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Abstract. In this paper some new inequalities of Simpson-type are established for the classes of functions
whose derivatives of absolute values are convex functions via Riemann-Liouville integrals. Also, by special
selections of n,we give some reduced results.

1. Introduction

We will start with the following inequality that is well-known in the literature as Simpson’s inequality
and has several utilization in different fields of mathematics:
Let f : [a,b] — Rbea four times continuously differentiable mapping on [4, b] and ” f (4)”00 = sup | f@ (x)| <
x€la,b]

co. Then the folllowing inequality holds:

1[f (@) + f(b) a+b 1
‘5[ 2 +2f( 2 )]_b—afaf(x)dx

Several researchers make effort to obtain new inequalities related to Simpson inequality. To consult some
of them, one can take glance to the papers [5]-[10].

We will keep on our overview with the definition of convexity which is a significant concept for the
inequality theory:

The function f : [a,b] — R, is said to be convex, if we have

fFAx+1 =Dy <Af@)+A-1)f(y)

forall x,y € [a,b] and A € [0,1].
Let us call to mind the following notations and definitions:

Lol -
< 5gao I/l -0

Definition 1.1. A real valued function f (t), t > 0 is said to be in the space C,, . € R if there exist a real number
p > psuch that f (t) = t* f1 (t), where f1 () € C([0, 0]).
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Definition 1.2. A function f (t), t > 0 is said to be in the space Cjj,n € R, if f*) € C,,.

Definition 1.3. The Riemann-Liouville fractional integral operator of order e > 0, for a function f € C,,, (u = -1)
is defined as

¢
JEf@) = ﬁ f (x-1)* 1 f(r)dr, a>0,t>0,

JPf(8) = f(t),

where T(a) = fom e udy.

For further properties of this operator see the papers [1]-[4], [11] and [12].

The main purpose of the present paper is to give a new integral identity for the Riemann-Liouville
fractional integrals and to prove several new integral inequalities that include generalizations for convex

functions. In the conclusion part, we would like to call attention of the readers to appropriate selections of
n give us refinements of previous studies.

2. The New Results
To prove our results, we obtain a new integral identity as following:

Lemma 2.1. f:[a,b] — R be a differentiable function on (a,b) witha < b.If f' € L[a,b], n > 0 and o > 0, then the
following equality holds:

I(a'b;"'“):%[f(ﬂ)+f(b)+2f(a+”b)+2f(na+b)}

n+1 n+1

Fa+l)(n+1)* |, (na+b\ , [a+nb

n+1 n+1

T+ )+ 1)1, .
T 3-ar [ et f (O) F T f (a)]

_ b-a 2a-p* =] ,(n+t 1-t
B 2(n+1)(f0[ 3 ]f (n+1a+n+1b)yhL
w21 -0%],(1-t n+t
+j0‘|: 3 ]f (n+1a+n+1b)dt)

for all x € [a, b] and where T'(a) = fo‘x’ ety

Proof. Integration by parts, we have

o (M2a-pr =] mt 1t
b= fo 3 ]f(n+1”+n+1b)dt
n+1 na+b
3(b—a)[f(a)+2f(n+1)

na+b

2a(n+ 1)
3(b — a)at!

a+b

a(n+1)*1 fn"“ na+b ot
so—apt J, TO\GET 7Y

£ (=) dx
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1 a

_ 21 =0, (1-t n+t

ko= fo[ 3 ]f(n+1“+n+1b)dt
n+1 a+nb a(n+1)“+1fb a+nb
3(b—a)[f(b)+2f(n+1) 30— Jun ! O 1 Ca
20 (n+ 1) fb a-1
Bb-ay T Jew fx)(b—x)""dx.
By adding [; and I, and multiplying the both sides %, we can write

a nth a=1
L+L = [f(a)+f(b +2f(a+nb) 2f(na+b)]_“(”+1) Fix )(ml+b ) i

and

n+1 6(b — a)*
a(n+1) 1. am+1)” a+nb\*"!
3(b f f)(x—a)" dx _6(b— be()( +1) dx
a(n+1)

3007 ff(x)(b x)* ! dx.

From the facts that,

na+b

ﬁf T fWE-oTar = L, f@
b
ﬁ o O -0 = ], f(b)

n+l

1 et na+b  \*7 o [na+b
mf f()(n+1 ) dx = “+f(n+1)
1 a+nb\*! a+nb
T(a) a+nhf()( +1) dx = ]bf(n+1)

we get the result. O

Theorem 2.2. Let f : [a,b] — R be a differentiable function on [a,b]. If f* € L[a, b]
then the following inequality holds for fractional integrals with o > 0;

1 (x)| is convex function,

1 a+1 1 a+1
boa |372(35) -4(-25)
I . o a
@ binal < 507 3+ 1) (

f @]+

)

where I' (a) is Euler Gamma function.

