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Abstract. We study the rate of convergence of a new synthetic algorithm for finding a common element of
the set of solutions of an equilibrium problem and the set of common fixed points of a pair of nonexpansive
mappings and two finite families of demicontractive mappings. We then provide some numerical examples
to illustrate our main result and the proposed algorithm.

1. Introduction

Let H be a real Hilbert space whose inner product and norm are denoted by (.,.) and ||.|| respectively.
Let C be a nonempty closed convex subset of H, and let Y be a bifunction of C X C into R. The equilibrium
problem for Y : C x C — R is to find x € C such that

Y(x,y) >0, Vy € C. (1)

The set of solutions of (1) is denoted by EP(Y). In 2005, Combettes and Hirstoaga [1] introduced an iterative
scheme for finding the best approximation to the initial data when EP(Y) is nonempty, and proved a strong
convergence theorem. Let A : C — H be a nonlinear mapping. The classical variational inequality which
is denoted by VI(A,C) is to find x € C such that

(Ax,y—x) >0, Yy € C.

Throughout this article, for a mapping T : C — C we write
Fix(T)={xeC:x=Tx}

to denote the fixed points of T.

Definition 1.1. A mapping T : C — C is said to be quasi-nonexpansive if
|IT(x) —x*|| < |lx = x|, Yx € C, x* € Fix(T).

If the strict inequality holds, then T is called strictly quasi-nonexpansive.

2010 Mathematics Subject Classification. Primary 47H09; 47H10; 47]25

Keywords. synthetic algorithm, equilibrium problems, nonexpansive mapping, demicontractive mapping, variational inequality.
Received: 15 March 2016; Accepted: 20 August 2016

Communicated by Naseer Shahzad

Email addresses: abkar@sci.ikiu.ac.ir (Ali Abkar), m.shekarbaigi@gmail.com (Mohsen Shekarbaigi)



A. Abkar, M. Shekarbaigi / Filomat 31:19 (2017), 5891-5908 5892
Definition 1.2. (2, 3]) A mapping T : C — C is said to be nonspreading if
2| T(x) = T(W)I? < IT(x) = yI? + 2{x — T(x), y — T(y)), Vx,y € C.

In [4], Lemoto and Takahashi introduced an equivalence relation in order that a mapping T : C — C to be
nonspreading;:

IT(x) = TW)IP < llx = ylI* +2{x = T(x), y - T(y)), Vx,y € C.

Definition 1.3. ([5, 6]) A mapping T : C — C is said to be demicontractive (or k-demicontractive) if there exists
k € [0,1) such that

IT(x) — x| < |lx — x*|]> + kIT(x) — x|*>, ¥x € C, x* € Fix(T).

We note that the class of demicontractive mappings properly includes the class of quasi-nonexpansive
mappings.

Definition 1.4. ([7]) A mapping T with domain D(T) and range R(T) in H is called a k-strictly pseudo-contractive
mapping of Browder-Petryshyn type, if for all x, y € D(T) there exists k € [0, 1) such that

IT@) = TWIP < llx = yl? + Ki(x = T(x)) = (v = T@)IP, Yx,y € D(T).

If this inequality holds for k = 1 then T is simply called pseudo-contractive. Note that the class of strictly
pseudo-contractive mappings includes the class of nonexpansive mappings as a subclass; it suffices to put
k = 0. Recently, Osilike and Isioguge in [8] introduced a new class of mappings in a Hilbert space which is
called the class of k-strictly pseudo-nonspreading mappings:

Definition 1.5. ([8]) A mapping T : C — C is said to be k-strictly pseudo-nonspreading, if there exists k € [0,1)
such that for all x,y € C, the following inequality holds:

IT(x) = TP < ke =yl +Kll(x = T@) = (v = TP + 2¢x = T(x), y = T(y))-

Kohsaka and Takahashi in [2] introduced a nonlinear mapping called nonspreading mapping. This class
was studied in Banach spaces, as well as in Hilbert spaces: see [4, 9, 10].

As for nonexpansive mappings, weak convergence theorems for two nonexpansive mappings Q and R
(with Lipschitz constants kg and kg respectively equal to 1) of C to itself were discussed by Takahashi and
Tamura in [11]:

(2)

x1=x€C, chosen arbitrary,
Xnp1 = (1 —ay)x, + anR{ﬁnQ(xn) +(1- ,Bn)xn}/

where {a,} and {$,} are sequences in [0, 1].
In this paper we want to modify this algorithm to incorporate the demi-contractive mappings. For this
reason we begin with the following definition.

Definition 1.6. An operator A is said to be a strongly positive bounded linear operator on a real Hilbert space H, if
there exists a constant @ > 0 such that

(Ax, x) > o||x|]>, Vx € H.

One of the most important issues of equilibrium and optimization problems is the problem of minimizing
a quadratic function over the set of fixed points of a nonexpansive mapping on a real Hilbert space H:

1
nin 5{Ax ) = (x, b). 3)
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Moudafi in [12] introduced a viscosity approximation method for finding a fixed point of nonexpansive
mappings. Later on, inspired by [12], Xu in [13] and Marino and Xu in [14] introduced the following
iterative scheme:

Xn+l = ﬂan(xn) + I - a,A)T(x,), ¥n >0, (4)

where f is a contraction and T is a nonexpansive mapping. They proved that under some appropriate
conditions on the parameters, the sequence given by (4) converges strongly to the unique solution of the
following VI(A, C) problem

(A=yf)x",x—x") 20, Vx € Fix(T),

which is the optimality condition for the minimization problem

1
L
Xgnpig(}ﬂ( x, x) — h(x),

where  is a potential function for y f (that is 1 (x) = y f(x) for all x € H).

