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Abstract. Let D = (V,A) be a finite simple directed graph (digraph). A function f : V −→ {−1, 1} is called a
twin signed k-dominating function (TSkDF) if f (N−[v]) ≥ k and f (N+[v]) ≥ k for each vertex v ∈ V. The twin
signed k-domination number of D is γ∗sk(D) = min{ω( f ) | f is a TSkDF of D}. In this paper, we initiate the
study of twin signed k-domination in digraphs and present some bounds on γ∗sk(D) in terms of the order,
size and maximum and minimum indegrees and outdegrees, generalising some of the existing bounds
for the twin signed domination numbers in digraphs and the signed k-domination numbers in graphs. In
addition, we determine the twin signed k-domination numbers of some classes of digraphs.

1. Introduction

Throughout this paper, D is a finite simple directed graph (digraph) with vertex set V(D) and arc set
A(D) (briefly V and A). A digraph without directed cycles of length 2 is an oriented graph. If (u, v) is an
arc of D, we say that v is an out-neighbor of u and u is an in-neighbor of v. For every vertex v, we denote
the set of in-neighbors and out-neighbors of v by N−(v) = N−D(v) and N+(v) = N+

D(v), respectively. Let
N−D[v] = N−[v] = N−(v) ∪ {v} and N+

D[v] = N+[v] = N+(v) ∪ {v}. We write d+
D(v) for the outdegree of a vertex

v and d−D(v) for its indegree. The minimum and maximum indegrees and minimum and maximum outdegrees of
D are denoted by δ−(D) = δ−, ∆−(D) = ∆−, δ+(D) = δ+ and ∆+(D) = ∆+, respectively. A digraph D is called
regular or r-regular if δ−(D) = δ+(D) = ∆−(D) = ∆+(D) = r. If X ⊆ V(D) and v ∈ V(D), then A(X, v) is the
set of arcs from X to v. We denote by A(X,Y) the set of arcs from a subset X to a subset Y. The notation
D−1 is used for the digraph obtained from D by reversing the arcs of D . The complete digraph of order n,
K∗n, is a digraph D such that (u, v), (v,u) ∈ A(D) for any two distinct vertices u, v ∈ V(D). For a real-valued
function f : V(D) −→ R the weight of f is w( f ) =

∑
v∈V f (v), and for S ⊆ V, we define f (S) =

∑
v∈S f (v), so

w( f ) = f (V). Consult [16] for the notation and terminology which are not defined here.
Let k ≥ 1 be an integer and let D = (V,A) be a finite simple digraph with δ−(D) ≥ k − 1. A signed

k-dominating function (abbreviated SkDF) of D is defined in [6] as a function f : V → {−1, 1} such that
f (N−[v]) ≥ k for every v ∈ V. The signed k-domination number for a directed graph D is

γsk(D) = min{ω( f ) | f is a SkDF of D}.
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A γsk(D)-function is a SkDF of D of weight γsk(D). When k = 1, the signed k-domination number γsk(D) is
the usual signed domination number γs(D), which was introduced by Zelinka in [17] and has been studied
by several authors (see for example [14]).

Let k ≥ 1 be an integer and let D be a digraph with min{δ−(D), δ+(D)} ≥ k − 1. we define the
twin signed k-dominating function (briefly TSkDF) as a signed k-dominating function of D which is also
a signed k-dominating function of D−1, i.e., f (N+[v]) ≥ k and f (N−[v]) ≥ k for every v ∈ V. The twin
signed k-domination number for a digraph D is γ∗sk(D) = min{ω( f ) | f is a TSkDF of D}. As the assumption
min{δ−(D), δ+(D)} ≥ k−1 is necessary, we always assume that when we discuss γ∗sk(D), all digraphs involved
satisfy δ−(D) ≥ k − 1 and δ+(D) ≥ k − 1 and thus the order of D, n(D) ≥ k. When k = 1, the twin signed
k-domination number γ∗sk(D) is the usual twin signed domination number γ∗s(D), which was introduced by
Atapour et al. [5].

For any function f : V → {−1, 1}, we define P = P f = {v ∈ V | f (v) = 1} and M = M f = {v ∈ V | f (v) = −1}.
Since every TSkDF of D is a SkDF on both D and D−1, and since the constant function 1 is a TSkDF of D, we
have

max{γsk(D), γsk(D−1)} ≤ γ∗sk(D) ≤ |V(D)|. (1)

Let G = (V,E) be a graph with vertex set V(G) and edge set E(G) (briefly V and E). For every vertex v ∈ V,
the open neighborhood N(v) is the set {u ∈ V | uv ∈ E}. Let N[v] = N(v) ∪ {v}. A function f : V → {−1, 1} is
called a signed dominating function (SDF) of G if f (N[v]) ≥ 1 for every v ∈ V. The signed domination number of
G, denoted by γs(G), is the minimum weight of a signed dominating function on G. The signed domination
number of a graph was introduced by Dunbar et al. [11] and has been studied by several authors [12, 13].

The signed k-dominating function of a graph G is defined in [15] as a function f : V → {−1, 1} such that
f (N[v]) ≥ k for all v ∈ V(G). The signed k-domination number of G, denoted by γsk(G), is the minimum weight
of a signed k-dominating function on G.

In this paper, we initiate the study of the twin signed k-domination numbers of digraphs and establish
some sharp bounds on this parameter. Some of our results are extensions of well-known bounds of the
twin signed domination numbers of digraphs proved in [5].

2. Basic properties of twin signed k-domination numbers

In this section, we present basic properties of the twin signed k-domination number of digraphs. By (1),
γ∗sk(D) ≤ n. The next proposition provides conditions to establish the equality.

Proposition 2.1. Let D be a digraph of order n. Then γ∗sk(D) = n if and only if d−(u) ≤ k for some u ∈ N+[v]
or d+(w) ≤ k for some w ∈ N−[v].

