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Abstract. In this paper, modified Laguerre matrix polynomials which appear as finite series solutions of
second-order matrix differential equation are introduced. Some formulas related to an explicit expression,
a three-term matrix recurrence relation and a Rodrigues formula are obtained. Several families of bilinear
and bilateral generating matrix functions for modified Laguerre matrix polynomials are derived. Finally a
new generalization of the Laguerre-type matrix polynomials is introduced.

1. Introduction

Matrix generalization of special functions has become important in the last two decades. The reason
of importance have many motivations. For instance, using special matrix functions provides solutions for
some physical problems. Also, special matrix functions are in connection with different matrix functions.
Jódar et al introduced Laguerre matrix polynomials in [9]. Some important properties of Laguerre matrix
polynomials such as asymptotic expressions [10, 11, 13–15], relations between different matrix functions and
generating matrix functions [1–4, 7, 15, 17, 18] are studied. In this paper, we deal with a new generalization
of Laguerre matrix polynomials which we call modified Laguerre matrix polynomials. The organization
of this paper is as follows. In section 2 starting from an appropriate matrix generating function, an
explicit expression, a three-term recurrence relation, Rodrigues formula and second-order matrix differential
equation for modified Laguerre matrix polynomials are given. Section 3 deals with bilinear and bilateral
matrix generating function for modified Laguerre matrix polynomials. Finally, in Section 4, examining the
explicit expression of both Laguerre matrix polynomials and modified Laguerre matrix polynomials, we
give a generalization of Laguerre-type matrix polynomials.

Throughout this paper, for a matrix A inCr×r, its spectrum σ(A) denotes the set of all eigenvalues of A. If
f (z) and 1(z) are holomorphic functions of the complex variable z, which are defined in an open set Ω of the
complex plane and A is a matrix in Cr×r such that σ(A) ⊂ Ω, then from the properties of matrix functional
calculus in [6, p. 558], it follows that: f (A)1(A) = 1(A) f (A).Hence, if B ∈ Cr×r is a matrix for which σ(B) ⊂ Ω
and AB = BA, then f (A)1(B) = 1(B) f (A).

The matrix analogues of Pochhammer symbol or shifted factorial is defined by

(A)n = A (A + I) (A + 2I) . . . (A + (n − 1) I) , n ≥ 1, (A)0 = I, (1)
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where A ∈ Cr×r. The hypergeometric matrix function F(A; B; C; z) is defined by

F(A,B; C; z) =
∑
n≥0

(A)n (B)n
[
(C)n

]−1

n!
zn, (2)

for matrices A,B,C in Cr×r such that C + nI is invertible for all integers n ≥ 0 and for |z| < 1 (see [8]).
According to (1) if A = −iI where i is a natural number then (A)i+ j = 0 for j ≥ 1. Thus F(A,B; C; z) becomes
a matrix polynomial of degree i. Furthermore, for a matrix A in Cr×r the authors exploited the following
relation due to [8]:

(
1 − y

)−A =

∞∑
n=0

(A)n

n!
yn,

∣∣∣y∣∣∣ < 1. (3)

Also, for a matrix A (k,n) in Cr×r for n ≥ 0 and k ≥ 0, the following relation is given by Defez and Jódar in
[5]

∞∑
n=0

∞∑
k=0

A (k,n) =

∞∑
n=0

n∑
k=0

A (k,n − k) . (4)

We conclude this section by recalling the Laguerre matrix polynomials. Let A be a matrix in Cr×r such that
−k < σ(A) for every integer k > 0 and λ be a complex number whose real part is positive. Then the Laguerre
matrix polynomials L(A,λ)

n (x) are defined by [9]:

L(A,λ)
n (x) =

n∑
k=0

(−1)k (A + I)n
[
(A + I)k

]−1 λkxk

k! (n − k)!
. (5)

The generating function of Laguerre matrix polynomials is given in [9]

(1 − t)−(A+I) exp
(
−λxt
1 − t

)
=

∞∑
n=0

L(A,λ)
n (x) tn, t ∈ C, |t| < 1, x ∈ C,

and Rodrigues formula is

L(A,λ)
n (x) =

x−A exp (λx)
n!

