Filomat 32:1 (2018), 341-353
https://doi.org/10.2298/FIL1801341A

Published by Faculty of Sciences and Mathematics,
University of Nis, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

The Lower and Upper Solution Method for Three-Point Boundary
Value Problems with Integral Boundary Conditions on a Half-Line

Ummahan Akcan?, Erbil Cetin®

*Department of Mathematics, Faculty of Science, Anadolu University 26470 Eskisehir, Turkey
b Department of Mathematics, Ege University, Bornova, Izmir 35100 Turkey

Abstract. This paper deal with the following second-order three-point boundary value problem with
integral boundary condition on a half-line

u’(x) + q(x)r{’(x,u(x), w(x) =0, x€(0,+e0),

u(0) = )\f u(s)ds, u'(+o0) =C,
0
where A > 0, 0 < A < 1and f : [0,+0) X R? — R satisfies a Nagumo’s condition which plays an
important role in the nonlinear term depend on the first-order derivative explicitly. By using Schauder’s
fixed point theorem, the upper and lower solution method and topological degree theory, first we give
sufficient conditions for the existence of at least one solution and next at least three solutions of the above
problem. Moreover, an example is included to demonstrate the efficiency of the main results.

1. Introduction

In this paper, we shall examine an existence theory for second-order ordinary differential equations
together with integral boundary conditions on a half-line

u”’ (x) + g(x) f(x, u(x), u’(x)) = 0, x € (0,+00),
U
u0)=A u(s)ds, liIP u'(x) = u'(+o0) =C, M
0 X—+00
where A > 0,0 < An<1,4:(0,+00) — (0,+00), f : [0, +00) x R? - R are continuous and C > 0. By applying
the upper and lower solutions method, we give easily verifiable sufficient conditions for the existence of
solutions of BVP (1). These solutions may be unbounded in this paper.

Multi-point boundary value problems for second-order differential equations in a finite interval and
on an infinite interval included the large amount of priori work and many excellent results are obtained
by using Avery-Peterson fixed point theorem, shooting method, lower and upper solution method, Leray-
Schauder continuation theorem and so on, see for instance [1-13,15]. Meanwhile, BVPs with integral

2010 Mathematics Subject Classification. Primary 34B10; Secondary 34B40, 39A10

Keywords. Infinite interval problems, Lower and upper solutions, Schauder’s fixed point theorem, Topological degree theory,
Integral boundary condition

Received: 01 March 2016; Accepted: 23 June 2016

Communicated by Jelena Manojlovi¢

Email addresses: ummahanakcan@anadolu.edu.tr (Ummahan Akcan), erbil.cetin@ege.edu. tr (Erbil Cetin)



U. Akcan, E.Cetin /Filomat 32:1 (2018), 341-353 342

boundary conditions for ordinary differential equations have been extensively examined by many authors,
for example see [11-16]. But, there is a little work related to boundary value problems with integral
boundary conditions on an infinite interval.

In [12], Akcan and Hamal considered the boundary value problem (BVP):

u”(x) + f(x, u(x),u'(x)) =0, x€(0,1),
U
u(0) =u(l) = af u(s)ds,
0
where f: (0,1) X [0, 00) X R — [0, ) is continuous and «, i € (0, 1). In that study, the proof was based upon
Avery and Peterson fixed point theorem.
In [5], Lian and Geng examined Sturm-Liouville boundary value problem on a half-line:

u” (t) + ¢ f(t, u(t), u'(t)) =0, t e (0,+00), @)
u(0) —au’(0) = B, u'(+00) =C,

where ¢ : (0, +00) — (0, +0), f : [0, +00)xR? — R are continuous,a > 0,B,C € R. By assuming the existence
of two pairs of unbounded upper and lower solutions, they showed that the problem (2) has at least three
solutions on a half-line.

