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Abstract. Sequence space of convergent series can also be seen as a matrix domain of triangle. By using the
theory of matrix domains of triangle, as well as the fact that cs is an AK space we can give the representation
of some general bounded linear operators related to the cs sequence space. We will also give the conditions
for compactness by using the Hausdorff measure of noncompactness.

1. Basic Notations

The set ω will denote all complex sequences x = (xk)∞k=0 and `∞, c, c0 and φ will denote the sets of all
bounded, convergent, null and finite sequences. As usual, let e and e(n),(n = 0, 1, ...) represent the sequences
with ek = 1 for all k, and e(n)

n = 1 and e(n)
k = 0 for k , n.

A sequence (bn)∞n=0 in a linear metric space X is called a Schauder basis if for every x ∈ X exists a unique
sequence (λn)∞n=0 of scalars such that x =

∑
∞

n=0 λnbn. A subspace X ofω is called an FK space if it is a complete
linear metric space with continuous coordinates Pn : X → C , (n = 0, 1, ...) where Pn(x) = xn. An FK space
X ⊃ φ is said to have AK if his Schauder basis is (e(n))∞n=0, and a normed FK space is BK space. The spaces
c0, c, l∞ are all the BK spaces and among them only the c0 has AK. The space `∞ has no Schauder base.

Let A = (ank)∞n,k=0 be an infinite matrix of complex numbers, and X and Y be subsets of ω. We denote
with An = (ank)∞k=0 the sequences in the n-th row of A, Anx =

∑
∞

k=0 ankxk and Ax = (Anx)∞n=0 (provided all the
series Anx converge). Matrix domain of A in X is XA = {x ∈ ω|Ax ∈ X} and (X,Y) is the class of all matrices
A such that X ⊂ YA. If (X, ‖ · ‖) is a normed space we write SX for unit sphere and BX for the closed unit ball
in X. For X ⊃ φ a BK space and a = (ak) ∈ ω we define

‖a‖∗X = sup
x∈SX

|

∞∑
k=0

akxk|

provided the right side exists and is finite. β-dual of X, Xβ, is the set defined with Xβ = {a = (ak) ∈
ω|

∑
∞

k=0 akxk conver1es ,∀x ∈ X}. It is clear that β-duals play important role since A ∈ (X,Y) if and only if
An ∈ Xβ for all n and Ax ∈ Y for all x ∈ X. We write B(X,Y) for the set of all bounded linear operators.

An infinite matrix T = (tnk)∞n,k=0 is said to be a triangle if tnk = 0 for k > n and tnn , 0, (n = 0, 1, ...).
It is well-known that every triangle T has a unique inverse S = (Snk)∞n,k=0 which also is a triangle, and
x = T(S(x)) = S(T(x)) for all x ∈ ω.
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Email address: katarina.petkovic@gaf.ni.ac.rs (Katarina Petković)
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2. The Space of Convergent Series

The space of all convergent series and the space of bounded series are both known and studied spaces.
Here we are going to give their definitions and their most important properties, but, as the title of the paper
suggests, our mainly preoccupation will be the cs space.

cs = { x ∈ ω|
∞∑

k=0

xk conver1es },

bs = { x ∈ ω|(
n∑

k=0

xk)∞n=0 ∈ `∞}.

They are BK spaces, cs is a closed subspace of bs so their norms are the same and are given with ‖x‖cs =
‖x‖bs = supn |

∑n
k=0 xk|. It is also known that cs is an AK space.

However, there exists another way to define these spaces - as matrix domains of triangle:

cs = (c)Σ , bs = (`∞)Σ ,

where the triangle Σ is given with Σ = (σnk)∞n,k=1 with σnk = 1 for 1 ≤ k ≤ n and σnk = 0 for k > n , (n = 1, 2, ...).
Now we can see that bs has no Schauder base.[5, Remark 24.]

Thanks to this definition, we can use the known results about matrix domains [8] to characterize the
following classes of matrix transformations:

((c)Σ, (c)Σ), ((c)Σ, (`∞)Σ), ((`∞)Σ, (`∞)Σ), ((`∞)Σ, (c)Σ).