Takahashi and Takahashi in [15] introduced a viscosity approximation method for finding a common
element of EP(Y) and Fix(T). Afterward, Plibtieng and Punpaeng in [16] by combining the schemes (4) in
[13] and using the algorithm in [15] introduced the following algorithm

1
Y(tn, y) + =Y = th, 1y = %a) 20, Yy €C,
Xp1 = Ay f(xn) + (I — a,A)T(x,), Y = 0.

)

They proved that the sequences {x,} and {u,} in this algorithm converge strongly to the unique solution z
of the VI(A, C):

(A=yf)x',x=x") 20, Vx € Fix(T) N EP(Y),

which is the optimality condition for the minimization problem

1
min =(Ax, x) — h(x),
xeFix(T)NEP(Y) 2
where & is a potential function for y f.
In [8] Osilike and Isiogugu proved a strong convergence theorem somewhat related to a Halpern-type
iteration algorithm for a k-strictly pseudo-nonspreading mapping in Hilbert spaces.

Theorem 1.7. [8] Let C be a nonempty closed convex subset of H, and let T : C — C be a k-strictly pseudo-
nonspreading mapping with a nonempty fixed point set Fix(T). Let C € [k, 1) and {a,} be a real sequence in [0, 1) such
that limy, e ay = 0 and Y071 oy = oo. Let u € C and {z,,} and {x,} be sequences in C generated from an arbitrary
X9 € C by

(6)

Zn = Lo Tix, )
X1 = th + (1= @)z, Y 2 0,

where Te = CI + (1 = O)T. Then {z,}, {xn} converge strongly to Prixr)(1).

In this paper, we improve this result by combining the algorithms (2) and (5) with a particular combination
of two finite families of demicontractive mappings and a pair of nonexpansive mappings, and obtain a
new synthetic algorithm. Here, instead of using a Halpern-type algorithm, we shall develop a viscosity
algorithm; the advantage of the viscosity iterative scheme to the Halpern-type scheme is its higher rate of
convergence. There are important applications of these type of algorithms in physical sciences, optimization,
and economics. Moreover, it is known that fuzzy game problems are reduced to finding a solution of the
equilibrium problem, see for instance [17]. For more information on the development of the theory, we
refer the reader to [18-23].
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2. Preliminaries

Throughout this paper, we denote by IN the set of positive integers and by R the set of real numbers.
For a sequence {x,} in H, we write x, — x to indicate that the sequence {x,} converges weakly to x, and
X, — x to indicate that the sequence {x,} converges strongly to x.

Definition 2.1. Let C be a nonempty closed convex subset of H, and T : C — C be a mapping, then I — T is said
to be demiclosed at zero if for any sequence {x,} in C, the conditions x, — x and lim,_,e |[|x, — T(x,)|| = 0, imply
x =T(x).

In a Hilbert space, it is known that:
llax + (1 = )yl = allxl® + (1 = D)y’ - a - a)llx - yI?, )

forallx,y € H and a € [0, 1].
Zegeye and Shahzad in [20] generalized the equation (7) and obtained the following result.

Lemma 2.2. [20]. For each x1,%3,- - ,Xm € H and a1, a2, , ay € [0, 1] with Y1, a; = 1, we have
m
vy + -+ @l = Y el = Y il - ). ®)
i=1 1<i<j<m
Lemma 2.3. Let H be a real Hilbert space. Then we have
llx + yIP? < [l + 2¢y, x + ), Yx,y € H.

Lemma 2.4. [14]. Assume that A is a strongly positive self-adjoint bounded linear operator on a Hilbert space H
with coefficient y and 0 < p < ||A|["Y. Then ||l - pAll < 1 - py.

Lemma 2.5. [13]. Assume that {a,} is a sequence of nonnegative real numbers such that
ane1 < (1= yu)an + yndu, Y1 20,

where {y,} is a sequence in (0, 1) and {6,) is a sequence in R such that

L Yot yn =0,
2. limsup, . Yn <00r Yo’y [yndul < oo

Then lim,—, a, = 0.

Lemma 2.6. [24]. Let {u,} be a sequence of real numbers that does not decrease at infinity, in the sense that there
exists a subsequence {uy,} of {u,} such that u,, < u,,, foralli > 0. For every n > ny, define an integer sequence {t(n)}
as t(n) = max{k < n : uy, < uy,,}. Then t(n) — oo asn — oo, moreover for all n > ny,

max{ur(n)/ un} < Ur(n)+1-

For solving the equilibrium problem, we shall make the following assumptions on the bifunction Y :
CxC—-R:

(C1) Y(x,x) =0forallx €C,
(C2) Y is monotone, that is

Y, y)+Y(y,x) <0, Vx,yeC,

(C3) Y is upper-hemicontinuous, that is

limsup Y(hz+ (1 - h)x,y) < Y(x,y), Vx,y,z€C,
h—0*



A. Abkar, M. Shekarbaigi / Filomat 31:19 (2017), 5891-5908 5895
(C4) Y(x,0)is convex and lower semicontinuous for each x € C.