Motivated and inspired by the above works, we present existence theory of solutions for the BVP (1).
The plan of our paper is as follows: In Section 2, we give some definitions and lemmas which we need
to prove the main results. This includes the construction of Green’s function for a second-order boundary
value problem with integral boundary conditions, properties of Green’s function, definitions of upper and
lower solutions of (1) and Nagumo’s condition. In Section 3, we present two main results. In our first
result, we use Schauder’s fixed point theorem to establish the existence of at least one solution of (1) which
lies between the assumed pair of upper and lower solutions. In our second result, we assume the existence
of two pairs of upper and lower solutions and employ the degree theory to prove the existence of at least
three solutions of (1). Finally, we demonstrate the importance of our results through one example.

2. Preliminaries

For the convenience of the reader, in this section we provide some necessary definitions and preparatory
results which will be needed to prove the the existence of solutions of (1). We begin with constructing Green’s
function for the linear boundary value problem

u”’(x) +v(x) =0, x€(0,+c),
1

u(0) = /\j(; u(s)ds, u'(+o0) =C. )

Lemma 2.1. Let v € C[0, +c0) and f v(s)ds < +oo. Then the solution u € C'[0, +00) N C*(0, +00) of the problem
0

(3) can be expressed as

u(x) = Lﬂz +Cx + f"o G(x, s)v(s)ds,
2(1 - An) 0
where
25 — As?, 0 <'s < min{n, x} < +oo;
DT A 0ees e i

AN? + 2x = 2Anx, 0 < max{n, x} <'s < +oo.
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Proof. Since v € C[0, +0) and f v(s)ds < +00, we can integrate (3) from x to +oo, and use u’(+00) = C, to
0

get
wkx)=C+ f v(s)ds.
Integrating the above equation on [0,x] and applying Fubini’s theorem, we obtain

u(x) = u(0) + Cx + fx su(s)ds + f‘” xv(s)ds. (5)
0 x

Integrating (5) from 0 to ), we have

1 ~ ,7_2 1 ~ 1 i 00 ,7_2
fo u(s)ds = u(0)n + C 5 + j(; (n —s)sv(s)ds + f(; 2v(s)ds+ j; 5 v(s)ds,

1
and from u(0) = A f u(s)ds, we have
0

CArf? A ’7 A 0 g2 1 2
20— An) + T=n j(; (n —s)sv(s)ds + 7 _/\Wfo Ev(s)ds+ 7 —/\nj,; ?v(s)ds.

Hence from (5), we have

u(0) =

CAn?
u(x)—m+(?x
¥ 25— As? f” 2An(s — x) + 2x — As? f‘” An? 4 2x = 2Anx
——o(s)ds + v(s)ds + —————0(8)ds, x < n;
Jy s [ gy .2y O =
+
T 25 — As? j‘x An? 425 = 2Ans f"" An? +2x = 2Anx
—0(s)ds + —————v(s)ds + —————0v(9)ds, <x;
foza—)\n) OF+ ) “aa-ap O Taamap WV L
which is the same as
© CArp +C+fmc( Yo(s)ds, Vx € [0, +c0)
u(x) = —— + Cx x,s)v(s)ds, Vx € [0, +o0).
2(1-An) 0

This completes the proof of the lemma. O

Lemma 2.2. Let the Green function G(x,s) be as in (4). Then for all x,s € [0, 4+00),A > 0and 0 < An <1, G(x,s) is
continuous and G(x, s) > 0.

Proof. The continuity of G(x, s) with respect to (x,s) € [0, +00) X [0, +00) is clear. Let define
g1(x,8) =25 — As? for s € [0, min{x, ml, ga2(x,8) = 2An(s — x) + 2x — As? fors € [x, nl,
g3(x,s) = A + 25 — 2Ans for s € [, x] and g4(x,s) = An* + 2x — 2Anx for s € [max{x, n}, +oo).