But we are going to use the results already obtained by applying the theory of functional analysis given
by A.Wilansky [13] : (cs, cs) , (cs, bs) , (bs, cs) , (bs, bs) in the same order [13, Examples 8.4.6B, 8.4.6B, 8.5.9,
8.4.6C] or in [12]. We will also need the following characterizations when the final space is one of the classic
sequence spaces: (cs, c0) , (cs, c) , (cs, `∞) which are all given in [13, Example 8.4.5B] and they are:

A ∈ (bs, bs) if and only if

lim
k

ank = 0 for all n (1)

and

sup
m

∑
k

|

m∑
n=0

(ank − an,k−1)| < ∞. (2)

A ∈ (cs, bs) if and only if (2) holds and

sup
m

∣∣∣∣ lim
k

m∑
n=0

ank

∣∣∣∣ < ∞. (3)

A ∈ (bs, cs) if and only if (1) holds and

lim
m

∑
k

|

m∑
n=0

(ank − an,k−1)| =
∑

k

|

∑
n

(ank − an,k−1)|. (4)

A ∈ (cs, cs) if and only if

sup
m

∑
k

|

m∑
n=0

(ank − an,k−1)| < ∞ (5)
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and ∑
n

ank converges for all k. (6)

A ∈ (cs, `∞) if and only if

sup
n

∑
k

|ank − an,k−1| < ∞. (7)

A ∈ (cs, c) if and only if (7) holds and

lim
n

ank exists for all k. (8)

A ∈ (cs, c0) if and only if (7) holds and

lim
n

ank = 0. (9)

When we are talking about operators and matrix transformations concerning the (cs,Y) class, where Y
is some sequence space, especially important property of the cs space is that it is an AK space. Therefor, the
next theorem is giving us the opportunity for creating some more new and useful results.

Theorem 2.1. [13, Theorem 4.2.8] Let X ⊃ φ and Y be BK spaces. Then we have the following:
a) (X,Y) ⊂ B(X,Y), that is, every matrix A ∈ (X,Y) defines an operator LA ∈ B(X,Y) where LA(x) = Ax for all x ∈ X.
b) If X has AK then we have B(X,Y) ⊂ (X,Y), that is, every operator L ∈ B(X,Y) is given by a matrix A ∈ (X,Y)
where Ax = L(x) for all x ∈ X.

We known that cs is AK space, so for every L ∈ B(cs,Y), where Y is arbitrary sequence space, there exists
an infinite matrix A ∈ (cs,Y) such that L(x) = Ax for every x ∈ cs. Hence, we can at the same time talk about
general bounded linear operator on cs as well as the appropriate matrix operator LA associated with matrix
A ∈ (cs,Y).

Before we proceed finding the conditions for compactness of certain operators, we need to mention one
more interesting property of cs space i.e. a property of its dual space.

Theorem 2.2. ([13, Theorem 7.2.9], [7, Theorem 1.34]) Let X be a BK space, φ ⊂ X. Then there is a linear one-to-one
map T : Xβ

−→ X∗. If X has AK, then T is onto.

Applying the results [13, Theorem 4.4.3], we obtain the representation for the functional f from cs∗:

f ∈ cs∗ ⇐⇒ f (x) = µ · lim
n→∞

n∑
k=0

xk +

∞∑
n=0

an

n∑
k=0

xk, where (an)∞n=0 ∈ `1.

On the other side, if we put T = Σ, S = ∆, R = St and apply result [8, Remark 3.3], related to β−dual of the
space cT to the class A ∈ (cs,Y), for arbitrary sequence space Y, we obtain the following:

η = lim
n→∞

n∑
k=0

xk;

An ∈ csβ = bv

and for x ∈ cs

Anx =

∞∑
k=0

ânk

k∑
j=0

x j − ηα, where ânk = ank − an,k+1.

Taking into account all mentioned, we can say that every bounded linear operator L ∈ B(cs,Y), for
arbitrary sequence space Y, can be represented by a matrix A ∈ (cs,Y) such that L(x) = Ax for each x ∈ cs.
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3. Compactness for Some Classes of Operators

In this section, we will find under what conditions some classes of operators related to cs space are
compact. First the definition and the most important properties of the Hausdorff measure of noncompact-
ness will be listed, which is, due to the fundamental result by Goldenštein, Gohberg and Markus, the most
effective way to characterize compact operators. It has been used in many research papers [2, 5, 7] recently.

Let (X, d) be a metric space, Q be a bounded subset of X and K(x, r) = {y ∈ X | d(x, y) < r}. Then the
Hausdorff measure of noncompactness of Q, denoted by χ(Q), is defined by

χ(Q) = inf{ε > 0 | Q ⊂
n⋃

i=1

K(xi, ri), xi ∈ X, ri < ε (i = 1, . . . ,n), n ∈ N0}.

The following results and more properties of the measure of noncompactness can be found in [9] and
[7].

If Q,Q1 and Q2 are bounded subsets of the metric space (X, d), then we have

χ(Q) = 0 if and only if Q is a totally bounded set,

χ(Q) = χ(Q),

Q1 ⊂ Q2 implies χ(Q1) ≤ χ(Q2),

χ(Q1 ∪Q2) = max{χ(Q1), χ(Q2)}

and

χ(Q1 ∩Q2) ≤ min{χ(Q1), χ(Q2)}.