Proof. The sufficiency is clear. Thus, we verify the necessity of the condition. Assume that γ∗sk(D) = n.
Suppose to the contrary that there exists a vertex v ∈ V(D) such that d−(u) ≥ k + 1 for each u ∈ N+[v] and
d+(w) ≥ k + 1 for each w ∈ N−[v]. Define f : V(D) → {−1, 1} by f (v) = −1 and f (x) = 1 for x ∈ V(D) \ {v}.
Obviously, f is a twin signed k-dominating function of D of weight less than n, a contradiction. This
completes the proof.

A tournament is a digraph D in which for every pair u and v of distinct vertices, either (u, v) ∈ A(D) or
(v,u) ∈ A(D), but not both. Next we determine the exact value of the twin signed k-domination number for
particular type of tournament. Let n = 2r+1 for some positive integer r. We define the circulant tournament
CT(n) with n vertices as follows. The vertex set of CT(n) is V(CT(n)) = {u0,u1, . . . ,un−1} and for each i, the
arcs go from ui to the vertices ui+1, . . . ,ui+r, where the indices are taken modulo n. The proof of the next
result can be found in [6].

Proposition 2.2. Let r ≥ k ≥ 1 be integers and n ≥ 2k + 1. Then

γsk(CT(n)) =

{
2k + 1 if r ≡ k + 1 (mod 2)
2k + 3 if r ≡ k (mod 2).
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The next result shows that γ∗sk(CT(n)) = γsk(CT(n))

Proposition 2.3. Let r ≥ k ≥ 1 be integers and n = 2r + 1. Then γ∗sk(CT(n)) = γsk(CT(n)).

Proof. By (1) and Proposition 2.2, we have

γ∗sk(CT(n)) ≥
{

2k + 1 if r ≡ k + 1 (mod 2)
2k + 3 if r ≡ k (mod 2).

Assume that s = b r−k−1
2 c, V− = {u0,u1, . . . ,us,ur+1, . . . ,ur+s} and V+ = V(CT(n)) − V−. For any vertex

v ∈ V(CT(n)), we have |N−[v]| = r + 1, |N+[v]| = r + 1, |N+[v] ∩ V−| ≤ s + 1 and |N−[v] ∩ V−| ≤ s + 1. Define
f : V(CT(n)) → {−1, 1} by f (v) = 1 if v ∈ V+ and f (v) = −1 when v ∈ V−. Clearly, f (N−[v]) ≥ r − 2s − 1 ≥ k
and f (N+[v]) ≥ r−2s−1 ≥ k for each v ∈ V. Therefore f is a TSkDF on CT(n) of weight 2k + 1 if r ≡ k (mod 2)
and 2k + 3 when r ≡ k + 1 (mod 2). Thus

γ∗sk(CT(n)) ≤ ω( f ) =

{
2k + 1 if r ≡ k + 1 (mod 2)
2k + 3 if r ≡ k (mod 2).

and the proof is complete.

As we observed in (1), γ∗sk(D) ≥ max{γsk(D), γsk(D−1)}. It was proved in [5] that the difference γ∗s(D) −
max{γs(D), γs(D−1)} can be arbitrarily large. Now we show that for k ≥ 2, the difference γ∗sk(D)−max{γsk(D),
γsk(D−1)} can also be arbitrarily large.

Theorem 2.4. Let k ≥ 2 and t ≥ 1 be integers. Then there exists a digraph D such that

γ∗sk(D) −max{γsk(D), γsk(D−1)} ≥ 2t.

Proof. For 1 ≤ i ≤ 2t + 1, let Di be a circulant tournament of order 2k − 1 with vertex set {ui
0 . . . u

i
2k−2}. Let D

be obtained from the disjoint union of Di’s, 1 ≤ i ≤ 2t + 1, by adding the set {wi
| 1 ≤ i ≤ 2t} of new vertices

and the set

{(u2t+1
j ,ui

j), (u
`
j ,u

2t+1
j ) | 0 ≤ j ≤ 2k − 2, 1 ≤ i ≤ t and t + 1 ≤ ` ≤ 2t}

∪{(wi,ui
s), (u

i
s+k−1,w

i), | 1 ≤ i ≤ 2t and 1 ≤ s ≤ k − 1}

∪{(ui
0,w

i), (u2t+1
0 ,wi), (wi+t,ui+t

0 ), (wi+t,u2t+1
0 ) | 1 ≤ i ≤ t}

of new arcs. Then the order of D is n = 4kt + 2k − 1. Obviously, D � D−1 and so, γsk(D) = γsk(D−1). By
Proposition 2.1, γ∗sk(D) = n. On the other hand, it is easy to verify that the function f : V(D) → {−1, 1}
defined by f (x) = −1, for x ∈ {wi

| 1 ≤ i ≤ t} and f (x) = +1 otherwise, is a SkDF of D and so γsk(D) ≤ n − 2t.
Thus γ∗sk(D) −max{γsk(D), γsk(D−1)} ≥ n − (n − 2t) = 2t, and the proof is complete.

Now we show that the twin signed k-domination number of digraphs can be arbitrary small.