We solely need to prove that g1(x, s) > 0 for 0 < s < min{x, n} < +c0, because the proofs of others are similar.
From the definition of g;(x, s), we have

g1(x,8) =25 — As? =52 — As) > 5(2 — An) >s2>0,

for 0 < s < min{x, n} < +oo0, which completes the proof. [

dG(x,s) S

Lemma 2.3. Foranys € [0, +0), G(x, s) is nondecreasing with respect to x, that is for any s € [0, +00), 2 0,

x € [0 + o0). Moreover, G(0,s) < G(x,s) < G(s, s).
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Proof. From (4) it is easy to see that IGlx,s)

» > 0, for s, x € [0 + o0); this means G(x, s) is nondecreasing with
respect to x. Because of this and 0 < x, we obtain G(0,s) < G(x, s) where

22 _
G(x,5) = G(0,5) = ——1t {ZMS A%, s<n

2(1-An) | A% n<s.
By using nondecreasing of G with respect to x, we have

1, 0 < s < min{n, x} < +o0;
2An(s — x) + 2x — As?
Glxs)  _ 2s — As? ’
G(s, s) 1, 0<n<s<x<+oo;
An? +2x(1 - An)
A2 +2s(1 - An)’

0<x<s<1n<+oo;

0 < max{n,x} <5 < +oo;

< 1,

which implies G(x,s) < G(s,s) for s, x € [0 + o0). This completes the proof of the lemma. O
Let

X = {u € CI[0, +00) : lim &)

and lim u'(x) exist}
x—+00 1+ x X—+00

with the norm ||u|| = max{||u|1, ||u||~}, where

|u(x)l
llully = sup ===, llullo = sup [’ ().
x€[0,+0c0) +Xx x€[0,+00)

Then by the standard arguments, it follows that (X, ||.||) is a Banach space. In what follows, we shall need
the following modified version of the Arzela-Ascoli lemma [16].

Lemma 2.4. Let M C X. Then M is relatively compact if the following conditions hold:

1. all functions from M are uniformly bounded in X;
2. the functions in {y : y = 15, u € M}and {z : z = u'(x), u € M} are locally equi-continuous on [0, +0);

3. the functions in {y : y = 1=, u € M} and {z : z = u'(x),u € M} are equi-convergent at +oo, that is, for any

€ > 0, there exists a 6 = 6(€) > 0 such that
ly(x) — y(+0)| <€, |z(x) — z(+o0)| <€,
forall x > 6, and u € M.

Definition 2.5. A function a € X N C*(0, +0) is called a lower solution of (1) if

a”(x) +q(x) f(x, a(x),a’(x)) > 0, x € (0,+00), (6)
a(0) <A fn a(s)ds, a'(+o0) < C. (7)
0
Similarly, a function B € X N C?(0, +0) is called an upper solution of (1) if
B (x) +9(x) f(x, B(x), p'(x)) < 0, x € (0, +00), (8)
u
B2 1 [ s e > C ©)

Definition 2.6. We say a(p) is a strict lower solution (strict upper solution) for problem (1) if the above inequality
(7) (0r(9)) is strict for x € (0, +09).
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Definition 2.7. Let o, € X N C*(0, +0) be a pair of lower and upper solutions of (1) satisfying a(x) < p(x), x €
[0, +00). A continuous function f : [0, +00) X R?> — R is said to satisfy the Nagumo's condition with respect to the
pair of functions «a, B, if there exist a nonnegative function ¢ € C[0, +o0) and a positive function h € C[0, +o0) such
that

|f (x, u, 0)| < P(x)h([v]) (10)
forall x € [0, +00), a(x) < u < B(x), v € Rand
“ s
L @ds = +00. (11)

3. Main Results
The following result guarantees the existence of at least one solution of the problem (1).

Theorem 3.1. Assume that a, 3 are the lower and upper solutions of (1) satisfying a(x) < B(x), and suppose that
f:[0,+00) X R* — R is continuous satisfying the Nagumo’s condition with respect to the pair of functions a, B. If

f max{s, 1}g(s)ds < +oo, f max{s, 1}q(s)p(s)ds < +oo (12)
0 0
and there exists a constant y > 1 such that
m= sup (1+x)q(x)p(x) < +o0 (13)
x€[0,+00)

where ¢(x) is the function in Nagumo’s condition of f, then (1) has at least one solution u € X NC*(0, +o0) satisfying
a(x) < u(x) < Bx), W' (x)| < N forall x € [0, +00);
here, N is a constant depending on a, B, h and C.

