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Complete Convergence for Weighted Sums
of a Class of Random Variables

Xin Denga, Meimei Gea, Xuejun Wanga, Yanfang Liua, Yu Zhoua

aSchool of Mathematical Sciences, Anhui University, Hefei 230601, P.R. China

Abstract. Let {ani, 1 ≤ i ≤ n,n ≥ 1} be an array of real numbers and {Xn,n ≥ 1} be a sequence of random
variables satisfying the Rosenthal type inequality, which is stochastically dominated by a random variable
X. Under mild conditions, we present some results on complete convergence for weighted sums

∑n
i=1 aniXi

of random variables satisfying the Rosenthal type inequality. The results obtained in the paper generalize
some known ones in the literatures.

1. Introduction

In many stochastic models, the assumption that random variables are independent is not plausible. So
it is of interest to extend the results from independent framework to dependent variables. The emphasis of
the paper is to consider a class of random variables satisfying the Rosenthal type inequality.

Let {Zn,n ≥ 1} be a sequence of random variables. The Rosenthal type inequality is expressed as follows:
for any r ≥ 2 and every n ≥ 1,

E

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

(Zi − EZi)

∣∣∣∣∣∣∣
r ≤ C

 n∑
i=1

E|Zi − EZi|
r +

 n∑
i=1

E(Zi − EZi)2


r/2 . (1.1)

The main purpose of the paper is to study the complete convergence for a class of random variables
satisfying the Rosenthal type inequality. The concept of complete convergence was introduced by Hsu and
Robbins [1] as follows.
Definition 1.1. A sequence {Xn,n ≥ 1} of random variables converges completely to the constant θ (write Xn → θ
completely) if for any ε > 0,

∞∑
n=1

P(|Xn − θ| > ε) < ∞.
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In view of the Borel-Cantelli lemma, this implies that Xn → θ almost surely. Therefore, the complete
convergence is a very important tool in establishing almost sure convergence. Hsu and Robbins [1]
proved that the sequence of arithmetic means of independent and identically distributed random variables
converges completely to the expected value if the variance of the summands is finite. Erdos [2] proved the
converse. The result of Hsu-Robbins-Erdos is a fundamental theorem in probability theory and has been
generalized and extended in several directions by many authors. One of the most important generalizations
is Baum and Katz [3] for the strong law of large numbers. Due to Baum and Katz [3], one has:
Theorem 1.1. Let p > 1/α and 1/2 < α ≤ 1. Let {Xn,n ≥ 1} be a sequence of independent and identically distributed
random variables with EX1 = 0. Then the following statements are equivalent:

(i) E|X1|
p < ∞;

(ii)
∞∑

n=1
npα−2P

(
max
1≤k≤n

∣∣∣∣∣∣ k∑
i=1

Xi

∣∣∣∣∣∣ > εnα
)
< ∞ for all ε > 0.

Motivated by applications to sequential analysis of time series, Lai [4] extended this theorem from i.i.d.
case to other dependent cases namely for some classes of ϕ-mixing and strong mixing sequences of random
variables satisfying the following additional assumption: there exist some β > 1 and positive integer m
such that as x→∞,

sup
i>m

P (|X1| > x, |Xi| > x) = O
(
Pβ(|X1| > x)

)
. (1.2)

Peligrad [5] proved that the equivalence of (i) and (ii) in Theorem 1.1 holds forϕ-mixing sequence without the
additional assumption (1.2), but under the condition of strict stationarity. Wang [6] proved the equivalence
of (i) and (ii) in Theorem 1.1 under the condition of stationarity, which is weaker than that of Peligrad
[5]. Shao [7] generalized and improved the corresponding results of Wang [6] under the condition of
identical distributions. Sung [8] obtained the weighted version of Baum and Katz type result for identically
distributed ρ∗-mixing random variables. Wu [9] extended the well-known Baum and Katz [3] complete
convergence theorem from the i.i.d. case to negatively dependent random variables and Wu [10] improved
and extended this type theorem from the i.i.d. case to weighted sums of pairwise negative quadrant
dependent random variables. For more details about the Baum and Katz type result, one can refer to
Wang and Hu [11] and Shen [12]. The main purpose of the paper is to prove the Baum and Katz type
result for weighted sums of a class of random variables satisfying the Rosenthal type inequality, which are
stochastically dominated by a random variable X. The concept of stochastic domination is as follows.
Definition 1.2. A sequence {Xn,n ≥ 1} of random variables is said to be stochastically dominated by a random
variable X if there exists a positive constant C such that