Dn
[
xA+nI exp (−λx)

]
, n ≥ 0. (6)

Also, Laguerre matrix polynomials satisfy the three-term recurrence relation

(n + 1) L(A,λ)
n+1 (x) + [λxI − (A + (2n + 1) I)] L(A,λ)

n (x) + (A + nI) L(A,λ)
n−1 (x) = 0, (7)

and second order matrix differential equation[
xD2 + ((A + I) − λxI) D + λnI

]
L(A,λ)

n (x) = 0. (8)

2. Modified Laguerre Matrix Polynomials: Definition and Properties

Let us assume that B is an arbitrary matrix in Cr×r, λ is a complex number whose real part is positive
and let us consider the matrix-valued function

G (x, t) = (1 − t)−B exp (λxt) , (9)
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defined for the complex values of x and t with |t| < 1.G (x, t) , regarded as a function of the complex variable
t, is holomorphic in |t| < 1, and therefore has the Taylor expansion about t = 0, of the form

G (x, t) =

∞∑
n=0n

f (B,λ)
n (x) tn. (10)

From (3) and (4), we acquire

G (x, t) =

∞∑
n=0

(B)n

n!
tn
∞∑

n=0

λntn

n!

=

∞∑
n=0

n∑
k=0

(B)n−k λ
kxk

k! (n − k)!
tn. (11)

From (10) and (11) the matrix coefficients f (B,λ)
n (x) take the form:

f (B,λ)
n (x) =

n∑
k=0

(B)n−k λ
kxk

k! (n − k)!
. (12)

It is clear from (12) that f (B,λ)
n (x) is a matrix polynomial of degree n with leading coefficients I

n! and the first
few modified Laguerre matrix polynomials are listed below:

f (B,λ)
0 (x) = I, f (B,λ)

1 (x) = B + λxI, f (B,λ)
2 (x) = (λx)2 I + Bλx +

B (B + I)
2

.

If we take B = − (A + nI) such that −k < σ(A) for every integer k > 0 we get

(−A − nI)n−k = (−1)n−k (A + I)n
[
(A + I)k

]−1 . (13)

Using (13), we get f (−A−nI,λ)
n (x) = (−1)n L(A,λ)

n (x) . Besides it is easy to show that modified Laguerre scalar
polynomials f βn (x) are a particular case of f (B,λ)

n (x) :

f βn (x) = f (B,1)
n (x) , B =

[
β
]

1×1

(cf. [12, 16]). Therefore we call modified Laguerre matrix polynomials for f (B,λ)
n (x) .

From (9), it is obvious that G (x, t) is an analytic Cr×r
−valued function of the variable t in |t| < 1. Thereby

differentiating G (x, t) with respect to t we get

∂G (x, t)
∂t

= (1 − t)−1 [B + λx (1 − t) I] (1 − t)−B exp (λxt) , (14)

(1 − t)
∂G (x, t)
∂t

− [B + λx (1 − t) I] G (x, t) = 0.

Hence,
∞∑

n=1

n f (B,λ)
n (x) tn−1

−

∞∑
n=1

n f (B,λ)
n (x) tn

−

∞∑
n=0

B f (B,λ)
n (x) tn

−

∞∑
n=0

λx f (B,λ)
n (x) tn +

∞∑
n=0

λx f (B,λ)
n (x) tn+1 = 0.

Making appropriate changes of indices and comparing the coefficients of each power tn, we obtain a
three-term matrix recurrence relation as:

(n + 1) f (B,λ)
n+1 (x) − [λxI + (B + nI)] f (B,λ)

n (x) + λx f (B,λ)
n−1 (x) = 0, n ≥ 1, (15)
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which will be useful to calculate the nth polynomial in terms of the polynomials of order n − 1 and n − 2.
Now, we get the matrix differential equation of modified Laguerre matrix polynomials. It is clear from

(9) that G (x, t) is an entire Cr×r
−valued function of the variable x.Using the operator D to denote D = d

dx we
have

DG (x, t) − λtG (x, t) = 0. (16)

From Lemma 14 of [6, p. 571], the derivative of DG (x, t) can be computed in the series expansion (10). From
(16), we acquire

∞∑
n=0

D f (B,λ)
n (x) tn

−

∞∑
n=0

λ f (B,λ)
n (x) tn+1 = 0.

Equating the coefficients of tn to zero matrix we have

D f (B,λ)
n (x) = λ f (B,λ)

n−1 (x) . (17)

Differentiating with respect to x in the three-term recurrences relation (15) and using (17) we get

(n + 1) D f (B,λ)
n+1 (x) − [λxI + (B + nI)] D f (B,λ)

n (x) (18)

+λxD f (B,λ)
n−1 (x) + D f (B,λ)

n (x) − λ f (B,λ)
n (x) = 0.

Replacing n by n − 1 in (17) and adding the result to (18) give

(n + 1)λ f (B,λ)
n (x) − [λxI + (B + nI)] D f (B,λ)

n (x) (19)

+λxD f (B,λ)
n−1 (x) + D f (B,λ)

n (x) − λ f (B,λ)
n (x) = 0.