Proof. We can choose an r such that

rzmax{ sup f'(x), sup a'(x), C¢, (14)
x€[0,+00) x€[0,+00)
and an N > r such that
N
s px) : a(x) 04
——ds >m| su — inf + . 15
‘[ () (mm&ﬂ1+wy elotten @y TIPS 2T 15

We define the following auxiliary functions

f(x,B,0), u>px);
filx,u,v) =1 fx,u,0), alx) <u<px);

flx,a,v), u<a(x),

and

filx,u,N), ov>N;
freu0) =1 filx,u,0), [o|<N; (16)
fi(x,u,—N), v <-=N.

Now we consider the modified problem
u”(x) +q00) £, u(x), ' (x) = 0, x € (0, +00),
U

u(0) = /\f u(s)ds, u'(+o0)=_C.
0

(17)
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As an application of Schauder’s fixed point theorem we will prove that (17) has at least one solution u such
that a(x) < u(x) < p(x) and |[u'(x)] < N, x € [0, +00). To show this, for u € X, we define two operators as
follows

(Thu)(x) = fo G(x,5)q(s) (s, u(s), u’(s))ds, x € [0, +o0), (18)
and

T@ =~ ot 0 19

( u)(x)—m‘*' x + (T1u)(x), x € [0, +o0). (19)

Now we divide the proof into three steps.
Step 1. From the following three parts we shall conclude that T : X — X is completely continuous.
(1) T : X - X is well defined: For each u € X, in view of (10), (12) and (16), we have

f q(s)f*(s, u(s), u’ (s))ds

0

< f Hog(s)p(s)ds
’ (20)

< foo max{s, 1}Hoq(s)p(s)ds < +oo,
0

where Hy = max h(x). For u € X, we find from (20) that

0<x<lutloo

flm sHoq(s)p(s)ds < f:o max({s, 1}Hoq(s)@(s)ds < +oo0. (21)
Since
f“’ Hoq(s)p(s)ds < f‘” sHoq(s)p(s)ds < 400, x > 1, (22)
x x
it follows that
Jim [ Hgooes =0 @)
Thus by Lemma 2.2, Lemma 2.3 and (21) , we have

. (Tu)(x) . * G(x,s)
lim ————= lim
x—400 14+ x x—>+00 Jo 1+x

lim 1 ooG(s,s)Hoq(s)qb(s)ds

XH+001+X 0

L 1 T (25 — As?) , 1 * (A +2s — 2A1s)
= Jim g ) S oo tim e [ ot

Hog(s)b(s)ds

IA

= 0,

T
which implies lirP % = 0. Therefore, it follows that

C/\—qz + Cx
. (Tw)(x) .. 20 . (Mu)(x)
11m _— = hm —_— + hm _— =

x—+00 14+ x x—+00 1+x x—+00 14+ x

Now from (23), we have

lim foo q(s) f*(s, u(s), u’(s))ds

X—+00

< lim f Hoq(s)p(s)ds = 0,
X—+00 P
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and hence .
liIP (Tu) (x) = lirP C+ f q(s)f*(s, u(s), u'(s))ds = C
X—>+00 X—+00 x

Consequently, it follows that Tu € X.

(2) T : X — X is continuous. For any convergent sequence u, — u in X, we have
un(x) = u(x), u;,(x) - u'(x), n— +oo, x € [0, +00).
Thus the continuity of f* implies that
|f*(s, un(s), u;,(s)) — f*(s,u(s), u'(s))l = 0, n = 400, s € [0, +00).