P(|Xn| > x) ≤ CP(|X| > x)

for all x ≥ 0 and n ≥ 1.
Throughout the paper, let I(A) be the indicator function of the set A. The symbol C denotes a positive

constant which is not necessarily the same one in each appearance, bxc denotes the integer part of x and
a ∧ b � min{a, b}. an = O(bn) stands for |an/bn| ≤ C.

2. Main Results

Our main results are as follows.
Theorem 2.1. Let {Xn,n ≥ 1} be a sequence of mean zero random variables, which is stochastically dominated by a
random variable X with E|X|p < ∞ for some p > 1/α and 1/2 < α ≤ 1. Let {ani, 1 ≤ i ≤ n,n ≥ 1} be an array of real
numbers satisfying |ani| ≤ C for 1 ≤ i ≤ n and n ≥ 1, where C is a positive constant. Suppose that (1.1) holds for any
r ≥ 2 and every n ≥ 1, where Zi = aniXiI(|Xi| ≤ nα) for 1 ≤ i ≤ n. Then

∞∑
n=1

npα−2P

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

aniXi

∣∣∣∣∣∣∣ > εnα
 < ∞, for all ε > 0. (2.1)
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Theorem 2.2. Let {Xn,n ≥ 1} be a sequence of mean zero random variables, which is stochastically dominated by a
random variable X with E|X|p < ∞ for some p > 1/α and 1/2 < α ≤ 1. Let {ani, 1 ≤ i ≤ n,n ≥ 1} be an array of real
numbers satisfying |ani| > 1. Suppose that (1.1) holds for any r ≥ 2 and every n ≥ 1, where Zi = aniXiI(|aniXi| ≤ nα)
for 1 ≤ i ≤ n. If

n∑
i=1

|ani|
q
≤ n for some q > p, (2.2)

Then (2.1) holds true.
Together with Theorems 2.1 and 2.2, we can get the following result.

Theorem 2.3. Let {Xn,n ≥ 1} be a sequence of mean zero random variables, which is stochastically dominated by a
random variable X with E|X|p < ∞ for some p > 1/α and 1/2 < α ≤ 1. Let {ani, 1 ≤ i ≤ n,n ≥ 1} be an array of real
numbers satisfying

n∑
i=1

|ani|
q = O(n) for some q > p. (2.3)

Suppose that for any r ≥ 2 and every n ≥ 1, (1.1) holds for Zi = aniXiI(|Xi| ≤ nα) and Zi = aniXiI(|aniXi| ≤ nα) for
1 ≤ i ≤ n. Then (2.1) holds true.

If the condition stochastic domination is replaced by identical distribution, then we can get the following
result on complete convergence for weighted sums of identically distributed random variables satisfying
the Rosenthal type inequality.
Theorem 2.4. Let {Xn,n ≥ 1} be a sequence of identically distributed random variables with EX1 = 0. Let p > 1/α,
1/2 < α ≤ 1 and {ani, 1 ≤ i ≤ n,n ≥ 1} be an array of real numbers satisfying (2.3). Suppose that for any r ≥ 2 and
every n ≥ 1, (1.1) holds for Zi = aniXiI(|Xi| ≤ nα) and Zi = aniXiI(|aniXi| ≤ nα) for 1 ≤ i ≤ n. If E|X1|

p < ∞, then
(2.1) holds true.

Conversely, suppose that for every n ≥ 1,

E

∣∣∣∣∣∣∣
n∑

i=1

(Zi − EZi)

∣∣∣∣∣∣∣
2

≤ C
n∑

i=1

E(Zi − EZi)2, (2.4)

where Zi = I(|Xi| > nα) for 1 ≤ i ≤ n. If (2.1) holds for any array {ani, 1 ≤ i ≤ n,n ≥ 1} satisfying (2.3), then
E|X1|

p < ∞.