Lemma 2.7. [25]. Let C be a nonempty closed convex subset of H, and let Y be a bifunction of C X C into R satisfying
(C1) — (C4). Let r > 0 and x € H. Then, there exists z € C such that

Y(u,, y) + %(y—z,z -x)>0, VYyecC.
n

Lemma 2.8. [1]. Assum that Y : CxC — Rsatisfies (C1)— (C4). Forr > 0and x € H define a set-valued mapping
T, : H 3 C in the following way:

Ti(x)={z€eC:Y(z,y) + rl(y—z,z—x) >0, YyeCl

Then we have

1. T, is single valued.
2. T, is firmly nonexpansive, that is for any x,y,z € H,

”Tr(x) - Tr(y)Hz < <Tr(x) - Tr(]/)rx - y>/

3. Fix(T,) = EP(Y),
4. EP(Y) is closed and convex.

Lemma 2.9. [8]. Let C be a nonempty closed convex subset of H, and let T : C — C be a k-strictly pseudo-
nonspreading mapping. Then I — T is demiclosed at zero.

Lemma 2.10. [26]. Let C be a nonempty closed convex subset of a real Hilbert space H, and let T : C — Cbea
k-strictly pseudo-contractive mapping. Then I — T is demiclosed at zero.

Takahashi in [27] proved that if T : C — C is a nonexpansive mapping, then Fix(T) is closed and convex. In
the following, we prove that this claim is true for demi-contractive mappings.

Lemma 2.11. Let C be a nonempty closed convex subset of a real Hilbert space H, and let T : C — C be a
demicontractive mapping. If Fix(T) # 0, then Fix(T) is closed and convex.

Proof. Let {x,} C Fix(T) be a sequence which converges to x € C. We show that x € Fix(T). Observe that
IT(x) =l = IT(x) = s+ 2, = I
< |IT(x) = TCen)ll + I, — |- )
Since T is demicontractive and {x,} C Fix(T), there exists k € [0, 1) such that
IT(x) = Teea)? = IT(x) = x4l
< |y = x|* + Kllx = T(x)|?
< (v = 2l + Villx = T (10)
By using (10) in (9), we obtain

0 < |IT(x) - xll < | Jikew =l = 0, as n— oo,

2
1- vk
Hence x € Fix(T). To prove the convexity, suppose that pq,p, € Fix(T) and A € [0,1]; it is enough to show
that Ap1 + (1 — A)p2 € Fix(T). Let z = Ap; + (1 — A)py, then

p1—z=(1=A)p1~-p2),
p2 =z = AMpa = p1).
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Now, by using (7) we conclude that
Iz = T@I? = IA(p1 = T(2)) + (1 = A)(p2 = TR)IP
= Mlpr = T@IP + (1 = Dllp2 = T@IP = AL = Alip1 = pal?
< Mlipy = 2P + Kz = T@I] + (1 = D|llp2 = 2P + Kllz = T@IF| = A1 = Dlips = pal?
= klz = T2l

Thus (1 - k)|lz — T(2)|I> = 0, or equivalently z € Fix(T). [

3. Main Results

By using the mappings Q and R, defined above, we begin this section with the following theorem on
demicontractive mappings.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H and let Y : C X C — R be
a bifunction satisfying (C1) — (C4). Let fori =1,2,---,m, T; : C — C be a finite family of k-demicontractive
mappings and S; : C — C be a finite family of i--demicontractive mappings such that I — T; and I — S; are demiclosed
at 0. Assume that

m m

Fi= [ﬂ Fix(T,-)] n [ﬂ Fix(S,-)] N Fix(Q) N Fix(R) N Ep(Y) # 0.
i=1 i=1

Let f be a contraction of C into itself with constant b € (0, 1) and A be a strongly positive self-adjoint bounded linear

operator on H with coefficient y such that 0 <y < w Let {x,,} and {u,} be sequences generated by xo € C and

T(un/ ]/) + %(]/ — Up, Up — x?’l> = O/ V]/ € C/
Yn = Qply + ,ann + Z:’ll yn,iTiunr

m (11)
Wy = N oQWn) + Lil1 AniSi(QYn),
X+l = an)/f (R(wy)) + (I — a,A)R(wp,).
Suppose that the sequences {0y}, {Bu}, {Vni}, {Ani}, (rn} and {a,} satisfy the following conditions:
1oan+Pn+Xitiyni=1 and Ayo+ Yt Ani=1,
2. {an} - (0/ 1)/ lim, 0 a, =0, Zjlozl ay = o,
3. {r,} €(0,00), liminf, .7, >0,
4. kx<a, <1, <Ay <land liminf,,e(Ano — L)Ani > 0.
Then the sequences {x,} and {u,} converge strongly to z € F which solves the variational inequality
(A=yf)z,x=2z)>0, VxeF (12)

Proof. Step 1. Itis easy to see that Pr has a fixed point:

IPEI = A+ y )RX) = Pe( = A+ y RPN < (1= A+ y HRY) = (= A+ y Ry
< | = A)Rx) = (I = AYRI + yllfx = fyll
< (kr = 7)llx = yll + yblix = yli
< (kr = (7 = 7Dl =yl