Also it is obvious from (17) thatλD f (B,λ)
n−1 (x) = D2 f (B,λ)

n (x) .Thus we obtain the second order matrix differential
equation for modified Laguerre matrix polynomials as[

xD2
− (λxI + (B + (n − 1) I)) D + λnI

]
f (B,λ)
n (x) = 0. (20)

Now, we prove Rodrigues formula for the modified Laguerre matrix polynomials. Let B be a matrix in
Cr×r. It is apparent that

Dn−kx−B = (−1)n−k (B)n−k x−B−(n−k)I.

Since Dk exp (−λx) = (−1)k λk, from Leibnitz formula and the properties of the matrix functional calculus
we have

Dn
[
x−B exp (−λx)

]
= (−1)n n!x−B−nI exp (−λx)

n∑
k=0

(B)n−k λ
kxk

k! (n − k)!
. (21)

From (12) and (21) we get

f (B,λ)
n (x) =

(−1)n

n!
xB+nI exp (λx) Dn

[
x−B exp (−λx)

]
(22)

Summary of these results is given in the following theorem.

Theorem 2.1. Let B be an arbitrary matrix in Cr×r, and let λ be complex number such that Re (λ) > 0. Then the
modified Laguerre matrix polynomials satisfy the following properties:

1. For n ≥ 1

(n + 1) f (B,λ)
n+1 (x) − [λxI + (B + nI)] f (B,λ)

n (x) + λx f (B,λ)
n−1 (x) = 0.

2. The n th modified Laguerre matrix polynomial f (B,λ)
n (x) is a solution of second order matrix differential

equation (20).
3. The n th modified Laguerre matrix polynomial f (B,λ)

n (x) is given by the Rodrigues formula (22).
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3. More Generating Matrix Functions for Modified Laguerre Matrix Polynomials

Generating matrix functions are fairly important in the theory of matrix polynomials because several
important properties of the family of matrix polynomials can be obtained from them. Therefore, in this
section we give more generating matrix functions for modified Laguerre matrix polynomials.

Theorem 3.1. Let B and C be commutative matrices in Cr×r and λ be complex number such that Re (λ) > 0. Then
modified Laguerre matrix polynomials have the following generating matrix function:

∞∑
n=0

(C)n f (B,λ)
n (x) tn = (1 − λxt)−C F

(
C,B;−;

t
1 − λxt

)
. (23)

Proof. Using the explicit representation of modified Laguerre matrix polynomials given in (12), we get
∞∑

n=0

(C)n f (B,λ)
n (x) tn =

∞∑
n=0

n∑
k=0

(C)n (B)n−k λ
kxk

k! (n − k)!
tn

=

∞∑
n=0

∞∑
k=0

(C)n+k (B)n λ
kxk

k!n!
tn+k.

Using the fact that (C)n+k = (C)n (C + nI)k the factors on the right-hand side can be rearranged as

∞∑
n=0

(C)n f (B,λ)
n (x) tn =

∞∑
n=0

(C)n (B)n

n!
tn
∞∑

k=0

(C + nI)k (λxt)k

k!
.

By using (3) and (2), we get (23).

Theorem 3.2. Let B be an arbitrary matrix in Cr×r, k be nonnegative integer and λ be complex number such that
Re (λ) > 0. Then we have the following generating matrix functions:

∞∑
n=0

(n + k)!
n!k!

f (B,λ)
n+k (x) tn = exp (λxt) (1 − t)−(B+kI) f (B,λ)

k (x (1 − t)) . (24)

Proof. Replacing t by t + v in (9), we have

(1 − (t + v))−B exp (λx (t + v)) =

∞∑
n=0

f (B,λ)
n (x) (t + v)n . (25)

Firstly, expanding the binomial (t + v)n and then simplifying it we have

∞∑
n=0

f (B,λ)
n (x) (t + v)n =

∞∑
n=0

∞∑
k=0

(n + k)! f (B,λ)
n+k (x) tn

n!k!
vk.

Now we try to expand left-hand side of (25) in a different way. It is easy to write that

(1 − t − v)−B exp (λx (t + v))

= exp (λxt) (1 − t)−B
[
exp (λxv)

(
1 −

v
1 − t

)]
= exp (λxt) (1 − t)−B

∞∑
k=0

f (B,λ)
k (x (1 − t))

( v
1 − t

)k
.

Comparing the coefficients of vk in the two expansions, we get (24).
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Theorem 3.3. Let B be an arbitrary matrix in Cr×r and λ be a complex number such that Re (λ) > 0. Then we obtain
the bilinear generating matrix function for modified Laguerre matrix polynomials as follows:

∞∑
n=0

n! f (B,λ)
n (x) f (B,λ)

n
(
y
)

tn (26)

= eλ
2xyt (1 − λxt)−B (

1 − λyt
)−B F

(
B,B;−;

t
(1 − λxt)

(
1 − λyt

) ) .
Proof. Using (4) and (12), we have

∞∑
n=0

n! f (B,λ)
n (x) f (B,λ)

n
(
y
)

tn =

∞∑
n=0

∞∑
k=0

(n + k)! f (B,λ)
n+k (x)

(
λyt

)n

n!k!
(B)k tk.