Remark 2.1. There are many sequences of random variables satisfying the Rosenthal type inequality (1.1).
See for example, independent random variables, ϕ-mixing identically distributed random variables with∑
∞

n= ϕ
1/2(2n) < ∞ (see Shao [7]), ρ-mixing identically distributed random variables with

∑
∞

n= ρ
2/p(2n) < ∞

(see Shao [13]), negatively associated random variables (see Shao [14]), ρ̃-mixing random variables (see Utev
and Peligrad [15]), ϕ-mixing random variables with

∑
∞

n= ϕ
1/2(n) < ∞ (see Wang et al. [16]), asymptotically

almost negatively associated random variables (see Yuan and An [17]), negatively superadditive-dependent
random variables (see Wang et al. [18]). Therefore, the main results of the paper also hold for these se-
quences of random variables.

Remark 2.2. Bai and Cheng [19] presented a necessary and sufficient condition for the almost sure con-
vergence of weighted sums of independent and identically distributed random variables as follows (see
Theorem 2.1 in Bai and Cheng [19]): let {Xn,n ≥ 1} be a sequence of independent and identically dis-
tributed random variables with mean zero and {ani, 1 ≤ i ≤ n,n ≥ 1} be an array of real numbers. Denote
Tn =

∑n
i=1 aniXi. Suppose that E|X|β < ∞ and

n∑
i=1

|ani|
α = O(n) (2.5)
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holds for some 1 < p < 2 and 1/p = 1/α + 1/β. Then

Tn/n1/p
→ 0 a.s. (2.6)

Conversely, if (2.6) is true for any coefficient arrays satisfying (2.5), then E|X|β < ∞.
Bai and Cheng’s assumptions reduce to requiring the existence of a moment of order β > 1/α and the

assumption on the weights becomes q > 1/α. Compared with Theorem 2.1 in Bai and Cheng [19], Theorem
2.4 in our paper presents a necessary and sufficient condition for the complete convergence of weighted
sums of a class of random variables satisfying the Rosenthal type inequality, which is more general than
almost sure convergence. It is easily seen that if pα ≥ 2, then (2.1) implies (2.6). Hence, the result of Theorem
2.4 in the paper generalizes and improves the corresponding one of Theorem 2.1 in Bai and Cheng [19].

3. Proof of the Main results

To prove the main results of the paper, we need the following useful lemma. For the proof, one can refer
to Wu ([20], [21]), Shen ([22], [23]) or Shen and Wu [24].
Lemma 3.1. Let {Xn,n ≥ 1} be a sequence of random variables which is stochastically dominated by a random variable
X. Then for any α > 0 and b > 0,

E|Xn|
αI (|Xn| ≤ b) ≤ C1 [E|X|αI (|X| ≤ b) + bαP (|X| > b)] (3.1)

and

E|Xn|
αI (|Xn| > b) ≤ C2E|X|αI (|X| > b) , (3.2)

where C1 and C2 are positive constants. Consequently, E|Xn|
α
≤ CE|X|α.

Proof of Theorem 2.1.
For 1 ≤ i ≤ n and n ≥ 1, define X′

ni = XiI(|Xi| ≤ nα). Since EXi = 0 and |ani| ≤ C, we have that

n−α max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

aniEX
′

ni

∣∣∣∣∣∣∣ = n−α max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

aniEXiI(|Xi| > nα)

∣∣∣∣∣∣∣
≤ n−α max

1≤ j≤n

j∑
i=1

|aniEXiI(|Xi| > nα)|

≤ n−α
n∑

i=1

|ani|E|Xi|I(|Xi| > nα)

≤ Cn−α
n∑

i=1

|ani|E|X|I(|X| > nα)

≤ Cn1−αE|X|I(|X| > nα)
≤ Cn1−pαE|X|p → 0, as n→∞.