Theorem 2.5. For any positive integers k, t ≥ 1, there exists a digraph D such that

γ∗sk(D) ≤ 4kt + 2t − 4(k + 1)t2

Proof. Let k, t ≥ 1 be integers and D be a digraph obtained from a complete digraph of order 2(k + 1)t with
vertex set V(K∗2(k+1)t) = {ui

1, . . . ,u
i
2k+2 | 1 ≤ i ≤ t} by adding the set {vi

j,w
i
j | 1 ≤ i ≤ t and 1 ≤ j ≤ 2kt + 2t − k}

of new vertices and the set {(ui
j, v

i
`), (v

i
l,u

i
j+k+1), (wi

`,u
i
j), (u

i
j+k+1,w

i
`) | 1 ≤ i ≤ t, 1 ≤ j ≤ k + 1, 1 ≤ ` ≤

2kt + 2t − k} of new arcs. It is easy to see that the function f : V(D) → {−1, 1} defined by f (x) = −1,
for x ∈ {vi

j,w
i
j | 1 ≤ i ≤ t, 1 ≤ ` ≤ 2kt + 2t − k} and f (x) = +1 otherwise, is a TSkDF of D and so

γ∗sk(D) ≤ w( f ) = 2kt + 2t − 2t(2kt + 2t − k) = 4kt + 2t − 4(k + 1)t2.
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3. Bounds on twin signed k-domination in digraphs

In this section we establish bounds for γ∗sk(D) in terms of the order, size, the maximum and minimum
indegrees and outdegrees of D.

Proposition 3.1. If D is a digraph of order n with δ+
≥ δ− ≥ k + 1, then

γ∗sk(D) ≤ n − 2b
δ− − k + 1

2
c.

Proof. Define t = b δ
−
−k+1
2 c. Let v ∈ V(D) be a vertex, and let A = {u1,u2, . . . ,ut} be a set of t out-neighbors of

v. Define the function f : V(D)→ {−1, 1} by f (x) = −1 for x ∈ {u1 . . . ,ut} and f (x) = 1 otherwise. Then

f (N−[x]) ≥ (δ− + 1) − 2t = δ− − 2t + 1 = δ− − 2b
δ− − k + 1

2
c + 1 ≥ k

and

f (N+[x]) ≥ (δ+ + 1) − 2t = δ+
− 2t + 1 ≥ δ− − 2b

δ− − k + 1
2

c + 1 ≥ k

for each vertex x ∈ V(D). Therefore f is an TSkDF on D of weight 1 − t + (n − t − 1) = n − 2t and thus
γ∗sk(D) ≤ n − 2t = n − 2b δ

−
−k+1
2 c.

Letting t = b δ
+
−k+1
2 c, in the proof of Proposition 3.1, we obtain the following proposition.

Proposition 3.2. If D is a digraph of order n with δ− ≥ δ+
≥ k + 1, then

γ∗sk(D) ≤ n − 2b
δ+
− k + 1

2
c.

Lemma 3.3. Let D be a digraph of order n and let f be a γ∗sk(D)-function. Then
(a) d δ

−+k+1
2 e|M| ≤ |A(P,M)| ≤ b∆+

−k+1
2 c|P|.

(b) d δ
++k+1

2 e|M| ≤ |A(M,P)| ≤ b∆−−k+1
2 c|P|.

(c) |A(P,P)| ≥ max{d δ
−+k−1

2 e|P|, d δ
++k−1

2 e|P|}.

Proof. (a) Let v ∈ M. Since f (N−[v]) ≥ k, we deduce that |A(P, v)| ≥ d d−(v)+k+1
2 e ≥ d

δ−+k+1
2 e. It follows that

|A(P,M)| ≥ d δ
−+k+1

2 e|M|. Assume now that v ∈ P. Since f (N+[v]) ≥ k, |A(v,M)| ≤ b d+(v)−k+1
2 c ≤ b

∆+
−k+1
2 c and so

|A(P,M)| ≤ b∆+
−k+1
2 c|P|. Combining the inequalities, we obtain (a).

(b) The proof is similar to the proof of (a).
(c) Let v ∈ P. Since f (N+[v]) ≥ k and f (N−[v]) ≥ k, then

|A(v,P)| ≥ d
d+(v) + k − 1

2
e ≥ d

δ+ + k − 1
2

e,

and

|A(P, v)| ≥ d
d−(v) + k − 1

2
e ≥ d

δ− + k − 1
2

e

Thus

|A(P,P)| ≥ max{d
δ− + k − 1

2
e|P|, d

δ+ + k − 1
2

e|P|},

and the proof is complete.

Theorem 3.4. Let D be a digraph of order n, minimum indegree δ−, minimum outdegree δ+, maximum
indegree ∆− and maximum outdegree ∆+. Then

γ∗sk(D) ≥ max

 d δ
−+k+1

2 e − b
∆+
−k+1
2 c

d
δ−+k+1

2 e + b∆+−k+1
2 c

n,
d
δ++k+1

2 e − b
∆−−k+1

2 c

d
δ++k+1

2 e + b∆−−k+1
2 c

n

 .
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Proof. Let f be a minimum TSkDF of D. Using Lemma 3.3 and replacing |M| and |P| by
n−γ∗sk(D)

2 and
n+γ∗sk(D)

2
in (a) and (b), the desired inequality follows.

The next corollary is a consequence of Theorem 3.4.

Corollary 3.5. If D is an r-regular digraph with r ≥ k − 1, then γ∗sk(D) ≥ (k + 1)n/(r + 1) when r + k is even
and γ∗sk(D) ≥ kn/(r + 1) when r + k is odd.

Example 3.6. If K∗n is the complete digraph of order n, then γ∗sk(K∗n) = k when n+ k is even and γ∗sk(K∗n) = k +1
when n + k is odd.

Proof. According to Corollary 3.5, we have γ∗sk(K∗n) ≥ k + 1 when n + k is odd and γ∗sk(K∗n) ≥ k when n + k is
even. On the other hand, if n + k is odd, then the function f : V(D)→ {−1, 1}which assigns to n+k+1

2 vertices
the value +1 and to n−k−1

2 vertices the value −1 is a TSkDF of K∗n of weight k + 1 and so γ∗sk(K∗n) = k + 1 when
n + k is odd. If n + k is even, then the function f : V(D)→ {−1, 1}which assigns to n+k

2 vertices the value +1
and to n−k

2 vertices the value −1 is a TSkDF of K∗n of weight k and so γ∗sk(K∗n) = k when n + k is even.

