it is known that

fR)<g@k zelU)= f(0)=g(0) and f(U) cgU).
Furthermore, if the function g is univalent in U, then we have the following equivalence

f@<g@) el f(0)=90) ad  f(U)cg).
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2. Main Results and their Demonstration

In order to prove our main results (Theorems 2.2 and 2.3 below), we first recall the following lemma
due to Rogosinski [6].

Lemma 2.1. Let the function g given by
9(2) =) b (zeU)
k=1
be convex in U. Also let the function f given by

f(z) = i aZk (z e U)
k=1
be holomorphic in U. If
f@) <a(@  (zel),
then
gl < b (ke N).

We now state and prove each of our main results given by Theorems 2.2 and 2.3 below.
Theorem 2.2. Let the function f € A be defined by (1). If f € SQ, (A, y,0,7), then
n-2
[ e+[er Il

n'[1+6(n—-1)]

la,] <

w2 [1+A(m—j-1)] n;};[j;z [k+ ¢’ (O)|-|T|]
(n=j-D1+6(n-j-1)]

@ O]y

n[l+A(n-1)] P

(neN’),

(gES(P(é,T),‘ 0<A6<L; y,TeC*).

Proof. Let the function f € SQ, (A, 7,6, 7) be of the form (1). Therefore, there exists a function

g(z) =zZ+ i bnzn S S(P (6, T) (T c Cx-) (2)
n=2
so that
1(z[A-AN)f@)+Azf )] )
1+7’( 1-M)g @+ Azg' (2) 1] €(U). o

Note that by Theorem 1.3, we have

n-2
I [+ [ O 11
bl < G A rem—n "N @)
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Let
Fiz) = A-A)f@+Azf'(2) :z+ZAnz”, A, =[1+A(nm-1)]a,
n=2
G = (1-Ng@+Azg @) =z+) Bz",  By=[1+A(n=1]b,
n=2
Then (3) is of the form
1 (zF (2)
+)—/( G(Z) —1)6(;)(“;.])

Let us define the function p(z) by

pz) =1+ %(Zg((zz)) - 1) (z e U).

Therefore, we deduce that

PO =¢0)=1 and p@E)ee) (zel).
So we have

p@) <o)  (zeU).

Hence, by Lemma 2.1, we obtain

PO sl e,
where

p)=1+cz+cz +--- (ze ).
Also from (8), we find

2F'(2) - G(2) = y (p(2) — 1) G(2).

Since A; = B1 = 1, in view of (11), we obtain
n-2
nAn — By =y {cn-1 + cu2Bo + -+ c1Byo1} =yl cnar + Z ¢jBu-j| (meN).
j=1

Now we get from (4), (5), (6),(9) and (12),

n-2
1 [+ |o’ O - I«l]

< 2
n[1+06(m—-1)]

n—j-2
w2 [1+A(m—j-1)] kljo [k+ @ 0| |T|]

@ )|y *
TYiESNTE | D M ey e T IR

This evidently completes the proof of Theorem 2.2. [

6405

(10)

(11)

(12)
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Theorem 2.3. Let the function f € A be defined by (1). If f € KQ, (A,y,0,1,m;u), then

n-2
1T [+ [ O 1]
n[1+6(n-1)]

la,| <

¢’ (O)| i M . no [T+ A(m—j-1)] k]:[ [k + l(p' (o)| ) |T|]

n[l+A@m-1)] o (n=j-DI1+6(n-j-1)]

n—j-2
0

m—1

[Tm+j+1)

= (neN), (13)
IT(w+j+n)
j=0

0<A0<L y,1eC; melN; ueR\(-o0,-1]).

Proof. Let the function f € A be given by (1). Also let

h(z) =z + Z h.z" € 8Q, (A,7,6,7).

n=2
We then deduce from Definition 1.6 that

m—1
[T@u+j+1)
g, = h,  (neN, ueR\(—o0,—1]).

T om-1
[T (u+j+n)
j=0

Thus, by using Theorem 2.2 in conjunction with the above equality, we have assertion (13) of Theorem 2.3.
This completes the proof of Theorem 2.3. [

3. Corollaries and consequences

In this section, we apply our main results (Theorems 2.2 and 2.3) in order to deduce each of the following
corollaries and consequences.
Setting

(Z)_1+Az
P = 1B

in Theorems 2.2 and 2.3, we get Corollaries 3.1 and 3.2, respectively.

Corollary 3.1. Let the function f € A be defined by (1). If f € KQ(A,y, 0,7, A, B), then

(-1<B<A<1;zel),

T [k + [l (A - B)]
k=0

n! [1+06(n—-1)]

la,| <

n—j-2

b/l(A_B) n-2 [1+/\(1’l—j—1)] kI:IO [k + 7] (A - B)]
n[l+Amn-1)] m—j-D'[1+6(n—-j-1)]

(neN"),
j=1



S. Bulut / Filomat 31:20 (2017), 6401-6408 6407

(geS(p(é,T); 0<A,6<1, y,71eC; -1<B<AX< 1).
Corollary 3.2. Let the function f € A be defined by (1). If f € DK (A,y,0,7,A, B, m; u), then

Ttk +1d(A-B)]

k=0
n[1+06(m—-1)]

la,| <

n—j-2 m—1

g | e lrAe=j=Dl I ker@-pl|| T+
1

AT YT | R Ry Ry BV Y T TR R (neN),

m=1
j= IT (u+j+n)
j=0

0<A,0<1; y,teC; -1<B<A<1, meN’; ueR\(-oo,-1]).

Remark 2. It is easy to see that

2|7/ (A - B)

k A-B)<k
+llA-B) sk+ = —

(keIN", -1<B<A<1,1€0C),

which would obviously yield significant improvements over [10, Theorems 1 and 2], witho = Aand t =1
in Corollaries 3.1 and 3.2, respectively.

Setting

1+(1-2p)z

@)= ——— 0<p<1zel),

in Theorems 2.2 and 2.3, we get Corollaries 3.3 and 3.4, respectively.
Corollary 3.3. Let the function f € A be defined by (1). If f € KQ(A,y,0,7,B), then

n-2
kl:{)[k+2lfl(1 -p)
n'[1+6(n-1)]

la,] <

n—j-2

2pyla-p) n2 (LA =j-1)] ! [k+27](1-pB)]

k=
n[l+Am-1)] m—j-D'[1+06(n-j-1)]

(neNN),
j=1

(geS(p(é,T); 0<A,6<1; y,1eC; Osﬁ<1).
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Corollary 3.4. Let the function f € A be defined by (1). If f € BK (A, y,0,7,B;u), then

n-2

[T [k+2|7(1-p)]

n!'[1+06(n-1)]

la,| <

n—j-2

2|V|(1—ﬁ) 1+”_2 [LrA(=j=D kiO e+ 21l =)
n[l+A(m-1)] p (n—j-DI1+06(n~-j-1)]
m—1

ITm+j+1)
B e,

q)(u+j+n)
j=

0<A0<L, y,1eC;0<B<1;, meN; ueR\(-co,—1]).

Remark 3. Taking 6 = A, t = 1 and m = 2 in Corollaries 3.3 and 3.4, we have [9, Theorems 1 and 2],
respectively.
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