Hence for all n large enough, we have

n−α max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

aniEX
′

ni

∣∣∣∣∣∣∣ < ε
2
.
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It follows that

∞∑
n=1

npα−2P

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

aniXi

∣∣∣∣∣∣∣ > εnα


≤

∞∑
n=1

npα−2
n∑

i=1

P(|Xi| > nα) +

∞∑
n=1

npα−2P

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

aniX
′

ni

∣∣∣∣∣∣∣ > εnα


≤ C
∞∑

n=1

npα−1P(|X| > nα) + C
∞∑

n=1

npα−2P

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

ani(X
′

ni − EX
′

ni)

∣∣∣∣∣∣∣ > εnα

2


� CI + CJ. (3.3)

It is easily seen that

I =

∞∑
n=1

npα−1
∞∑

i=n

P(iα < |X| ≤ (i + 1)α)

=

∞∑
i=1

P(iα < |X| ≤ (i + 1)α)
i∑

n=1

npα−1

≤ C
∞∑

i=1

P(iα < |X| ≤ (i + 1)α)ipα

≤ CE|X1|
p < ∞. (3.4)

Next, we show J < ∞. We have by Markov inequality and (1.1) that for any r ≥ 2,

J ≤

(2
ε

)r ∞∑
n=1

npα−rα−2E

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

ani(X
′

ni − EX
′

ni)

∣∣∣∣∣∣∣
r

≤ C
∞∑

n=1

npα−rα−2


 n∑

i=1

a2
niE(X

′

ni − EX
′

ni)
2


r/2

+

n∑
i=1

|ani|
rE|X

′

ni − EX
′

ni|
r


≤ C

∞∑
n=1

npα−rα−2


 n∑

i=1

a2
niE(X

′

ni)
2


r/2

+

n∑
i=1

|ani|
rE|X

′

ni|
r


≤ C

∞∑
n=1

npα−rα−2

 n∑
i=1

E|Xi|
2I(|Xi| ≤ nα)


r/2

+ C
∞∑

n=1

npα−rα−2
n∑

i=1

E|Xi|
rI(|Xi| ≤ nα)

� CJ1 + CJ2 (3.5)

In the last inequality, we used the fact that |ani| ≤ C for 1 ≤ i ≤ n and n ≥ 1.
If p ≥ 2, then we take r > max{(pα − 1)/(α − 1/2), p}. Taking into account Lemma 3.1, we have that

J1 ≤ C
∞∑

n=1

npα−rα−2

 n∑
i=1

(EX2I(|X| ≤ nα) + n2αP(|X| > nα))


r/2

≤ C
∞∑

n=1

npα−rα−2

 n∑
i=1

(EX2I(|X| ≤ nα) + EX2I(|X| > nα))


r/2

≤ C
∞∑

n=1

npα−rα−2+r/2 < ∞. (3.6)
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Since r > p, it follows by Lemma 3.1 again and (3.4) that

J2 ≤ C
∞∑

n=1

npα−rα−2
n∑

i=1

(E|X|rI(|X| ≤ nα) + nrαP(|X| > nα))

= C
∞∑

n=1

npα−rα−1E|X|rI(|X| ≤ nα) + C
∞∑

n=1

npα−1P(|X| > nα)

≤ C
∞∑

n=1

npα−rα−1
n∑

i=1

E|X|rI((i − 1)α < |X| ≤ iα) + C

= C
∞∑

i=1

E|X|rI((i − 1)α < |X| ≤ iα)
∞∑

n=i

npα−rα−1 + C

≤ C
∞∑

i=1

E|X|rI((i − 1)α < |X| ≤ iα)ipα−rα + C

≤ CE|X|p + C < ∞. (3.7)

If p < 2, then we take r = 2. Since r > p, (3.7) still holds, and so J1 = J2 < ∞. This completes the proof of the
theorem.

Proof of Theorem 2.2.

If p < 2, then we can take δ > 0 such that p < p + δ < min{2, q}. Since |ani| > 1, we have that∑n
i=1 |ani|

p+δ
≤

∑n
i=1 |ani|

q
≤ n. Thus we may assume that (2.2) holds for some p < q < 2 when p < 2.

Let S′nj =
∑ j

i=1 aniXiI(|aniXi| ≤ nα) for 1 ≤ j ≤ n and n ≥ 1. In view of EXi = 0, we have by Lemma 3.1 that

n−α max
1≤ j≤n

∣∣∣∣ES
′

nj

∣∣∣∣ ≤ n−α
n∑

i=1

E|aniXi|I(|aniXi| > nα)

≤ n−pα
n∑

i=1

E|aniXi|
p

≤ Cn−pα
n∑

i=1

|ani|
pE|X|p

≤ Cn−pα

 n∑
i=1

|ani|
q


p/q

n1−p/qE|X|p

≤ Cn1−pαE|X|p → 0, as n→∞.