Example 3.6 shows that Propositions 3.1, 3.2 and Theorem 3.4 are sharp.

Theorem 3.7. If D is a digraph of order n and maximum indegree ∆−, then

γ∗sk(D) ≥ 2d
∆− + k + 1

2
e − n.

Proof. Let u ∈ V(D) be a vertex of maximum indegree d−(u) = ∆−, and let f be a γ∗sk(D)-function. Assume
first that u ∈M. Since f (N−[u]) ≥ k, we deduce that |A(P,u)| ≥ d∆−+k+1

2 e. It follows that

n + γ∗sk(D)

2
= |P| ≥ |A(P,u)| ≥ d

∆− + k + 1
2

e,

and this leads to the desired inequality. If u ∈ P, then f (N−[u]) ≥ k implies that |A(P,u)| ≥ d∆−+k−1
2 e. We

conclude that
n + γ∗s(D)

2
= |P| ≥ |A(P,u)| + 1 ≥ 1 + d

∆− + k − 1
2

e = d
∆− + k + 1

2
e,

and this leads to the desired inequality.

The condition f (N+[v]) ≥ k for each vertex v yields analogously the next result.

Theorem 3.8. If D is a digraph of order n and maximum outdegree ∆+, then γ∗sk(D) ≥ 2d∆++k+1
2 e − n.

Example 3.6 demonstrates that Theorems 3.7 and 3.8 are sharp.
The associated digraph D(G) of a graph G is the digraph obtained when each edge e of G is replaced

by two oppositely oriented arcs with the same vertices as e. Since N−D(G)[v] = N+
D(G)[v] = NG[v] for each

v ∈ V(G) = V(D(G)), the following useful observation is valid.

Notation 3.9. If D(G) is the associated digraph of a graph G, then γ∗sk(D(G)) = γsk(G).

There are many interesting applications of Observation 3.9, such as the following results.

Proposition 3.10. If G is a graph of order n and maximum degree ∆, then γsk(G) ≥ 2d∆+k+1
2 e − n.

Proof. Since ∆(G) = ∆−(D(G)) and n = n(D(G)), it follows from Theorem 3.7 and Observation 3.9 that

γsk(G) = γ∗sk(D(G)) ≥ 2d
∆− + k + 1

2
e − n = 2d

∆ + k + 1
2

e − n.
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Corollary 3.11. Let G be a graph of order n, minimum degree δ and maximum degree ∆. Then

γsk(G) ≥
d
δ+k+1

2 e − b
∆−k+1

2 c

d
δ+k+1

2 e + b
∆−k+1

2 c
n.

Since
d
δ+k+1

2 e − b
∆−k+1

2 c

d
δ+k+1

2 e + b
∆−k+1

2 c
n ≥

δ + 2k − ∆

δ + 2 + ∆
n,

Corollary 3.11 implies the following known bound.

Corollary 3.12. ([6]) If G is a graph of order n, minimum degree δ and maximum degree ∆, then

γsk(G) ≥ (
δ + 2k − ∆

δ + 2 + ∆
)n.

Theorem 3.13. For any digraph D of order n, size m, minimum indegree δ− and minimum outdegree δ+,

γ∗sk(D) ≥
n(2 + 2d δ

++k−1
2 e + d δ

−+k−1
2 e) − 2m

2 + d δ
−+k−1

2 e
.

Proof. Let f be a γ∗sk(D)-function. By Lemma 3.3, we have

m ≥ |A(M,P)| + |A(P,M)| + |A(P,P)|
≥ (1 + d δ

++k−1
2 e)|M| + (1 + d δ

−+k−1
2 e)|M| + d δ

++k−1
2 e|P|

= d δ
++k−1

2 en + (2 + d δ
−+k−1

2 e)(
n−γ∗sk(D)

2 ).

This leads to the desired inequality.

Using |A(P,P)| ≥ d δ
−+k−1

2 e|P| in the proof of Theorem 3.13, we obtain the following theorem.

Theorem 3.14. For any digraph D of order n, size m, minimum indegree δ− and minimum outdegree δ+,

γ∗sk(D) ≥
n(2 + 2d δ

−+k−1
2 e + d δ

++k−1
2 e) − 2m

2 + d δ
++k−1

2 e
.

Theorem 3.15. Let D be a digraph of order n, maximum indegree ∆− and maximum outdegree ∆+. Then

γ∗sk(D) ≥
2k + 2 − b∆−−k+1

2 c − b
∆+
−k+1
2 c

2k + 2 + b∆−−k+1
2 c + b∆+−k+1

2 c
n.

Proof. Let f be a γ∗sk(D)-function and let v ∈ M. Since f (N+[v]) ≥ k and f (N−[v]) ≥ k, it follows that
|A(v,P)| ≥ k + 1 and |A(P, v)| ≥ k + 1 and thus |A(M,P)| + |A(P,M)| ≥ (2k + 2)|M|. Using Lemma 3.3 (Parts a,
b), it follows that

|P|(b
∆− − k + 1

2
c + b

∆+
− k + 1

2
c) ≥ (2k + 2)|M|. (2)

Replacing |M| and |P| by
n−γ∗sk(D)

2 and
n+γ∗sk(D)

2 in (2), we obtain the desired bound.

Theorem 3.16. For any digraph D of order n and size m,

γ∗sk(D) ≥
(2k + 1)n −m

k + 2
.
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Proof. Let f be a γ∗sk(D)-function. In view of the proof of Theorem 3.15, |A(P,M)| ≥ (k + 1)|M| and |A(M,P)| ≥
(k + 1)|M|. If x ∈ P, then it follows from f (N+[x]) ≥ k that |A(x,P)| ≥ |A(x,M)| + k − 1. This implies that

|A(P,P)| ≥ |A(P,M)| + (k − 1)|P| ≥ (k + 1)|M| + (k − 1)(n − |M|).