Since u;,(x) — u’(x), we have sup [|u,ll < +oo. Let Hy = max h(x). Then we obtain
nelN nggmaX{llulloa/supy,gN [l lleo}

fo Sq)If7 (5, un(s), 4y (5)) = f(5, us), ' (5))lds
(24)
d 00,
szf(; sH1q(s)p(s)ds < +

Therefore from the Lebesgue dominated convergence theorem and (24) it follows that

M) =Tl _ - [T = Tra)

T, — Tully sup

xe[0,+00) T+x xe[0,+00) 1+x
= sup | [ SO0 6 0,160 - £ 6,16, w6
< sup [ GO (51,09, u406) - 6 ) 1 Ol
x€[0,+00)
< [ GO e 550 ), s
0
= [ e s s 16 - £ w6
(A% + 25 — 2Ans) § Loy g ,
O A 6 16, 49 ~ 9,
< [ SO 6 (9 6 ) s
ey A 5 (9 59— 616 Gl

R N o ,
< mﬁ Sq(s)lf (s,un(s),un(s)) f(S,M(S),M (S))ldS,

which approaches zero as n — co. Lastly, we have

ITuy — Tullw = S[uP )l(TMn)'(x)—(Tu)’(x)l = S[up [(T1un) (x) = (T1u) (x)|
x€[0,+00 x€[0,+00)
= up g(s)(f7 (s, un(s), uy,(s)) — f*(s, u(s), u'(s)))ds
= f qe)lf* (s, un(s), uy(s)) — f*(s, u(s), u’'(s))lds,

0
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which approaches zero as n — co. As a result ||[Tu, — Tul| = 0,as n — +00; 50 T : X — X is continuous.
(3) We will next show that T : X — X is relatively compact. Let A be any bounded subset of X, then for

ueAletH, = max h(x) < +oo, similar to the above proof, we get
0<x<|ulloo,u€A

[ Tu(x)l

|| Tu4l|
! x€[0,+00) 1+x
CAP
” PRS2 f G, S)q(s)f (s, u(s), ' (s))ds
0

) SOFDO) 20 - An)(1+x) 1+x
CAn? 0o ) ,

= 2A-ap +(1—/\17) fo sq(S)|f* (s, u(s), ' (s))lds
CAr? 1 °°

= 2(1 - )\,7) +(1—/\77)£ sHaq(s)p(s)ds < +oo,

and
ITulle = sup [(Tu) (x)|

x€[0,+00)

= sup ‘C + f q(s)f*(s, u(s), u’(s))ds
x€[0,+00) x

< C+ foo Hyq(s)p(s)ds < +oo,
0

which implies that ||Tu|| < +o0. Thus TA is uniformly bounded. Meanwhile, for any k > 0, if x1, x, € [0, k],
we have
(Tu)(x1)  (Tu)(x2)
1+x 1+ x

CAn? CAn?
20— A +x1) 20 - A1 +x,)

'Cxl _ sz
1+x; 1+ x

G(xq, G(xo,
« |55 - S g6 i

CAn? CAn?
21— AL +x1) 2(1— A1 +x7)

CX1 _ sz
1+x1 14+x

+f°° ‘G(XLS) _ Glxz,5)

1+x 1+x

Hyq(s)p(s)ds,

and

(Tw)" (x1) = (Tu) (x2)| LI(S)f s, u(s), u'(s))ds — f q(s) f*(s, u(s), u’ (s))ds

X1
X2

Hyq(s)p(s)ds.

X1

IA

Then, for any € > 0, there exists a 6 > 0 such that

(Tu)(x1)  (Tu)(x2)
1+x 1+ x

<€, |(Tu) (x1) = (Tw) (x2)l < €

if lx1 — x| <6, x1,%0 € [0 k]
Since k is arbitrary, we know the functions belonging to { } and the functions belonging to {(TA)'} are
locally equi-continuous on [0, +0). Now for u € A one has

TwE | T0E)| |0
1+x x—>+0 1+ x 1+x

—C’—>O, asx — +oo,
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and
[(Tu) (x) - xgrpm(Tu)'(x)l =|(Tu)'(x) - C| =

foo f*(s,u(s), u'(s))ds| — 0,

as x — +oo which yield that the functions from {%} and the functions from {(T'A)’} are equi-convergent at
+00.
Consequently, the conditions of Lemma 2.4 hold and so TX is relatively compact. Therefore T : X — X is
completely continuous. Schauder’s fixed point theorem guarantees that T has at least one fixed point u € X
which is a solution of (17).