Substituting (24) in the above series we get

∞∑
n=0

n! f (B,λ)
n (x) f (B,λ)

n
(
y
)

tn

=

∞∑
k=0

eλ
2xyt (1 − λyt

)−(B+kI) f (B,λ)
k

(
x
(
1 − λyt

))
(B)k tk

= eλ
2xyt (1 − λyt

)−B
∞∑

k=0

(B)k f (B,λ)
k

(
x
(
1 − λyt

)) ( t
1 − λyt

)k

.

From (23) with C = B, we get (26).

Theorem 3.4. Let B and C be commutative matrices in Cr×r and λ be a complex number such that Re (λ) > 0. Then
we obtain the bilateral generating matrix function for modified Laguerre matrix polynomials as follows:

∞∑
n=0

F
(
C,−nI;−; y

)
f (B,λ)
n (x) tn (27)

= eλxt (1 − t)−B (
1 + λxyt

)−C F
(
C,B;−;

−yt
(1 − t)

(
1 + λxyt

) ) .
Proof. If we replace x with x (1 − t) and t with yt

1−t in (23), we get

∞∑
k=0

(C)k f (B,λ)
k (x (1 − t))

( yt
1 − t

)k

(28)

=
(
1 − λxyt

)−C F
(
C,B;−;

yt
(1 − t)

(
1 − λxyt

) )
If we multiply the both sides of (28) by eλxt (1 − t)−B we have

eλxt (1 − t)−B (
1 − λxyt

)−C F
(
C,B;−;

yt
(1 − t)

(
1 − λxyt

) ) (29)

=

∞∑
k=0

(C)k yktk
[
eλxt (1 − t)−B−kI f (B,λ)

k (x (1 − t))
]
.
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By means of (24), equation (29) becomes

eλxt (1 − t)−B (
1 − λxyt

)−C F
(
C,B;−;

yt
(1 − t)

(
1 − λxyt

) )
=

∞∑
k=0

(C)k yktk
∞∑

n=0

(n + k)!
n!k!

f (B,λ)
n+k (x) tn.

After simplifying it and replacing y with −y, we have (27).

Although the generating relation (27) is in a bilateral form, we may change it into a bilinear form by the
following corollary.

Corollary 3.5. Let B and C be commutative matrices in Cr×r and λ be a complex number such that Re (λ) > 0. Then
modified Laguerre matrix polynomials satisfy the following bilinear generating relation:

∞∑
n=0

n! f (B,λ)
n (x) f (C,λ)

n
(
y
)

tn (30)

= eλxt (1 − yt
)−B (1 − λxt)−C F

(
C,B;−;

t(
1 − yt

)
(1 − λxt)

)
.

Proof. One can easily get

f (C,λ)
n

(
y
)

=
(λy)n

n!
F
(
C,−nI;−;

−1
λy

)
. (31)

Replacing y with −1
y and t with yt in (27) and using (31), we get (30).

Remark 3.6. The generating relation (26) is the special case of (30) with C = B.

4. Generalized Laguerre Matrix Polynomials

As mentioned before Laguerre matrix polynomials and modified Laguerre matrix polynomials have the
explicit expressions respectively as

L(A,λ)
n (x) =

n∑
k=0

(−1)k (A + I)n
[
(A + I)k

]−1 λkxk

k! (n − k)!
,

and

f (A,λ)
n (x) = (−1)n L(−A−nI,λ)

n =

n∑
k=0

(A)n−k
λkxk

k! (n − k)!
,

Examining these two polynomials we are able to construct a generalization p(A,λ)
n (m; x) in the form:

p(A,λ)
n (m; x) =

n∑
k=0

(−1)mk (A + (mk + 1) I)n−k
λkxk

k! (n − k)!
,

where m is a nonnegative integer. Then

p(A,λ)
n (1; x) = L(A,λ)

n (x) ,
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where −k < σ(A) for every integer k > 0 and

p(A−I,λ)
n (0; x) = (−1)n L(−A−nI,λ)

n = f (A,λ)
n (x) .

Using the direct summation techniques we obtain a generating function for p(A,λ)
n (m; x) as

∞∑
n=0

p(A,λ)
n (m; x) tn = (1 − t)−(A+I) exp

(
λxt

(1 − t)m

)
.
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[1] A. Altın, B. Çekim, Generating matrix functions for Chebyshev matrix polynomials of the second kind, Hacettepe Journal of
Mathematics and Statistics 41 (1) (2012) 25-32.
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