Hence,
m ≥ |A(M,P)| + |A(P,M)| + |A(P,P)|

≥ (k + 1)|M| + (k + 1)|M| + (k + 1)|M| + (k − 1)(n − |M|)

= (2k + 4)|M| + (k − 1)n.

Since n = |P| + |M|, we deduce that γ∗sk(D) = |P| − |M| = n − 2|M| ≥ (2k+1)n−m
k+2 .

Theorem 3.16 and Observation 3.9 lead to the next well-known result.

Corollary 3.17. ([15]) If G is a graph of order n and size m, then

γsk(G) ≥
(2k + 1)n − 2m

k + 2
.

Theorem 3.18. Let D be a digraph of order n. Then

γ∗sk(D) ≥ 2
⌈−1 +

√
4n(k + 1) + 1

2

⌉
− n.

Proof. Let f be aγ∗sk(D)-function. In view of the proof of Theorem 3.16, |A(P,P)| ≥ (k−1)n+2|M| = (k+1)n−2|P|.
On the other hand, |A(P,P)| ≤ |P|(|P|−1). It follows that |P|(|P|−1) ≥ (k+1)n−2|P| and so |P|2 + |P|−(k+1)n ≥ 0.
This implies that

|P| ≥
−1 +

√
4(k + 1)n + 1

2
,

and thus we obtain

γ∗sk(D) = 2|P| − n ≥ 2
⌈−1 +

√
4(k + 1)n + 1

2

⌉
− n.

Theorem 3.19. Let D be a bipartite digraph of order n. Then

γ∗sk(D) ≥ 2
⌈√

2(k + 1)n + 4
⌉
− n − 4.

Proof. Let f be a γ∗sk(D)-function. In view of the proof of Theorem 3.16, |A(P,P)| ≥ (k + 1)n − 2|P|. On the
other hand, |A(P,P)| ≤ |P|2/2. It follows that |P|2/2 ≥ (k + 1)n− 2|P| and so |P| ≥

√
2(k + 1)n + 4− 2. Therefore

γ∗sk(D) = 2|P| − n ≥ 2
⌈√

2(k + 1)n + 4
⌉
− n − 4.

Theorems 3.18, 3.19 and Observation 3.9 lead to the next well-known result.

Corollary 3.20. ([15]) If G is a graph of order n, then γsk(G) ≥ 2
⌈
−1+
√

4n(k+1)+1
2

⌉
− n.

If G is a bipartite graph of order n, then γsk(G) ≥ 2
⌈√

2(k + 1)n + 4
⌉
− n − 4.
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Wang [15] presents examples which show that the bounds given in Corollaries 3.17 and 3.20 are sharp.
The associated digraphs of these examples show that Theorems 3.16, 3.18 and 3.19 are sharp. Note that our
proof of Corollary 3.20 is shorter than the one given in [15].

With any digraph D, we can associate a graph G with the same vertex set simply by replacing each arc
by an edge with the same vertices. This graph is the underlying graph of D, denoted G(D).

Theorem 3.21. Let D be a digraph of order n and let d1 ≥ d2 ≥ · · · ≥ dn be the degree sequence of the
underlying graph G of D. If s is the smallest positive integer for which

∑s
i=1 di −

∑n
i=s+1 di ≥ (2k + 2)n − 4s,

then
γ∗sk(D) ≥ 2s − n.

Furthermore, this bound is sharp.

Proof. Let f be a γ∗sk(D)-function and p = |P|. Since f ([N+
D[v]) ≥ k and f (N−D[v]) ≥ k for each v ∈ V(D), we

have
kn ≤

∑
v∈V f (N+

D[v]) =
∑

v∈V(d−D(v) + 1) f (v)
= |P| − |M| +

∑
v∈P d+

D(v) −
∑

v∈M d+
D(v)

and
kn ≤

∑
v∈V f (N−D[v]) =

∑
v∈V(d+

D(v) + 1) f (v)
= |P| − |M| +

∑
v∈P d−D(v) −

∑
v∈M d−D(v).

Summing the above inequalities, we deduce that

2kn ≤ 2(|P| − |M|) +
∑
v∈P

(d+
D(v) + d−D(v)) −

∑
v∈M

(d+
D(v) + d−D(v))

= 2(2p − n) +
∑
v∈P

degG(v) −
∑
v∈M

degG(v)

≤ 4p − 2n +

p∑
i=1

di −

n∑
i=p+1

di.

Thus (2k + 2)n − 4p ≤
∑p

i=1 di −
∑n

i=p+1 di. By the assumption on s, we must have p ≥ s. This implies that
γ∗sk(D) = 2p − n ≥ 2s − n.

In order to prove sharpness, suppose that D is the digraph obtained from the union of k + 1 tournament
CTi(2k + 1), and V(CTi(2k + 1)) = {vi

1, . . . , v
i
2k+1}, 1 ≤ i ≤ k + 1 by adding 2k + 1 new vertices w1, . . . ,w2k+1 and

adding arcs (vi
j,w j) and (w j, vi

j+1) for each 1 ≤ i ≤ k + 1 and 1 ≤ j ≤ t, where 2k + 1 + 1 is identified with 1.
Obviously, D is (2k + 2)-regular of order n = (2k + 1)(k + 2). Hence,

(2k+1)(k+1)∑
i=1

di −

n∑
(2k+1)(k+1)+1

di = k(2k + 1)(2k + 2) = (2k + 2)n − 4(2k + 1)(k + 1).