Hence for all n large enough, we have that

n−α max
1≤ j≤n

∣∣∣∣ES
′

nj

∣∣∣∣ < ε/2.
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It follows that

∞∑
n=1

npα−2P

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

aniXi

∣∣∣∣∣∣∣ > εnα


≤

∞∑
n=1

npα−2P
(
max
1≤i≤n

|aniXi| > nα
)

+

∞∑
n=1

npα−2P
(
max
1≤ j≤n

∣∣∣∣S′nj

∣∣∣∣ > εnα
)

≤ C
∞∑

n=1

npα−2
n∑

i=1

P(|aniX| > nα) + C
∞∑

n=1

P
(
max
1≤ j≤n

∣∣∣∣S′nj − ES
′

nj

∣∣∣∣ > εnα

2

)
� CI + CJ (3.8)

For 1 ≤ j ≤ n − 1 and n ≥ 2, let

Inj =
{
1 ≤ i ≤ n : n1/q( j + 1)−1/q < |ani| ≤ n1/q j−1/q

}
. (3.9)

Thus, {Inj, 1 ≤ j ≤ n − 1} are disjoint and
⋃n−1

j=1 Inj = {1 ≤ i ≤ n : ani , 0}. It follows by (2.2) that

n ≥
∑

{1≤i≤n:ani,0}

|ani|
q =

n−1∑
j=1

∑
i∈Inj

|ani|
q
≥ n

k∑
j=1

1
j + 1

#Inj ≥
n

k + 1

k∑
j=1

#Inj, (3.10)

which implies that
∑k

j=1 #Inj ≤ k + 1 for 1 ≤ k ≤ n − 1.
Denote t = 1/(α − 1/q). It is easily checked that,

I ≤ C
∞∑

n=2

npα−2
n−1∑
j=1

∑
i∈Inj

P(|aniX| > nα)

≤ C
∞∑

n=2

npα−2
n−1∑
j=1

P
(
|X|t > njt/q

)
#Inj

≤ C
∞∑

n=2

npα−2
n−1∑
j=1

#Inj

∑
k≥bnjt/qc

P
(
k < |X|t ≤ k + 1

)

≤ C
∞∑

n=2

npα−2
∞∑

k=n

P
(
k < |X|t ≤ k + 1

) (n−1)∧b((k+1)/n)q/t
c∑

j=1

#Inj

≤ C
∞∑

n=2

npα−2
∞∑

k=n

P
(
k < |X|t ≤ k + 1

) n ∧

(k + 1
n

)q/t + 1


≤ C

∞∑
n=1

npα−2
dn1+t/q

e∑
k=n

P
(
k < |X|t ≤ k + 1

) (k + 1
n

)q/t

+ 1


+C

∞∑
n=1

npα−1
∞∑

k=bn1+t/qc+1

P
(
k < |X|t ≤ k + 1

)
=: I1 + I2. (3.11)
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Since pα − 2 − q/t = −α(q − p) − 1 < −1, we obtain

I1 ≤ C
∞∑

n=1

npα−2−q/t
bn1+t/q

c∑
k=n

P
(
k < |X|t ≤ k + 1

)
kq/t

≤ C
∞∑

k=1

P
(
k < |X|t ≤ k + 1

)
kq/t

k∑
n=bkq/(q+t)c

npα−2−q/t

≤ C
∞∑

k=1

P
(
k < |X|t ≤ k + 1

)
kq/t−qα(q−p)/(q+t)

≤ CE|X|p < ∞. (3.12)

We also obtain

I2 ≤ C
∞∑

k=1

P
(
k < |X|t ≤ k + 1

) bkq/(t+q)
c∑

n=1

npα−1

≤ C
∞∑

k=1

P
(
k < |X|t ≤ k + 1

)
kp(α−1/q)

≤ CE|X|p < ∞. (3.13)