Step 2. If u is a solution of (17), then it holds a(x) < u(x) < p(x), x € [0, +o0). We solely need to show
a(x) < u(x), x € [0, +00) since the proof of the other is analogous. If a(x) < u(x) on [0, +0), is not true, then
there exists x( € [0, +o0) such that

a(xg) > u(xp) and u(xy) — a(xg) = xe[igig)(u(x) —a(x)) <0.

Now in view of lim (u’(x) — a’(x)) > 0, there are three cases.
xX—+00

Case 1. If xp € (0, +00), then we have u(xp) < a(xp), u'(xg) = a’(xp) and u”’ (xg) = a”’(xp). Since u(xp) < a(xo),

u'(xo) = a’(xp) and  sup |a’(x)| < N, we have f*(xo, u(xo), u’(x0)) = f(xo, a(xo), &’ (xo)) and
x€[0,+00)

0<u”(xo) —a”(x0) < —q(xo)lf"(x0, u(xo), 1’ (x0)) — f(x0, a(x0), @’ (x0))] = O,

which is a contradiction.
Case 2. If xo = 0 and u(0) — a(0) = [10nf )(u(x) — a(x)) < 0, then for all s € [0, n], u(s) — a(s) = u(0) — a(0)
x€|U,+00

and we have

1 n
/\fo (u(s) — a(s))ds > )\j(; (u(0) — a(0))ds = An(u(0) — a(0)).

Moreover from boundary conditions we obtain

1 n
Af (u(s) — a(s))ds = u(0) — )\f a(s)ds < u(0) — a(0),
0 0
then we have
0 < (1 - An)(u(0) - (0)),
unfortunately from 0 < An < 1 and u(0) — a(0) < 0, we have a contradiction.
Case 3. If lirp u(x) — a(x) = [i(?f )(u(x) — a(x)) < 0, then for Yx € [0, +00),u’(x) — a’(x) < 0 and there
xX—+00 x€[0,+00

exists a x < 400 is big enough such that for Vs € [x, +0), u(s) — a(s) < 0. Obviously,

u'(x) — o/ (x)

f ) f* (5, 1(5), 1/ (5)) + " (9)ds

f G5)f (s, a(5), @) + o (s))ds
> 0,

which is also a contradiction. Therefore,
a(x) < u(x), forall x € [0, +o0).

Step 3. Lastly, we show that |[u/(x)] < N for x € [0,+0c0). Suppose that there is a xo € [0, +o0) with
[t/ (xp)| = N. Since lil’i‘l u’(x) = C < N, there exists a T > 0 such that
X—+00

() <N, Vx> T.
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Letx; =inf{x < T : [u'(s)] < N, Vs € [x, +00)}. Then |u'(x1)| = N and |[t/(x)| < N for all x > x; and there exists
a xp such that [u/(x)] = N for x € [xz,x1]. We have two cases ©/(x1) = N and #/(x) > N for x € [xp,x1] or
u’(x1) = =N and u/(x) < —N for x € [x2,x1]. We assume that u’(x1) = N and #/(x) > N for x € [x,, x1] then we
have

N S N S
j; @ds < j; @ds

_ T,
= —L h(u’(s))u (s)ds

= - f ® ~qE)f 1), WO E) |
. Hw ©)

< f q(s)p(s)u’ (s)ds
< u'(s)

= mfxl (1+s)}'dS

~ > uis) * 1Y
= m(fx1 ((1+S)},)ds—j;l u(s)(—(1+s)y)ds)

p(x) . a(x) Y

< - f

<= m (xes[;:l}_)m) (1 + x))/ XE[IS,I*-OO) (1 + x)y + “ﬁ”l y - 1

N
s
—d
) f e
which is a contradiction. If u’(x;) = —N and #/(x) < —N for x € [x,x1], a similar contradiction can be

obtained. Hence, [1'(x)| < N for all x € [0, +00). Consequently,

u’(x) = —q(x) f(x, ux), u' (x)) = —q(x) fr(x, u(x), u' (x)) = —q(x) f(x, u(x), v’ (x)).