It follows that s = (2k + 1)(k + 1) is the smallest positive integer s such that
∑s

i=1 di −
∑n

i=s+1 di ≥ (2k + 2)n− 4s
and so γ∗sk(D) ≥ k(2k + 1). Now define f : V(D)→ {−1, 1}which assigns −1 to w j for 1 ≤ j ≤ 2k + 1 and +1 to
the other vertices. Obviously, f is a TSkDF of D and ω( f ) = k(2k + 1). This completes the proof.

The special case k = 1 of Theorems 3.4, 3.13, 3.16 and 3.21 was recently proved in [5].

4. Twin Signed k-Domination in Oriented Graphs

Let G be the complete bipartite graph K2k+2,2k+2 with bipartite sets {u1, . . . ,u2k+2} and {v1, . . . , v2k+2}. Let
D1 and D2 be the orientations of G such that

A(D1) = {(ui, vr), (vi,u j), (v j,ui), (u j, vs) | 1 ≤ i, r ≤ k − 1, k ≤ j, s ≤ 2k + 2}
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and

A(D2) = {(ui, vr), (vi,u j), (v j,ui), (u j, vs), (ui, vt), (ut, vi), (vt,u j), (v j,ut), (ut, v`) |
1 ≤ i, r ≤ k, k + 1 ≤ j, s ≤ 2k, 2k + 1 ≤ t, ` ≤ 2k + 2}.

It is easy to see that γ∗sk(D1) = 4k + 4 and γ∗sk(D2) = 4k. Thus two distinct orientations of a graph can have
distinct twin signed k-domination numbers. Motivated by this observation, we define lower orientable twin
signed k-domination number dom∗sk(G) and upper orientable twin signed k-domination number Dom∗sk(G)
of a graph G as follows:

dom∗sk(G) = min{γ∗sk(D) | D is an orientation of G},

and
Dom∗sk(G) = max{γ∗sk(D) | D is an orientation of G}.

Corresponding concepts have been defined and studied for orientable domination (out-domination) [8],
twin domination number [9], twin signed domination number [5], twin signed total domination number
[2], twin signed total k-domination number [3], twin minus domination number [4], twin minus total dom-
ination number [10], twin signed Roman domination number [7] and twin signed total Roman domination
number [1]. Note that the definitions are well-defined because every graph G with δ(G) ≥ 2k − 2, has an
orientation D such that δ−(D), δ+(D) ≥ k − 1.

Proposition 4.1. For any graph G of order n, γsk(G) ≤ dom∗sk(G).

Proof. Let D be an orientation of G such that γ∗sk(D) = dom∗sk(G), and let f be a γ∗sk(D)-function. Then
f (NG[v]) = f (N+

D[v]) + f (N−D[v]) − f (v) for each v ∈ V. Since f (N+
D[v]) ≥ k and f (N−D[v]) ≥ k, we have

f (NG[v]) ≥ 2k− 1 for each v ∈ V, and so f is a SkDF of G. Therefore γsk(G) ≤ ω( f ) = dom∗sk(G) as desired.

In the rest of this section, we determine the lower orientable twin signed k-domination numbers of
complete graphs and complete bipartite graphs.

Lemma 4.2. For n ≥ 2k + 1,

dom∗sk(Kn) ≥
{

2k + 1 if n is odd
2k + 2 if n is even.

Proof. Let D be an orientation of Kn such that γ∗sk(D) = dom∗sk(Kn) and let f be a γ∗sk(D)-function. If M f = ∅,
then ω( f ) = n and the proof is complete. Assume that v ∈M f . We consider two cases.
Case 1. n is odd.
Since f (N+[v]) ≥ k and f (N−[v]) ≥ k and since N+(v) ∪ N−(v) is a partition of V(Kn) \ {v}, we deduce that
dom∗sk(Kn) = ω( f ) = f (N+[v]) + f (N−[v]) − f (v) ≥ 2k + 1.

Case 2. n is even.
Since n− 1 is odd and since N+(v)∪N−(v) is a partition of V(Kn) \ {v}, one of the d+(v) or d−(v) must be odd.
Assume, without loss of generality, that d+(v) is odd. Then we must have f (N+[v]) ≥ k + 1 and f (N−[v]) ≥ k.
Proceeding as above, we obtain dom∗s(Kn) ≥ 2k + 2.

Theorem 4.3. For n ≥ 2k + 1,

dom∗sk(Kn) =

{
2k + 1 if n is odd
2k + 2 if n is even.

Proof. The result is trivial for n = 2k + 1, 2k + 2, so assume n ≥ 2k + 3. Let

V(Kn) = {ui, vi,w j | 1 ≤ i ≤ d
n
2
e − (k + 1) and 1 ≤ j ≤ n − 2d

n
2
e + 2k + 2}.

We consider two cases.
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Case 1. n is odd. Let D be an orientation of Kn such that

A(D) = {(ut,u`), (ut, v`), (vt, v`), (vr,us) | 1 ≤ t < ` ≤ d n
2 e − (k + 1)

and 1 ≤ r ≤ s ≤ d n
2 e − (k + 1)}

∪ {(ui,w j), (vi,w j) | 1 ≤ i ≤ d n
2 e − (k + 1), 1 ≤ j ≤ k + 1}

∪ {(wq,ui), (wq, vi) | 1 ≤ i ≤ d n
2 e − (k + 1), k + 2 ≤ q ≤ 2k + 1}

∪ {(wt,wt+`) | 1 ≤ ` ≤ k, 1 ≤ t ≤ 2k + 1}

where we identify 2k + 1 + i with i.
Case 2. n is even. Let D be an orientation of Kn such that