From I1 < ∞ and I2 < ∞, we have I < ∞. Thus, it remains to show that J < ∞. We have by Markov
inequality and (1.1) that for any r ≥ 2,

J ≤ C
∞∑

n=1

npα−rα−2E
(
max
1≤ j≤n

∣∣∣∣S′nj − ES
′

nj

∣∣∣∣r)

≤ C
∞∑

n=1

npα−rα−2

 n∑
i=1

E|aniXi|
2I(|aniXi| ≤ nα)


r/2

+C
∞∑

n=1

npα−rα−2
n∑

i=1

E|aniXi|
rI(|aniXi| ≤ nα)

� J1 + J2. (3.14)

Observe that for r ≥ q and n > m,

n ≥
n−1∑
j=1

∑
i∈Inj

|ani|
q
≥ n

n−1∑
j=1

1
j + 1

#Inj ≥ n(m + 1)r/q−1
n−1∑
j=m

( j + 1)−r/q#Inj,

which implies that
∑n−1

j=m j−r/q#Inj ≤ Cm−(r/q−1) for r ≥ q and n > m. For J1 and J2, we consider the following
two cases.

(i) If p ≥ 2, then we take r > max{(pα − 1)/(α − 1/2), q}. Taking into account Lemma 3.1, we have that

J1 ≤ C
∞∑

n=1

npα−rα−2

 n∑
i=1

|ani|
2EX2


r/2

≤ C
∞∑

n=1

npα−rα−2

 n∑
i=1

|ani|
q


r/2

≤ C
∞∑

n=1

npα−rα−2+r/2 < ∞. (3.15)
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The second inequality follows by the fact that |ani| > 1.

It follows by Lemma 3.1 and I < ∞ that

J2 ≤ C
∞∑

n=1

npα−rα−2
n∑

i=1

(E|aniX|rI(|aniX| ≤ nα) + nrαP(|aniX| > nα))

≤ C
∞∑

n=2

npα−rα−2
n−1∑
j=1

∑
i∈In j

E|aniX|rI(|aniX| ≤ nα)

≤ C
∞∑

n=2

npα−rα−2+r/q
n−1∑
j=1

j−r/q#InjE|X|rI
(
|X|t ≤ n( j + 1)t/q

)
≤ C

∞∑
n=2

npα−rα−2+r/q
n−1∑
j=1

j−r/q#Inj

∑
0≤k≤bn( j+1)t/qc

E|X|rI
(
k < |X|t ≤ k + 1

)
= C

∞∑
n=2

npα−rα−2+r/q
n−1∑
j=1

j−r/q#Inj

2n∑
k=0

E|X|rI
(
k < |X|t ≤ k + 1

)

+C
∞∑

n=2

npα−rα−2+r/q
n−1∑
j=1

j−r/q#Inj

bn( j+1)t/q
c∑

k=2n+1

E|X|rI
(
k < |X|t ≤ k + 1

)
� CJ3 + CJ4. (3.16)

Since pα − rα − 2 + r/q < qα − rα − 2 + r/q = −(r − q)(α − 1/q) − 1 < −1 and q > p, we have that

J3 =

∞∑
n=2

npα−rα−2+r/q
2n∑

k=0

E|X|rI
(
k < |X|t ≤ k + 1

) n−1∑
j=1

j−r/q#Inj

≤ C
∞∑

n=2

npα−rα−2+r/q
2n∑

k=0

E|X|rI
(
k < |X|t ≤ k + 1

)
≤ C

∞∑
k=1

E|X|rI
(
k < |X|t ≤ k + 1

) ∞∑
n=bk/2c

npα−rα−2+r/q

≤ C
∞∑

k=1

E|X|rI
(
k < |X|t ≤ k + 1

)
kpα−rα−1+r/q

≤ C
∞∑

k=1

P
(
k < |X|t ≤ k + 1

)
kpα−1

≤ CE|X|p < ∞. (3.17)
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Since 1/t + 1/q − α = 0 and pα − 2 − q/t = −α(q − p) − 1 < −1, we also have that