If Q,Q1 and Q2 are bounded subsets of the normed space X, then we have

χ(Q1 + Q2) ≤ χ(Q1) + χ(Q2),

χ(Q + x) = χ(Q) (x ∈ X)

and

χ(λQ) = |λ|χ(Q) for all λ ∈ C.

The Hausdorff measure of noncompactness of an operator L ∈ B(X,Y), denoted by ||L||χ, is defined as
||L||χ = χ(L(SX)). We have that ||L||χ ≤ ||L|| and L is a compact if and only if ||L||χ = 0 [7, Corollary 2.26]

Theorem 3.1 (Goldenštein, Gohberg, Markus). [7, Theorem 2.23] Let X be a Banach space with Schauder basis
{e1, e2, ...}, Q be a bounded subset of X, and Pn : X → X be the projector onto the linear span of {e1, e2, ..., en}. Then
we have

1
a

lim sup
n→∞

(sup
x∈Q
‖(I − Pn)x‖) ≤ χ(Q) ≤ lim sup

n→∞
(sup

x∈Q
‖(I − Pn)x‖),

where a = lim supn→∞ ‖I − Pn‖.

Specially, if X = c, then a = 2 in the previous theorem.

Theorem 3.2. [10, Theorem 2.8.] Let Q be a bounded subset of the normed space X, where X is `p for 1 ≤ p < ∞ or
c0. If Pn : X→ X is the operator defined by Pn(x) = (x0, x1, . . . , xn, 0, 0 . . .) for (x0, x1, . . . , xn, 0, 0 . . .) ∈ X, then

χ(Q) = lim
n→∞

(sup
x∈Q
‖(I − Pn)x‖).
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Now, we can find under which conditions will a general bounded linear operator from a sequence space
cs to one of the spaces c, c0 and `∞ be compact.

Theorem 3.3. Let L ∈ B(cs,Y) where Y is one of the spaces c, c0 or `∞. Then, L is given with a matrix A = (ank)∞n,k=0
such that L(x) = Ax for every x ∈ cs, and we have:

(i) if Y = c

1
2
· lim

r→∞
(sup

n≥r
(
∞∑

k=0

| (ank − an,k+1) − α̂k | + | β + lim
m→∞

an,m+1 −

∞∑
k=0

α̂k |)) ≤‖ L ‖χ≤

≤ lim
r→∞

(sup
n≥r

(
∞∑

k=0

| (ank − an,k+1) − α̂k | + | β + lim
m→∞

an,m+1 −

∞∑
k=0

α̂k |))

where

α̂k = lim
n→∞

(ank − an,k+1) f or k = 0, 1, ...

and

β = lim
n→∞

(
∞∑

k=0

(ank − an,k+1) + lim
m→∞

an,m+1) .

(ii) if Y = c0 then

‖ L ‖χ = lim
r→∞

(sup
n≥r

(
∞∑

k=0

| (ank − an,k+1) | + | lim
m→∞

an,m+1 |))

(iii) if Y = `∞ then

0 ≤‖ L ‖χ ≤ lim
r→∞

(sup
n≥r

(
∞∑

k=0

| (ank − an,k+1) | + | lim
m→∞

an,m+1 |)) .

Proof. Cases (i) and (ii) are simple consequences of theorem [2, Theorem 3.7]. The notations are the same
and as usual, ânk are the members of the matrix Â ∈ (c,Y) associated with matrix A ∈ (cs,Y), but knowing
the matrices Σ, S and R, in our case we calculated

ânk = ank − an,k+1 and γn = − lim
m→∞

an,m+1 .

In (iii) we start with projector Pr : `∞ → `∞ define as Pr(x) = (x0, x1, ..., xr, 0, 0, ...) and then, using the
properties of measure χ, knowing the norm in `∞ and applying [2, Theorem 2.9 a)] we get:

0 ≤ χ(L(Bcs)) ≤ χ((I − Pr)(L(Bcs))) ≤ sup
x∈Bcs

‖ (I − Pr)(L(x)) ‖ for every r

which leads to

0 ≤‖ L ‖χ≤ lim
r→∞

(sup
n≥r

(
∞∑

k=0

| ânk | + | γn |)) .