This means that Pr is a contraction of C into itself. Thus there exists a unique element g € C such that
q = Pe(I — A+ yf)q, or equivalently for all p € F, we have (I - A+ yf)q—p,q —p) = 0. Since lim, o 2, = 0,
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we may assume that 0 < a, < [|A]|}, for all n > 0. By Lemma (2.4) we have ||l — 4,A|| < 1 —a,). Now take
p € F since u, = T, x, and p = T,,p, from Lemma (2.8) for any n > 0 we have
ltw = pll = I1T7, %0 = Tr, pll < llxn = pll-

In the following we show that {x,} is bounded. If we define k := max{ k;; 1 <i < m}, then

m
1y = pIP = ettt + Bt + Y Y Titta = I
i=1

m
< yllity = pIP + Bl = pIP + ) yuillTiaty = pIP = ufallen = unll? = il = Titt
i=1

m
2 2 2 2
< pllity = pIP + Balle = pIP + Yy illltn = pIP + Kl — Tirts)
i=1
— —u P = Mt — Tou |1
an,Bn”xn | anVn,z””n iyl

< It = pIP = ufulln = ualP = (@ = K) Y Yl — TP (13)

i=1

By using Lemma (2.2) and a similar argument as before, and using the fact that k2 < ko, we can write

o = pIP = 1An0Q(Yn) + Y, AuiSQun) = pIP
i=1

< AnollQn) = pIP + Z A lISiQyn) = PIP = Ao AnllQ(Yn) = SHQY)IP

i=1

= AnollQn) — QI + Z A illSi(Qyn) = Sipll? = Ao Anill QY — Si(Qyn)IP
i=1

< koAnollyn = pIP + Z Ani(1Qyn =PI + tlQyn = SlQYn)IP) = AnoAuillQyn — Si(QuI

i=1

< koAnolly. = pIP* + Z AikG Iy = pIP + dIQyn = SiQY)IP) = Ao A lIQYx — SiQu)II?
i=1

= kallyn = pIF = (Ano — 1) Z Anill QY = SiQyn)IP

i=1

< kallv = pIP = (Ano = 1) Y AnillQn = SQu)IP

i=1
= Bl = all? = (@ =) Y Yunilltn = Tt (14)
i=1
Thus |lw, — pll < |lx, — pll. Now, using Lemma (2.4) we obtain
141 — P” = ”an(y,f(R(wn) - AP) + (I = a,A)(R(w,) - P)||
= ”un(y_f(R(wn) = Ap) + (I — a,A)(R(w,) — R(p))ll
< anlly f(R(wn) = Apll + Il = a,AlllIR(w;,) = R(p)Il
< anyllf(R(wn) = fpll + anlly fp — Apll + kr (1 = azp)llw,, — pll
= anyllf (R(wn) = FRP)I + anlly fp — Apll + kr(1 — anp)llw, — pll
< ayy blIRw, — Rpll + aqlly fp — Apll + kr(1 = ay)llw, — pll
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< krany bllw, = pll + aqlly fp — Apll + kr(1 = a,,)|lw,, — pl|
<kr(1 =a,(y =y b)llx, — pll + aully fr — Apll.

Finally, we use an induction argument on n € IN to obtain

1
x, — pll < max{|lxg — p||, ——— - Apll;.
I = pll < max{lxo = pll. ===l = Apll

This means that {x,} is bounded. It now follows from (13) that {y,} is bounded too. Similarly, it can be
shown that {u,}, {w,} and {f(R(w,)} are bounded sequences.
Step 2. We show that fori=1,2,--- ,m

Hm [, = Taall =0, Tim|ly, = Si(Qya)ll = 0.

By Lemma (2.4) and the inequality (14) we have

IXns1 =PI = llany f(R(wy)) + (1 — anA)R(wy,) — plf?
= llan (7 f(R(wy)) = Ap) + (I = a, A)(R(w,) - p)I
= llan (7 f(R(wy)) = Ap) + (I = a,A)(R(w,) = R(p)I
< ally fRwy)) - AplP* + (1 = a,7)*|(R(w,) — R(p))IP
+2a,(1 — any)lly f(R(wn)) — Apllll(R(w,) — R(p))II
< ally f(R(wy)) — Apl* + k(1 — a,y)llw, — pll*
+ 2kgan(1 — a )y f(R(wn)) — Aplillw, — pll
< aplly f(R(wy)) — Apll* + k(1 = a,7)? |l — pI?
+ 2kran(1 — aP)lly f(R(wy)) — Apllll, — pll = (1 = ap) cnPullxn — |
= (1= 3,7 (Ano = DA lIQyn — SiQuull* = (1 = aP)*(an — K)ymillitn — Tittul*.
The last inequality simplifies to
(1 = 2. 7)*(Ano = OAlIQYn — SiQuull® < llxn — pIP = Ixns1 — pIP
+ 2kran(1 = a,y)llx, — plllly f(R(wy) — Apll
+ally f(R(wy)) = Apll*. (15)

Step 3. We prove that x, — g as n — oco. To prove this, we consider two possible cases.

Case 1. Assume that {||x, —gl|},>1 is a monotone sequence. In other words, for Ny large enough, {||x,, —gll}.>n;,
is either nondecreasing or non-increasing. Since [|x,, —gl| is bounded, we conclude that ||x,, — g|| is convergent.
Since lim,—,. a4, = 0 and {f(Rw,)} and {x,} are bounded, we have

Jim (1~ 3,7 (Ao = OAlIQYn = SiQyull® = 0.