J4 ≤ C
∞∑

n=2

npα−rα−2+r/q
bn(q+t)/q

c∑
k=2n+1

E|X|rI
(
k < |X|t ≤ k + 1

) n−1∑
j=b(k/n)q/tc−1

j−r/q#Inj

≤ C
∞∑

n=2

npα−rα−2+r/q
bn(q+t)/q

c∑
k=2n+1

E|X|rI
(
k < |X|t ≤ k + 1

) ( k
n

)q/t − 1

−(r/q−1)

≤ C
∞∑

k=5

E|X|rI
(
k < |X|t ≤ k + 1

)
k−(r−q)/t

bk/2c∑
n=bkq/(q+t)c

npα−2−q/t

≤ C
∞∑

k=5

E|X|rI
(
k < |X|t ≤ k + 1

)
k−(r−q)/t−(α−1/q)(q−p)

≤ CE|X|p < ∞. (3.18)

From J3 < ∞ and J4 < ∞, we have J2 < ∞.
(ii) If p < 2, then we take r = 2. As noted above, we may assume that p < q < 2. Since r > q, as in the

case p ≥ 2, we have J1 = J2 ≤ CE|X1|
p < ∞. This completes the proof of the theorem.

Proof of Theorem 2.3.
The assumption (2.3) implies that

∑n
i=1 |ani|

q
≤ Cn for some q > p, where C is a positive constant. For

n ≥ 1, let

An = {1 ≤ i ≤ n : |ani|/C1/q
≤ 1},Bn = {1 ≤ i ≤ n : |ani|/C1/q > 1}, (3.19)

and let a′ni = ani/C1/q if i ∈ An, a
′

ni = 0 otherwise, and a′′ni = ani/C1/q if i ∈ Bn, a
′′

ni = 0 otherwise. Then

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

ani

C1/q Xi

∣∣∣∣∣∣∣ ≤ max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

a
′

niXi

∣∣∣∣∣∣∣ + max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

a
′′

niXi

∣∣∣∣∣∣∣ . (3.20)

It follows that

∞∑
n=1

npα−2P

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

aniXi

∣∣∣∣∣∣∣ > εnα
 ≤

∞∑
n=1

npα−2P

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

a
′

niXi

∣∣∣∣∣∣∣ > εnα

2C1/q


+

∞∑
n=1

npα−2P

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

a
′′

niXi

∣∣∣∣∣∣∣ > εnα

2C1/q


� I + J. (3.21)

By Theorem 2.1, we have I < ∞. By Theorem 2.2, we have J < ∞. Then (2.1) holds. This completes the
proof of the theorem.

Proof of Theorem 2.4.
The sufficient part can be obtained by Theorem 2.3. So we only need to show necessity.
Choose, for each n ≥ 1, an1 = · · · = ann = 1. Then {ani} satisfies (2.3). By (2.1), we obtain that

∞∑
n=1

npα−2P

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

Xi

∣∣∣∣∣∣∣ > εnα
 < ∞, ∀ε > 0, (3.22)
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which implies that

∞∑
n=1

npα−2P
(
max
1≤ j≤n

|X j| > εnα
)

≤

∞∑
n=1

npα−2P

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

Xi

∣∣∣∣∣∣∣ > εnα

2

 +

∞∑
n=1

npα−2P

max
1≤ j≤n

∣∣∣∣∣∣∣
j−1∑
i=1

Xi

∣∣∣∣∣∣∣ > εnα

2


< ∞, ∀ε > 0. (3.23)

Observe that

∞ >
∞∑

i=1

2i∑
n=2i−1+1

npα−2P
(
max
1≤ j≤n

|X j| > εnα
)

≥


∞∑

i=1
(2i−1)pα−22i−1P

(
max

1≤ j≤2i−1
|X j| > ε(2i)α

)
, if pα ≥ 2,

∞∑
i=1

(2i)pα−22i−1P
(

max
1≤ j≤2i−1

|X j| > ε(2i)α
)
, if 1 < pα < 2,

≥


∞∑

i=1
P
(

max
1≤ j≤2i−1

|X j| > ε(2i)α
)
, if pα ≥ 2,

2pα−2
∞∑

i=1
P
(

max
1≤ j≤2i−1

|X j| > ε(2i)α
)
, if 1 < pα < 2.