Corollary 3.4. 1) L ∈ B(cs, c) is compact if and only if

lim
r→∞

(sup
n≥r

(
∞∑

k=0

| (ank − an,k+1) − α̂k | + | β + lim
m→∞

an,m+1 −

∞∑
k=0

α̂k |)) = 0 . (10)
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2) L ∈ B(cs, c0) is compact if and only if

lim
r→∞

(sup
n≥r

(
∞∑

k=0

| (ank − an,k+1) | + | lim
m→∞

an,m+1 |)) = 0 (11)

3) L ∈ B(cs, `∞) is compact if

lim
r→∞

(sup
n≥r

(
∞∑

k=0

| (ank − an,k+1) | + | lim
m→∞

an,m+1 |)) = 0 . (12)

Remark 3.5. In the third case we have only ”if condition” and, unlike some other cases in which this can be improved
by using the work of Sargent [11], here it cannot be done because cs = cΣ.

The next theorem provide us with a very helpful result which will be used further on.

Theorem 3.6. [8, Corollary 4.3] If A ∈ (X,YT) then
(i) ‖ LA ‖χ=‖ LT ◦ LA ‖χ
and
(ii) A ∈ (X,YT) is compact i f and only i f TA ∈ (X,Y) is compact .

Before observing the compactness of some related operators, one more fact will be stated.
If with C we denote the matrix C = ΣA = (cnk)∞n,k=0 we can calculate the following:

cnk =

n∑
j=0

a jk,

ĉnk = Rk(Cn) =

n∑
j=0

(a jk − a j,k+1),

γ(C)
n =

n∑
j=0

γ j,

α̂k(C) = lim
n→∞

ĉnk

and

β(C) = lim
n→∞

(
∞∑

k=0

ĉnk − γn(C)).

Now, we can define the following result.

Theorem 3.7. If L ∈ B(cs, cs) then L is compact if and only if

lim
r→∞

(sup
n≥r

(
∞∑

k=0

| ĉnk − α̂k(C) | + | β(C) − γn(C) −
∞∑

k=0

α̂k(C) |)) = 0 .

Proof. If we use Theorem 3.3, compactness of the class B(cs, cs) where we use cs = cΣ, will be reduced to that
of the class B(cs, c).

Theorem 3.8. If a matrix A = (ank)∞n,k=0 is from (bs, cs) then LA is compact if and only if

lim
r→∞

(sup
n≥r

(
∞∑

k=0

| ĉnk | + | γn(C) |)) = 0 .
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Proof. Since bs = (`∞)Σ, applying the result from [3] and Theorem 3.6, we obtain the result.

Remark 3.9. bs space does not have the AK property, so this theorem only ”works” with a matrix operator.

Theorem 3.10. L ∈ B(cs, bs) is compact if and only if for matrix D = (dnk)∞n,k=0 where dnk =
∑k

j=0(a jn − a j,n−1) the
following conditions hold:

sup
j
‖ (dnj)∞n=0 ‖∞< ∞

and

lim
r→∞

sup
j
‖ (dnj)∞n=r ‖∞= 0.

Proof. The space cs is AK space, so L is represented with a matrix A ∈ (cs, bs) which is according to Theorem
3.6 the condition equivalent with ΣA ∈ (cs, `∞). We know that csβ = bv [13, Theorem 7.3,5.], where bv = (`1)∆,
`∞ = `

β
1 and `1 is AK space. Now, if we use a result [13, Theorem 8.3.9] we get:

A ∈ (cs, bs)⇐⇒ ΣA ∈ (cs, `∞)⇐⇒ (ΣA)t
∈ (`1, bv)⇐⇒ ∆(ΣA)t

∈ (`1, `1) .

Let D be defined as D = ∆(ΣA)t. Applying the result [7, Theorem 2.28] for the compactness of operator
L ∈ B(`1, `1) to the operator associated with matrix D with entries dnk defined as above, we obtain our
result.

Using the similar approach we can also improve the result in Corollary 3.4.3.

Theorem 3.11. Let L ∈ B(cs, `∞). Then L is compact if and only if

sup
j≥0

∞∑
k=0

|a jk − a j,k−1| < ∞ and lim
n→∞

sup
j≥0

∞∑
k=0

|(a jk − a j,k−1) − (a jn − a j,n−1)| = 0 .

Proof. Since cs is AK space, for a bounded linear operator L ∈ B(cs, `∞) exists a matrix A ∈ (cs, `∞) such that
L(x) = Ax for every x ∈ cs. We know that csβ = bv, bv = (`1)∆ `∞ = `

β
1 i `1 is AK space, so we have

A ∈ (cs, `∞) is compact ⇐⇒ At
∈ (`1, bv) is compact ⇐⇒ ∆At

∈ (`1, `1) is compact

For the last class if and only if conditions are given in [1, VI.B], and by applying them on matrix ∆At we obtain the
result.
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[7] E. Malkowsky, V. Rakočević, An introduction into the theory of sequence spaces and measures of noncompactness, Zbornik

radova 9 (17), Mat. institut SANU (Beograd), (2000) 143-234.
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