From lim,_,«a, = 0, we may assume that for some ¢ € (0,1), 0 < ¢ < (1 — a,y)?. By assumption that
liminf, e (Ay0 — t)Ayi > 0, we obtain

lim |IQy, - SiQyull =0, i=1,2,---,m. (16)
With a similar reasoning as in the inequality (15), we conclude that

(1 = apy)*(an = K)yuillun — Tal* < |l = plI* = X041 = pI®
+ 2kra, (1 = a,y)llx, = plllly f(R(w,) — Apll
+a2lly f(R(w,)) — Apll?, (17)
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and that

Lim |ju, — Tju,|l =0, i=1,2,---,m. (18)
n—oo

Also, we obtain

lim ||u, — x,]| = 0. (19)

By using the second equation in (11), we obtain

m
1Y = 4all < Bulls = 10all + Y Yool Tt = sl

i=1
this, together with (18) and (19) yields
lim ||y, — u,ll = 0.
In the following, we show that

limsup{(A —yf)q,q — x,) <0,

n—oo

where g = Pr(I — A + yf)q is the unique solution of the variational inequality (12). We can choose a
subsequence {x,,} of {x,} such that

}Lg((A - v)9,q— xp,) = limsup{(A - yf)q,9 — xu).

In the previous step, we observed that the sequence x,, is bounded, therefore there exists a subsequence
X, of x,,, which converges weakly to v. Without loss of generality, we can assume that x,, — v. We have

already proved that lim,_« [lu, — x,|| = 0, therefore u,, — v. To complete the proof, we need to show that
v € F. But, as a byproduct of Takahashi and Tamura’s argument in [11], we know that v € Fix(Q) N Fix(R).
Now, we show that v € Ep(Y). Since u,, = T}, x,, we have

1
Y(u,, y) + r—(y — Uy, Uy —Xp) 20, VyeC.
n
Since Y is monotone, we can write

rl<y = Up, Uy — Xn) = Y (y, Uy),

therefore

Uy, — Xn,
(Y — uy, r—) > Y(y, un,).

But u,, — x,, — 0 and u,, — v, however, by using (C4) for all y € C, we conclude that Y(y,v) < 0. Now, for
te(0,1]and y € C, setz; = ty + (1 —t)v, since y,v € C and C is convex, we have z; € C and hence Y(z;,v) < 0.
So from (C1) and (C4) we have

0="(z,ze) <tY(zt, y) + (1 = )Y (21, v) < Y21, y),
since t € (0,1]. Thus Y(z;, y) > 0, and from (C3) we conclude that

0<Y(y,v), VyeC.
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This means that v € Ep(Y). So far, we have proved that
v € Fix(Q) N Fix(R) N Ep(Y).

Itis easy to show thatv € (N, Fix(T;))and v € (i, Fix(S;)). Since Q is nonexpansive and lim, e [|yn—unll =
0, we have

lim 1Q(y) — Q) = 0.

Due to (16) and our assumption that I — S; is demiclosed at 0, it follows that v € (N, Fix(5;)). In the same
way, we can prove that v € (i, Fix(T;)), hence v € F. Since g = Pi(I - A+ yf)g and v € F, we have

liglsogp«A =79 = xu) = Im((A =y f)g, 9 — x)
=(A-rf)gq-v)<0.
Now by using the algorithm used in the definition of x,+; and Lemma (2.3), we have

xe1 =gl < N0 = 4, A)R(wn) = QI + 20,y f(R(wy)) = Ag, Xns1 = q)
< (1= a7V lIR(wn) = ql* + 2,y f(R@n)) = £, %1 = @) + 20,y f7 — Aq, X1 — )
= (1= a))?IR(wy) = R@)IP + 22,y f(R(@wn)) = f(RG), Xns1 = @) + 28,y fq ~ Aq, X1 — q)
< k(1 = ayy)?llwy — ql* + 2kranbyllw, — qllilxa — gl + 20,y fq — Aq, Xpi1 — )
< k(1 = a, )y = gl + 2kranbyll, — gl = qll + 24,y fq = Aq, X1 = q)
< k(1= 2Vl = g1 + kranby (I, = g1 + xns1 = qI7) + 28,y fq = Aq, X1 = )
= (K1 = a,p)* + aubyke) lxn = gl + kanbylivus = qIP + 28,(y fq = Aq, Xue1 = ).

Arranging the above inequality, we have

k(1 - a,y)? + aybykr 2
2 R o » ~ B
Xe1 = qlI~ < T ki llen =4l + T ——— —kRanbyO/fq Aq, Xps1 — q)
12— 213a,y + K3a2y” + aybykg o
N R"1N RYn n e " ~ ~
= [ Ty )len L Kranby (yfq—Aq, xn1 — )

~ (k§ — 2K3a,7 + anbykr a2y

— a2 2 24y _ B
T—keanby )len qll* + 1—kRanb)/”x" qll +—1—kRanby<yfq Aq, Xns1 — )

)len —ql?