A(D) = {(ut,u`), (ut, v`), (vt, v`), (vr,us) | 1 ≤ t < ` ≤ d n
2 e − (k + 1)

and 1 ≤ r ≤ s ≤ d n
2 e − (k + 1)}

∪ {(ui,w j), (vi,w j) | 1 ≤ i ≤ d n
2 e − (k + 1), 1 ≤ j ≤ k + 1}

∪ {(wq,ui), (wq, vi) | 1 ≤ i ≤ d n
2 e − (k + 1), k + 2 ≤ q ≤ 2k + 2}

∪ {(wt,wt+`) | 1 ≤ ` ≤ k, 1 ≤ t ≤ 2k + 1}
∪ {(w2k+2,wi), (w j,w2k+2) | 1 ≤ i ≤ k, k + 1 ≤ j ≤ 2k + 1}

where we identify 2k + 1 + i with i.
It is easy to see that the function f : V(D)→ {−1,+1} defined by f (ui) = −1 for 1 ≤ i ≤ d n

2 e − (k + 1) and
f (x) = +1 otherwise, is a TSkDF of D of weight 2k + 1 when n is odd and wight 2k + 2 when n is even. This
implies that

dom∗sk(Kn) ≤ ω( f ) =

{
2k + 1 if n is odd
2k + 2 if n is even.

Now the result follows from Lemma 4.2.

Let m ≤ n and Km,n be the bipartite graph with bipartite sets V1 and V2 such that |V1| = m and |V2| = n.

Lemma 4.4. Let D be an orientation of Km,n with n ≥ m ≥ 2k + 2. If f is a TSkDF of D such that Vi ∩M f , ∅
for i = 1, 2, then

ω( f ) ≥


4k + 4 if n and m are both even
4k + 5 if n and m have different parity
4k + 6 if n and m are both odd .

Proof. Let u ∈ V1 ∩M f and v ∈ V2 ∩M f . We consider three cases.
Case 1. m and n are both even.
Since f (N+[u]) ≥ k and f (N−[u]) ≥ k, we must have

|N+(u) ∩ P f ∩ V2| ≥ |N+(u) ∩M f ∩ V2| + k + 1

and
|N−(u) ∩ P f ∩ V2| ≥ |N−(u) ∩M f ∩ V2| + k + 1.

Since V2 = N+(u) ∪N−(u), we deduce that

|V2 ∩ P f | ≥ |V2 ∩M f | + 2k + 2. (3)

Similarly, we have

|V1 ∩ P f | ≥ |V1 ∩M f | + 2k + 2. (4)

Adding (3) and (4), we obtain |P f | ≥ |M f | + 4k + 4 and so ω( f ) = |P f | − |M f | ≥ 4k + 4 as desired.
Case 2. m and n have different parity.
Assume, without loss of generality, that m is even and n is odd. Since d+(u) + d−(u) = n is odd, we may
assume that d+(u) is odd. It follows that f (N+[u]) ≥ k + 1 and hence

|N+(u) ∩ P f ∩ V2| ≥ |N+(u) ∩M f ∩ V2| + k + 2.
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Using an argument similar to that described in Case 1, we obtain ω( f ) = |P f | − |M f | ≥ 4k + 5.
Case 3. m and n are both odd.
Since d+(u) + d−(u) = n and d+(v) + d−(v) = m are both odd, we may assume, without loss of generality, that
d+(u) and d+(v) are both odd. As Cases 1, 2, we have

|N+(u) ∩ P f ∩ V2| ≥ |N+(u) ∩M f ∩ V2| + k + 2

|N−(u) ∩ P f ∩ V2| ≥ |N−(u) ∩M f ∩ V2| + k + 1

|N+(v) ∩ P f ∩ V1| ≥ |N+(v) ∩M f ∩ V1| + k + 2

|N−(v) ∩ P f ∩ V1| ≥ |N−(v) ∩M f ∩ V1| + k + 1.

Summing the above inequalities, we deduce that |P f | ≥ |M f | + 4k + 6 and so ω( f ) ≥ 4k + 6 as desired.

Lemma 4.5. Let 2k ≤ m ≤ n and D be an orientation of Km,n and f be a TSkDF of D. If V1 ∩M f = ∅, then

ω( f ) ≥
{

m + 2k − 2 if n is even
m + 2k − 1 if n is odd

Proof. Let u ∈ V1. If n is even, then it follows from f (N+[u]) ≥ k and f (N−[u]) ≥ k that |N+(u) ∩ P f | ≥

|N+(u) ∩M f | + k − 1 and |N−(u) ∩ P f | ≥ |N−(u) ∩M f | + k − 1. This implies that |V2 ∩ P f | ≥ |V2 ∩M f | + 2k − 2
and hence ω( f ) = |P f | − |M f | = |V1| + |V2 ∩ P f | − |V2 ∩M f | ≥ m + 2k − 2.

Assume that n is odd. Since d+(u) + d−(u) = n is odd, we may assume, without loss of generality,
that d+(u) is odd. This implies that f (N+[u]) ≥ k + 1. As above we have |N+(u) ∩ P f | ≥ |N+(u) ∩M f | + k
and |N−(u) ∩ P f | ≥ |N−(u) ∩ M f | + k − 1, which implies that |V2 ∩ P f | ≥ |V2 ∩ M f | + 2k − 1. Therefore
ω( f ) = |P f | − |M f | = |V1| + |V2 ∩ P f | − |V2 ∩M f | ≥ m + 2k − 1 as desired.

The next result is an immediate consequence of Lemmas 4.4 and 4.5.

Corollary 4.6. For 2k + 2 ≤ m ≤ n,

dom∗sk(Km,n) ≥ min{m + 2k − 2 + (2d
n
2
e − n), 4k + 4 + (2d

m
2
e −m) + (2d

n
2
e − n)}.

Theorem 4.7. For 2k + 2 ≤ m ≤ n,

dom∗sk(Km,n) = min{m + 2k − 2 + (2d
n
2
e − n), 4k + 4 + (2d

m
2
e −m) + (2d

n
2
e − n)}.