So, uis a solution of (1). O
Before we establish the existence of at least three solutions of the problem (1), we give the following
theorem which is important to the strategy to obtain three solutions.

Theorem 3.2 ([17]). Let X show a Banach space and let Q) C X be an open bounded set. Assume that I be identity

function on X and T : O — X is a compact function. Letp € X, p ¢ (I - T)(dQ) and d(I — T, Q, p) show the degree
of (I = T) at p depend on Q). Then
(i) (Domain decomposition property) If Q = Q1 U Qp U Q3 where C; is open sets and mutually disjoint, then
Al -T,Q,p) =d(I=T,Qu,p) +d(I = T,Q,p) +d(I = T,Q3,p).

(ii) (Excision property) If K  Q is a compact set such that p ¢ (I — T)(K), then
Al -T,Q,p)=d(I-T,Q\Kp).

Theorem 3.3. Assume that there exist strict lower and upper solutions oy, f1 and lower and upper solutions a1, o
of BVP (1) satisfying

ai(x) < ax(x) < Ba(x), a1(x) < P1(x) < fa(x), azx(x) £ P1(x) for x € [0, +00).

Suppose that f : [0, +00) X R> — R is continuous function satisfying the Nagumo's condition with respect to the pair
of functions ay, Bo. If (12) and (13) hold, then (1) has at least three solutions uy,uy, us € X N C2(0, +00) satisfying

a1(x) < up(x) < 1(x), a2(x) < ua(x) < Ba(x), us(x) £ P1(x), uz(x) £ az(x), x € [0, +0).
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Proof. We define the auxiliary function f; similar to f* in Theorem 3.1 such that & and f are replaced with
a1 and B, respectively. We consider the modified equation

u” (x) + q(x)rﬁ(x, u(x),u’(x)) =0, x¢€(0,+c),

u(0) = /\f u(s)ds, u'(+o0)=C.
0

(25)

We want to show that (25) has at least three solutions. We define an operator by

(Taw) = 7
2 =51 =)
We can prove that T, : X — X is completely continuous as T in Theorem 3.1. By using the degree theory,

we will show that T, has at least three fixed points which are the solutions of (25). For x € Q, similar to the
above proof in Theorem 3.1, we can find

+Cx + fom G(x,5)q(s)f; (s, u(s), u’(s))ds.

I Toully < CAT_ oy 1 foH (s)b(s)ds := k
T T R VTN S S

IT2ulle < C + f Haq(s)d(s)ds := ky,
0

where H3 = sup h(x) < 400, Q = {u € X : |lul| < K} and K > max{ky, k2}. Then we obtain [|T>u|| < K, which

O<x<|fulloo

implies that T,Q c Q. Thus deg(I — T»,Q,0) = 1. We take
Qu, = {u € Q:ulx) > ay(x), x€[0,+0)}, QF ={ueQ:u(x) < Bi1(x), x € [0, +o0)}.

By asx(x) £ Bi(x), ai(x) £ ax(x) < Pa(x), a1(x) < Bi(x) < Pax), x € [0,+00), we have ﬁaz nok =

@ and the set Q \ Q,, UQPF # @. Because of the strict upper and lower solutions 1, @, and Definition
2.6, T has no solution in 9Q,, U QP From Theorem 3.2 (i), we get

deg(I — T, Q,0) = deg(I — T, Q\ Qq, U QF1,0) + deg(l — Ty, Qy,, 0) + deg(l — To, O, 0). (26)

First, we show that deg(I — T, ),,,0) = 1. For this, we define completely continuous operator T3 : Q-0
by
CAn?
T =—
(T50() = 55~ 175
where the function f; is similar to f; except a; is replaced with a,. In a way similar to that the proof of
Theorem 3.1 it is easy to prove that T3 has a fixed point x satisfies a»(x) < u(x) < fa(x), x € [0, +00). Since the
lower solution a; is strict and Definition 2.6, u(x) # ax(x), x € [0, +0). Therefore, u € Q,,. Hence

$Cx+ f Gl 96 f3 5, 1(8), 1O,

deg(I — T3,Q\ Q,,,0) = 0.