< (kR — 2k2a,y + anbykg + a,byk% — a,byks

1- kR{Ilnb)/
kaany” ) 2a,
L P kRanby”x" B —— ke (vfq—Ag,Xn1 — )
kr(1 = kranby) = 2k3a.7 + aubyks + anbyky 2
B (1 = kranby) s =gl
KRa2y” ) 2a,
1-— kRanbnyn - l]|| + —1 — kRﬂnb]/ <'}/f6] - Aq,xn+1 — q>
—2k2a,V + anbykg + a,byk>
< R™M n n R o
(kR ’ (1 kraaby) )”xn il
Ky

2a
__Rn; T R B B
+ 1 kRanby”x” qIF + 3= Keanby (yfq—Aq, xp1 — )
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—2k%a,y + a,bykg + anbykg . —
(1 - kRanb)/) n=4
Ky a27_/2 2a
__ R/ A2 n _ B
+1 —kRanby”x" qIF+ T _kRanbyO/fq Aq, Xns1 — q)
2 22

2k2a,y — 2kganby , k@ ) 2a,,
= ( R™ 1= kranby) )”Xn —qlI° + m”xn —4l” + m@f‘] — Aq, Xne1 = )

S(kR+

2 252
kRany

2kra,(kry — by) " " 2a,,
< (1 - |l —gll” + m”xn —ql” + m(?ﬁ] — Aq, Xn1 — )

1- kRanby

2kgay (kg7 —by) [ krany*M 1 ( 2kgay(kgy — by)
< A —AG Xns1 — )| + (1 = RV V)
T—keaby | 20 =) Kby —by) T~ A4 =0 1— krasby

= auth + (1= ap)llxw — g,

)len —qlP

_ 2kpay(kg¥ — by)

_ 2.
where M = sup {”xn —qlF: n= 0}’ In = 1 — krayby and

kRarﬂ_/zM 1
n = — + — —Aqg,xp41 — ).
n 2T =) ek =) (Vfq—Aq, xne1 — q)

It is easy to sea that 0, = 0, }.,»; 0, = o and limsup,_, 1, < 0. Hence, by Lemma (2.5) the sequence {x,}
converges strongly to g.

Case 2. If {|lx, — gll}»>1 is not a monotone sequence, then we can define an integer sequence {o(r)} for all
n > ng (for some ng large enough):

o(n) := maxik € N; k<2l = qll < llxeer — 4II}-
Clearly, ¢ is a nondecreasing sequence such that g(11) — 0, as n — oo and for all n > 1y, we can write
100y = gll < lIXomy+1 — glI-
From (17) we conclude that
r}gl(}o 25ty — Titt )|l = 0O, r}gl(}o [225(2) — Xl = 0.
Using a similar argument as in Case 1, we have
% omy+1 = gl < (1= Tgm)Pgm) = GI + Tom) oty
where 0,) = 0, ;151 0pn) = o and limsup,_, . Ny < 0. Hence, by Lemma (2.5), we obtain
lim [yt = gll =0, Tim [l — gll = 0.
Therefore, by Lemma (2.6) we conclude that

0 < Iy — gll < max{llxg —qll, Iu—qll; 1> 0} < lxgna — gl
So, the sequence {x,} converges strongly tog. O

Theorem 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H and let Y : C X C — R be
a bifunction satisfying (C1) — (C4). Let fori = 1,2,--- ,m, T; : C — C be a finite family of k-stricly pseudo-
nonspreading mappings and S; : C — C be a finite family of i-stricly pseudo-nonspreading mappings such that
I—"T;and I - S; are demiclosed at 0. Assume that

Fi= [Q Fix(T,-)] n [O Fix(S,-)] N Fix(Q) N Fix(R) N Ep(Y) # 0.

i=1
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Let f be a contraction of C into itself with constant b € (0, 1) and A be a strongly positive self-adjoint bounded linear

(1+)/) kr Let{

operator on H with coefficient y such that 0 <y < X} and {u,} be sequences generated by xo € C and

Y(un, y) + }”(y — Uy, Uy — X)) 20, Yy eC,
Yn = Qnlly + PuXn + Lily Vu,iTithn,

wy = An,OQ(yVl) + Zﬁl An,iSi(Qyn)r

Xn+1 = an) f (R(wn)) + (I = a,A)R(wy).

Suppose that the sequences {ay}, {Bn}, (Vi) {Ani}, (rn} and {a,} satisfy the following conditions:
1oan+Bn+ Xy yni=1 and Anp+ Zi:l Apni=1,
2. {ay} € (0,1), limyedy =0, Yooqdn =,
3. {r,} € (0,00), liminf, .71, >0,
4. x<a, <1, <Ay <land iminf, ,eo(Apo — L)Api > 0.

Then the sequences {x,} and {u,} converge strongly to z € F which solves the variational inequality
(A-yf)z,x—2z)>0, VxeF

Proof. First, we claim that every x-strictly pseudo-nonspreading mapping T; is demicontractive. To prove
this, let x* € Fix(T;) and x € C. Then we have

IT:(x) = x°I7 = ITi(x) — Ti(x)IP
< e = I + xll(x — Ti(x)) — (" = Ti(x")IP + 2¢x = Ty(x), x* = Ty(x"))
= [lx — x'|1* + xllx — ()l

According to Lemma (2.9), for every «x-strictly pseudo-nonspreading mapping T;, I — T; is demiclosed at 0.
By the way, the same conclusion holds for each S;. Therefore, the result follows from Theorem (3.1). O

Theorem 3.3. Let C be a nonempty closed convex subset of a real Hilbert space H and let Y : C X C — R be
a bifunction satisfying (C1) — (C4). Let fori =1,2,--- ,m, T; : C — C be a finite family of x-strictly pseudo-
contractive mappings and S; : C — C be a finite family of 1-strictly pseudo-contractive mappings such that I — T;
and I — S; are demiclosed at 0. Assume that

(ﬂ Fix(T; )] [ﬂ Fix(S; )] N Fix(Q) N Fix(R) N Ep(Y) # 0.