Proof. From the integral identity given in Lemma 1 and by using the properties of modulus, we have

£ (”” P 1o b)‘dt

n+1 n+1

,(1—t n+t
(n+1a+n+1b)‘dt)'

L2@-p* -t
3

b—a
I(a,b;n,a) < 2(n+1)(

1
+f
0

o —2(1
3
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Since is convex function, we can write
b-—a L2@ =0 =t |/n+t
I ; <
il < 5t | (S @ g )
1 a
21 -0)%/1-t¢ n+t
— |f" (b)||dt
+f0 3 (n+1 +n+1|f()|) )
oF
2%4-1

_ 2fn_+a1) 0[(2(1—;)“ t)(n+t
t 2(1 n+t
f( )(n+1

1
2a

o))

L |F @) ar

>

:4—-

+1

ey
+f( 22 ))(n+1

1
@

Rl

53\._-
£

n+t

£ o) )ar

n+t

o))

N

20 +1
By a simple computation, we obtain desired result. [

Theorem 2.3. Let f : [a,b]
then the following inequality holds for fractional integrals witha > 0,q > landp™ +g71 = 1;

q. .
is convex function,

. b-a Lo -pr -t 2n+1
(@ bina) < zm+n( 3 dﬁ[( wﬂ
1 2n+1 o\
2m+ IS '

where I' («) is Euler Gamma function.

Proof. By using Lemma 1 and Holder integral inequality, we can write

I (a,b;n, a)l
b-a Y2@ -0 =], (n+t 1 1 (11—t n+t
= 2(n+1)( 3 (n+1a+n+1b)'dt ]0‘ 3 (n+1a+n+lb)‘dt
b-a 21-1% - Y (n+t 11—t )r g
< - -
= 2(n+1)[( 3 dt) (fo f(n+1a+n+1b at

(1t n+t
3 f(n+1a+n+lb)

af ([

= th)*}.
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Since 7 is convex function, we can write
I (a,b;n,a)|
b-a Lo -p* - n+t 1 i —2(1 =) 1—t  n+t
< ' b)|dt + '( %m
un+n( 3 f(n+1”+n+1)' l: 3 U P

2(1 -8 -t
3

IA

@ +-—

o ([ et o)
Ta) ([ (s o ;) )”],

b-a
2(n+1) (
1
2(
I

By taking into account,

i+t 2n+1 7,
tﬂ(n+1 )d B 2(n+1)‘f()| 2(4&)
1 q _ , q 2n+1
\L(__ﬁf(ﬂ ) - 2m+1ﬂfmﬂ+2m+1 '
we obtain
Labna)l < b-a 12u—ﬂ“—ﬂpdt 2n+1
T T 2(m+1) 3 2(n+1)
1 q 2n+1 qE
+(2m+1) I+ 56 )]'

Which completes the proof. [

Theorem 2.4. Let f : [a,b] is convex function,

then the following inequality holds for fractional integrals witha > Oand q > 1;

Kl (CY, 7’1)

f @[ + Ka(e, m)

1 \at+l 1 \atl 1-2
b—a 3_2(2?11) _4(1_212%ﬁ) (( ‘q)l
f/ (b) q

+( )|/

where I' («) is Euler Gamma function and

o)),

1 a+1 1 a+1 1 a+2 1 a+2
(—4n—4)( 24 ) +3n+2—2n(%" ) 4(1_%—a) —2(%—“) _1
K (0( 1’1) - 2a+1 27 +1 + 2a+1 2a +1
e 3(@+1)(n+1) 3(@+2)(n+1)
a+1 a+2 a+2
1—2(%1) 1—4@—~¥i) +2(%i)
KQ(O( 1’1) - 2a+1 27 +1 2a+1

3a+)(n+D) 3@+2)(n+1)
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Proof. By Lemma 1 and Power-Mean integral inequality, we can write

1-1 1
b-a Lo@a-pr - 7 121 -p% - n+t  1—t 17\
@ bin )l < 2(n+1)( 3 dt) (fo 3 f(n+1 +n+1b) at
1 a :
a_2(1-1) ,(1—t n+t )‘7 g
+j(; 3 f n+1a+n+1b dt| .
q,weget
Ia,bina) < b-a 20 -0 - 0 7 fl 2(1 -t —t@ (n+t )dtl
T = 2m+1) 3 0 3 n+1
1 a
-2(1-1) ( n+t )
+(j(; 3 n+1 at

Computing the above integrals, we get the result. O

3. Conclusion
In this section, we would like to point out some results that are special cases of our main results.
Remark 3.1. In Lemma 1, if we choose o = 1, we have Lemma 1.1 of [10].

Remark 3.2. In Theorem 1-2-3, if we choose a = 1, we obtain Theorem 2.1., Teorem 2.2. and Theorem 2.3. in [10],
respectively.

Remark 3.3. In Theorem 1, if we choose & = 1 and n = 1, we have

AL f(“b)+f<b>]—ﬁfbf<x>dx < 20

which is the Corollary 1 of [9].

f ).
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