Moreover, we can show Tgﬁ c Q. Then we obtain

deg(I - T5,Q,0) = 1. (27)
Since f, = f in the region Q,,, we have

deg(I —T2,Q4,,0) = deg(l—1T3,Qy,,0)

= deg(l - T3, Qy,,0) + deg(I - T5,Q\ Q,,,0) (28)
deg(I - T3,Q,0) = 1.
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Similar to the proof of (28), we have
deg(I — T,,Q,0) = 1.

By (26), (27) and (29) we obtain
deg(I — T, Q\ Q,, UOF,0) = 1.

352

(29)

Therefore, T, has at least three fixed points u; € Q,,, uy € QP and uz € Q\ Q,, U QF which are solutions

of the problem (1). Then the proof is complete. [

Example 3.4. Consider the second-order three-point boundary value problem

u” (x) + elx(l + x) arctan(—u(x))('(x))> + 1) =0, x € (0, +),
1 (! , 1
u(0) = 5]0‘ u(s)ds, u'(+o0) = =

where A = % >0,n=1and clearly0 < An < 1.

Let
q(x) = elx' f(x,u,v) = (1 + x) arctan(—u)(v* + 1).

Also, we notice that C = % We take a(x) = —x -1, f(x) = x + 1.
Then a(x), B(x) € C?[0, +c0) and o’ (x) = =1, (x) = 0, f'(x) = 1, 8”(x) = 0. Moreover, we have

(1+x)
e

a” (x) +q(x) f(x, a(x), o’ (x)) = 2 — arctan(x + 1) >0, x € (0,+c0),

n 1 3
a(O):—1</\fO a(S)dSZEIO(—s—l)ds:Z,

1
a'(+00) = =1 < 5= C
and
2(1 +x)
eX

arctan(—x —1) <0, x € (0,+c0),

B (x) + q(x) f(x, B(x), B’ (x)) =
1 1 1 3
ﬁ(0>=1>Af0 ﬁ(s)ds=§f0(s+1)ds=1,

B (+o0)=1> % =C.

(30)

Thus «,  are lower and upper solutions of (30), respectively. Furthermore, a, § € X, a(x) < (x), x € [0, +00).
Clearly, f is continuous, moreover, f satisfies the Naguma'’s condition with respect to a(x) = —x — 1 and

B(x) = x +1; thatis, when0 < x < 400, -=x -1 <u <x+1land v € R, it holds
|f(x, u,0)] < p(x)h(lol),
where ¢(x) = (1 + x) and h(v) = g(v2 +1) and

< s 2 7 s
—ds == ——ds = .
fo h(s)S nfo s2+1S oo

Also,
) 1 1 00 s 1
f max({s, 1}g(s)ds = f —ds + f —ds=1+ - < +o0,
0 0o € 1 € e



U. Akcan, E.Cetin /Filomat 32:1 (2018), 341-353 353

00 1 00 2
f max{s, 1}q(s)¢p(s)ds = f sy f ST g =242 <o
0 0o € 1 es e

and fory =2,
m= sup (1+x)q(x)p(x) = sup (1+ x)zlx(l + Xx)

x€[0,+00) x€[0,+00) e

1 3

- sup @

x€[0,+00) e
1+2)3
- U <,
e

that is, (12) and (13) are satisfied. Therefore, from Theorem 3.1, the boundary problem (30) has at least one
solution u such that

ax)=—-x-1<ux) <x+1=px), ') <N for all x € [0, +c0),

where N > \/el%(ﬂ +1)-1, r>1withy =2.
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