By the convergence of series, we have that for any ε > 0,

P
(

max
1≤ j≤2i−1

|X j| > ε(2i)α
)
→ 0 as i→∞.

Hence, for any n ≥ 1, there exists a i such that 2i−2
≤ n < 2i−1, thus

P
(
max
1≤ j≤n

|X j| > nα
)
≤ P

(
max

1≤ j≤2i−1
|X j| > (2i−2)α

)
= P

(
max

1≤ j≤2i−1
|X j| > 2−2α(2i)α

)
→ 0, as n→∞. (3.24)

Since

P
(
max
1≤ j≤n

|X j| > nα
)

=

n∑
j=1

P
(
|X j| > nα, max

1≤i≤ j−1
|Xi| ≤ nα

)
,

it follows that

nP(|X1| > nα) = P
(
max
1≤ j≤n

|X j| > nα
)

+

n∑
j=1

P
(
|X j| > nα, max

1≤i≤ j−1
|Xi| > nα

)
. (3.25)
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It is easy to check that
n∑

j=1

P
(
|X j| > nα, max

1≤i≤ j−1
|Xi| > nα

)

=

n∑
j=1

EI
(
|X j| > nα

)
I
(

max
1≤i≤ j−1

|Xi| > nα
)

=

n∑
j=1

E
(
(I(|X j| > nα) − P(|X j| > nα))I

(
max

1≤i≤ j−1
|Xi| > nα

))

+

n∑
j=1

EP(|X j| > nα)I
(

max
1≤i≤ j−1

|Xi| > nα
)

≤ E

 n∑
j=1

(I(|X j| > nα) − P(|X1| > nα))I
(
max
1≤i≤n

|Xi| > nα
)

+nP(|X1| > nα)P
(
max
1≤i≤n

|Xi| > nα
)

� I + II. (3.26)

According to the Cauchy-Schwarz inequality, we have by (2.4) that

I2
≤

E

∣∣∣∣∣∣∣∣
n∑

j=1

(I(|X j| > nα) − P(|X1| > nα))I
(
max
1≤i≤n

|Xi| > nα
)∣∣∣∣∣∣∣∣


2

≤ E

 n∑
j=1

(I(|X j| > nα) − P(|X1| > nα))


2

P
(
max
1≤i≤n

|Xi| > nα
)

≤ C

 n∑
j=1

E(I(|X j| > nα) − P(|X1| > nα))2

 P
(
max
1≤i≤n

|Xi| > nα
)

= CnVar(I(|X1| > nα))P
(
max
1≤i≤n

|Xi| > nα
)

≤ CnP(|X1| > nα)P
(
max
1≤i≤n

|Xi| > nα
)

≤

[1
4

nP(|X1| > nα) + CP
(
max
1≤i≤n

|Xi| > nα
)]2

. (3.27)

Now we return the estimate from the relation (3.27) into the relation (3.26) and then into relation (3.25) and
get

3
4

nP(|X1| > nα) ≤ 2(1 + C)P
(
max
1≤i≤n

|Xi| > nα
)

+ nP(|X1| > nα)P
(
max
1≤i≤n

|Xi| > nα
)
.

(3.28)

By (3.24) and (3.28), for all n sufficiently large, we have

nP(|X1| > nα) ≤ 4(1 + C)P
(
max
1≤i≤n

|Xi| > nα
)
. (3.29)

Relations (3.23) and (3.29) finally yield that
∞∑

n=1

npα−1P(|X1| > nα) < ∞.
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Hence,

∞ >
∞∑

n=1

npα−1P(|X1| > nα)

=

∞∑
n=1

npα−1
∞∑

i=n

P(iα < |X1| ≤ (i + 1)α)

=

∞∑
i=1

P(iα < |X1| ≤ (i + 1)α)
i∑

n=1

npα−1

≥ C
∞∑

i=1

P(iα < |X1| ≤ (i + 1)α)ipα

≥ C
∞∑

i=1

E (I(iα < |X1| ≤ (i + 1)α)(i + 1)pα)

≥ C
∞∑

i=1

E (I(iα < |X1| ≤ (i + 1)α)|X1|
p)

≥ CE|X1|
p,

which implies that E|X1|
p < ∞. This completes the proof of the theorem.
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