Proof. Let U = {u1,u2, . . . ,um} and V = {v1, v2, . . . , vn} be the partite sets of Km,n. First we consider the cases
m = 2k + 2 and m = 2k + 3. Partition the sets U and V according to Table 1. Let D be an orientation of Km,n
such that

A(D) = [U1,V1 ∪ V3] ∪ [V1 ∪ V3,U2] ∪ [V2,U1] ∪ [U2,V2],

where [X,Y] = {(x, y) | x ∈ X, y ∈ Y}. Define f : V(G)→ {−1,+1} by f (x) = +1 for x ∈ U∪{v1, . . . , vd n
2 e+k−1} and

f (x) = −1 otherwise. It is easy to see that f is an TSkDF of D, so dom∗sk(Km,n) ≤ ω( f ) = m + 2k− 2 + (2d n
2 e −n).

m = 2k + 2 U1 = {u1, . . . ,uk+1}, U2 = {uk+2, . . . ,u2k+2}

m = 2k + 3 U1 = {u1, . . . ,uk+2}, U2 = {uk+3, . . . ,u2k+3}

n even V1 = {v1, . . . , vk−1}, V2 = {vk, . . . , v2k−2},V3 = {v2k−1, . . . , vn}

n odd V1 = {v1, . . . , vk}, V2 = {vk+1, . . . , v2k−1}, V3 = {v2k, . . . , vn}

Table 1: m = 2k + 2, 2k + 3

We now deal with the case m ≥ 2k + 4. Partition the sets U and V according to Table 2. Let D be an
orientation of Km,n such that

A(D) = [U1,V1 ∪ V3] ∪ [U2 ∪U3,V2] ∪ [V1,U2 ∪U3] ∪ [V2,U1] ∪ [V3,U2 ∪U3].
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It is easy to verify that the function f : V(G) → {−1,+1} defined by f (x) = +1 for x ∈ {u1, . . . ,ud m
2 e+k+1} ∪

{v1, . . . , vd n
2 e+k+1} and f (x) = −1 otherwise, is a TSkDF of D, so dom∗sk(Km,n) ≤ ω( f ) = 4k + 4 + (2dm

2 e − m) +
(2d n

2 e − n). Now the result follows by Corollary 4.6.

m even U1 = {u1, . . . ,uk+1}, U2 = {uk+2, . . . ,u2k+2},U3 = {u2k+3, . . . ,um}

m odd U1 = {u1, . . . ,uk+2},U2 = {uk+3, . . . ,u2k+3}, U3 = {u2k+4, . . . ,um}

n even V1 = {v1, . . . , vk+1},V2 = {vk+2, . . . , v2k+2}, V3 = {v2k+3, . . . , vn}

n odd V1 = {v1, . . . , vk+2}, V2 = {vk+3, . . . , v2k+3} V3 = {v2k+4, . . . , vn}

Table 2: m ≥ 2k + 4

The special case k = 1 of Theorems 4.3 and 4.7 was recently proved in [5].

References

[1] J. Amjadi and M. Soroudi, Twin signed total Roman domination numbers in digraphs, Asian-European J. Math. 11 (2018) 1850034
(22 pages).

[2] M. Atapour, A. Bodaghli and S. M. Sheikholeslami, Twin signed total domination numbers in directed graphs, Ars Combin. (to
appear).

[3] M. Atapour, N. Dehgardi and L. Volkmann, An introduction to the twin signed total k-domination numbers in directed graphs,
RAIRO-Oper. Res. 51 (2017) 1331–1343.

[4] M. Atapour and A. Khodkar, Twin minus domination numbers in directed graphs, Commun. Comb. Optim. 1(2) (2016) 149–164.
[5] M. Atapour, S. Norouzian, S. M. Sheikholeslami and L. Volkmann, Twin signed domination numbers in directed graphs, Algebra,

Discrete Math. 24 (2017) 71–89.
[6] M. Atapour, S. M. Sheikholeslami, R. Hajypory and L. Volkmann, The signed k-domination number of directed graphs, Cent.

Eur. J. Math. 8 (2010) 1048–1057.
[7] A. Bodaghli, S. M. Sheikholeslami and L. Volkmann, Twin signed Roman domination number of a digraph, Tamkang J. Math. 47

(2016) 357–371.
[8] G. Chartrand, D. W. VanderJagt and B. Q. Yue, Orientable domination in graphs, Congr. Numer. 119 (1996) 51–63.
[9] G. Chartrand, P. Dankelmann, M. Schultz and H. C. Swart, Twin domination in digraphs, Ars Combin. 67 (2003), 105–114.

[10] N. Dehgardi and M. Atapour, Twin minus total domination numbers in directed graphs, Discuss. Math. Graph Theory. 37 (2017)
989–1004.

[11] J. Dunbar, S. T. Hedetniemi, M. A. Henning and P. J. Slater, Signed domination in graphs, Graph Theory, Combinatorics, and
Applications, Vol. 1, Wiley, New York, 1995 311–322.

[12] O. Favaron, Signed domination in regular graphs, Discrete Math. 158 (1996) 287–293.
[13] M. A. Henning and P. J. Slater, Inequalities relating domination parameters in cubic graphs, Discrete Math. 158 (1996) 87–98.
[14] H. Karami, A. Khodkar and S. M. Sheikholeslami, Lower bounds on signed domination number of a digraph, Discrete Math. 309

(2009) 2567–2570.
[15] C. P. Wang, The signed k-domination numbers in graphs, Ars Combin. 106 (2012) 205–211.
[16] D. B. West, Introduction to Graph Theory, Prentice-Hall, Inc, 2000.
[17] B. Zelinka, Signed domination numbers of directed graphs, Czechoslovak Math. J. 55 (2005) 479–482.
[18] Z. Zhang, B. Xu, Y. Li and L. Liu, A note on the lower bounds of signed k-domination number of a graph, Discrete Math. 195

(1999) 295–298.