Let f be a contraction of C into itself with constant b € (0, 1) and A be a strongly positive self-adjoint bounded linear

(1+)/) kg . Let |

operator on H with coefficient y such that 0 <y < X} and {u,} be sequences generated by xo € C and

Y(u,, y) + }”(y — Uy, Uy — X)) =0, YyeC,
Yn = Qnlly + PuXn + Lity Vu,iTithn,

wy = An,OQ(yn) + Zﬁl An,iSi(Qyn)r

Xp+1 = an) f (R(wy)) + (I — anA)R(wy).

Suppose that the sequences {cy}, {Bn}, (Vi) {Ani}, (rn} and {a,} satisfy the following conditions:

1oan+Bn+ Xy yni=1 and Anp+ Zi:l Ani=1,

2. {a,} € (0,1), limy—edy =0, Y oqdy =00,

3. {r,} € (0,00), liminf, .7, >0,

4. x<a, <1, <Ay <land liminf, ,eo(Apo — L)Api > 0.
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Then the sequences {x,} and {u,} converge strongly to z € F which solves the variational inequality
(A-vyf)z,x—2z)>20, VxeF.

Proof. First, we claim that every «-strictly pseudo-contractive mapping T; is demicontractive. To prove this,
let x* € Fix(T;) and x € C. Then we have

ITi(x) = x| = ITi(x) = Ti(x")IP
<l = 2P + kll(x = Ti(x)) = (" = Ti(x)IP
= I = I + xellx = T()I1P.

According to Lemma (2.10), for every «-strictly pseudo-contractive mapping T;, I — T; is demiclosed at 0.
By the way, the same conclusion holds for each S;. Therefore, the result follows from Theorem (3.1). O

4. Application

In the following, we provide some numerical examples to illustrate the rate of convergence of our

-11
algorithm (11). Let C = [?, ;] which is a nonempty closed convex subset of the real Hilbert space R. For
i = 1,2 define the mappings T; : C — C by

. xe[2,0]
Ti(x) = T

X 1 1
——lsin=|, xe(0,-],
i+1|smxl, x € ( 7I]

and S;: C — Cby Si(x) = H%x. Clearly, zero is the only fixed point of the mappings T; (see Figure 1).

02+

0.1} &

0.0

o ~ )

“ T
Sifx)

o s

T T T IV I S S I SR I S Bl P
03 02 -01 00 01 02 03

Figure 1: Fori=1,2.
. . . . -1 1
It is easy to see that each T; is demicontractive for x € [7, 0]. For x € (0, %] we have

1 X
2 2 . 2 2 2 2
ITix = 01" = ITax|l” = |l Ism;III Sllmll < lx = OlI" + x| Tix — x|,

X
i+1
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for some x < 1. Thus, T; is demicontractive. Similarly, we can show that each S; is demicontractive. Now,

we define the bifunction Y by

Y:CxC—R
Y(x,y) = y* + xy — 2x2.

It is easy to see that Y satisfies the conditions (C1) — (C4). To have a better understanding of this issue, we
sketch the graph of Y in three-dimensional space (see Figure 2).

Figure 2: 0 € Ep(Y), since Y(0,y) = y*> > 0, forally € C.

_Xn _n
3r,+1  4°
Fori=1,--- ,mwedefine 8y := LCM(1,2,-- ,m), where LCM(1,2,--- ,m) is the lowest common multiple of

1 1 1
the integers 1,2,--- ,m. Now, wesety =1,a, = —r Ay =P =VYn1 = Vn2 = T and Ayo = A1 =Aup = =

Note that when we run this algorithm, the parameter 0y helps us in running faster and leads to better
answers.

In [28], Singthong and Suantai obtained the following sequence for r, = 1, u, = T}, (x,) =

-1 1
We set R(x) = Q(x) = f(x) = 610 and A = I. Now for any xj € [?, ;], our algorithm is the following:

_ Xn Xn 1 Xn 1 Xn
yn—16+ 1 +4T1(4)+4Tz(4),

_ e g ey Lo e ve 1y 12y,
wn =30, Y1500t 15, " 10, T 120, T 1Gay

13 (20)
_yn+yn+yn yn+yn+yn

T 40, 80, 66, 40, 60, 80, 2490y”'

_ Wy N n_wy _ 1+n60w
T+ n+16 m+1)E2 "

Xn+1
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1
Letxg = oy then for all #n > 0, the algorithm (20) becomes

1 4
Due to the fact that (1 + 6' sin = [) > 0, we conclude that x,, converges to zero. On the other hand
n

Aol

X X 1x, . 1 x 4 5x .4
%1:%+—H+Z§H|SH—|+1+£|S —|_—n(1 —|Slnz|),
65x,, 1 .
1 —
"= 3529, T glSn L, W
1416, 65, 1 65(1 + 1n6y) 4
x —_— 1+ =|sin—|) = ———= —|sin —|)x
e (+1)623846( D 384(n+1)93( 6|1 %

ﬂ Fix(S; )] N Fix(Q) N Fix(R) N Ep(Y) =

i=1

1
Here comes the table of numerical results for the first step xg = -— (see Table 1):

21

Iteration steps ~ Values of x,

Iteration steps ~ Values of x,

O O I UT WP O

0.159155 26 2.08640 x 10~
0.00336754 27 9.62894 x 10~%°
0.000111973 28 4.03356 x 1040
4.14052 x 107 29 1.72747 x 1074
1.65488 x 1077 30 7.94206 x 10743

3.65726 x 1074
1.71492 x 107%
8.21766 x 104
3.67328 x 10748
1.53926 x 10~%
6.49615 x 1071
2.87259 x 10752
1.39661 x 107>
5.88287 x 10755
2.85415 x 10~
1.33051 x 107%
6.40133 x 107
3.00585 x 10760
1.30438 x 107!
6.27974 x 10763
2.81458 x 10~
1.36055 x 107°
5.79889 x 10~¢7
2.74276 x 10768
1.24763 x 107%°

7.24066 x 107° 31
3.11706 x 10710 32
1.36314 x 10711 33
5.40835 x 10713 34
2.20260 x 10714 35
9.37587 x 10716 36
3.97624 x 107 37
1.62365 x 10718 38
6.72121 x 1072 39
3.15619 x 1072 40
1.38941 x 102 41
5.76668 x 1024 42
2.44475 x 105 43
1.09982 x 10~% 44
521019 x 1028 45
2.37627 x 10~% 46
1.01053 x 10~ 47
4.84174 x 10732 48
2.23985 x 10733 49
9.45789 x 10~% 50
4.51880 x 10736

1
Table 1: Numerical results correspondent to xp = o for 50 steps.

5905
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1
Letxg = Y then for all n > 0, the algorithm (20) becomes

X X 1., «x 1. «x X X X X 7x
I Lol U b R i )
. = 13 9 N

"= 240,7" T 3840,
o 1+ n6y &x
T (i 1)033847"

1
Again we provide the table of numerical results for the first step xy = “on (see Table 2).

Iteration steps ~ Values of x, Iteration steps ~ Values of x,

0 —0.159155 26 —2.15068 x 10734
1 —0.00471455 27 —1.25057 x 10~%
2 —0.000209484 28 —7.27667 x 1077
3 —0.0000103424 29 —4.23672 x 10738
4 —-5.36141 x 1077 30 —2.46820 x 107
5 —2.85872 x 1078 31 —1.43869 x 10740
6 —-1.55251 x 10~° 32 —8.39034 x 10742
7 —8.54080 x 10~ 33 —4.89552 x 10743
8 —4.74373 x 10712 34 —2.85769 x 1074
9 —2.65428 x 10713 35 —1.66885 x 1074
10 —1.49390 x 10714 36 —-9.74973 x 107¥
11 —8.44826 x 10710 37 —5.69815 x 10748
12 —4.79661 x 1077 38 —3.33144 x 107
13 —2.73244 x 10718 39 —1.94840 x 10750
14 -1.56101 x 107 40 —1.13990 x 10~
15 —-8.93992 x 102! 41 —6.67093 x 10753
16 —5.13092 x 1022 42 —3.90513 x 10754
17 —2.95040 x 10723 43 —2.28668 x 107°
18 —1.69940 x 102 44 —1.33935 x 107%¢
19 —-9.80313 x 1072° 45 —7.84676 x 1078
20 —5.66265 x 1072 46 —4.59827 x 107°
21 —3.27495 x 10728 47 —2.69525 x 1070
22 —-1.89614 x 10~% 48 —1.58016 x 107!
23 —1.09894 x 10730 49 —9.26612 x 10793
24 —6.37503 x 10732 50 —5.43480 x 107
25 —-3.70133 x 103

Table 2: Numerical results corresponding to xg = — % for 50 steps.

In this case, x,, converges to zero too. Thus, in general, the sequence {x,},>1 is convergent to zero.
In the following we show the list plot of our algorithm (see Figure 3, which shows the list plot of Table
1 and Table 2).



A. Abkar, M. Shekarbaigi / Filomat 31:19 (2017), 5891-5908 5907

List plot of our algorithm for Table 1 and Table 2

1.4x107"12 [ 7
- | kK i ]
n S 12x10712 F E
2 [ ]
8 1.x1072 - 1
£ i ]
S L 4
5 8.x107" - 1
(=)
® i ]
5 6.x107"3 - 8
o r [ ] 7
5 i ]
2 4.x107"3 |- 8
=] [ ]
g -13 [ 1
o 2.x10 r 7
= L 4
= i ]
OLL . . . ©00000000000000000000000000000000000000000;
0 10 20 30 40 50
Iteration steps
OFT = ™ 7 ‘.0000000000000000000000000000000000000000&
k I 1
Tl i ]
i -2.x107"2 - b
X r 1
5 i 1
= -4.x107"2 .
£ [ ®
§, _6.x10-12 L ]
= I 1
5 i 1
2 -8.x10712 ]
(e} b 4
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d:) L i
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S I 1
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< S 4
= _’]_2x10_11 T S R R R R
0 10 20 30 40 50
Iteration steps

Figure 3: List plot of our algorithm for Table 1 and Table 2
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