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Abstract. Taking the question posed by the first author in [1] into background, we further exhaust-ably
investigate existing Fujimoto type Strong Uniqueness Polynomial for Meromorphic functions (SUPM). We
also introduce a new kind of SUPM named Restricted SUPM and exhibit some results which will give us a
new direction to discuss the characteristics of a SUPM. Moreover, throughout the paper, we pose a number
of open questions for future research.

1. Introduction Definitions and Results

Let us denote by C, the set of all complex numbers and C = C ∪ {∞}. Also by any meromorphic
function f , we always mean that it is defined on C. Here we consider the standard notations of Nevanlinna
theory as explained in [7]. For any non-constant meromorphic function h(z), we define S(r, h) by S(r, h) =
o(T(r, h)) as r −→ ∞, r < E, where E denotes any set of positive real numbers having finite linear measure.

For any two non-constant meromorphic functions f , 1 and a ∈ C, we say that f and 1 share the value
a-CM (counting multiplicities) if the zeros of f − a and 1− a coincides in location as well as in multiplicities.
Also we say that f and 1 share the value a-IM (ignoring multiplicities), if the zeros of f − a and 1− a coincide
in location only.

In addition, we say that f and 1 share∞-CM (resp. IM), if 1/ f and 1/1 share 0-CM (resp. IM).
About ninety years ago, R. Nevanlinna, the founder of value distribution theory, proved his famous

Five Value and Four Value theorems which were the inception of uniqueness theory. After fifty years or so
generalizing the value sharing problems to the set sharing problems which focused mainly on the study
of uniqueness of two entire or meromorphic functions via pre-image sets, F. Gross started a new era of
uniqueness theory. Though this paper is devoted to the transition of set sharing problems but initially we
shortly recall the following two standard definitions from the literature.

Definition 1.1. Let S ⊆ C ∪ {∞} and E f (S) =
⋃

a∈S{z : f (z) = a}, where each zero of f − a is counted according to
its multiplicity. We say that f and 1 share the set S-CM if E f (S) = E1(S).
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Evidently, if S contains only one element, then it coincides with the usual definition of CM sharing of
values.

Definition 1.2. Let S ⊂ C∪{∞}; f and 1 be two non-constant meromorphic (resp. entire) functions. If E f (S) = E1(S)
implies f ≡ 1, then S is called a unique range set for meromorphic (resp. entire) functions or in brief URSM (resp.
URSE).

Apropos of the set sharing problems, in 1982, F. Gross and C. C. Yang [6] first ensured the existence of a
unique range set which is as follows:

Theorem A. [6] Let S = {z ∈ C : ez + z = 0}. If two entire functions f and 1 satisfy E f (S) = E1(S), then f ≡ 1.

It is to be observed that the range set S given in Theorem A is an infinite set. So later on a lot of
investigations were made by Li-Yang, Yi, Frank-Reinders and the First Author in [8], [10], [3] and [1]
respectively to find finite unique range sets with smallest cardinality.

In relation to this, Li-Yang [8] first exhaust-ably delve into the set sharing problems and retrieve the
matter to a completely different scenario that finite URSM’s are nothing but the set of distinct zeros of
some suitable polynomials; i.e., if S = {a1, a2, . . . , an}, then it is necessary for S to be a unique range set for
meromorphic (resp. entire) functions that the associated polynomial PS(w) = (w − a1)(w − a2) . . . (w − an)
satisfies the condition P( f ) = P(1). In course of time, the set sharing problems have gradually been
transformed to a new direction and eventually it turns towards characterization of polynomials generating
URSM (resp. URSE).

Under this new perspective, we first invoke the following two definitions:

Definition 1.3. A polynomial P(z) in C, is called a uniqueness polynomial for meromorphic (resp. entire) functions,
if for any two non-constant meromorphic (resp. entire) functions f and 1, P( f ) ≡ P(1) implies f ≡ 1. We say P(z) is
a UPM (resp. UPE) in brief.

Definition 1.4. A polynomial P(z) in C is called a strong uniqueness polynomial for meromorphic (resp. entire)
functions if for any two non-constant meromorphic (resp. entire) functions f and 1, P( f ) ≡ κP(1) implies f ≡ 1,
where κ is any non-zero constant. In this case, we say P(z) is a SUPM (resp. SUPE) in brief.

In 2000, to find the necessary and sufficient conditions for a monic polynomial having only simple zeros
to be a UPM, Fujimoto [4] made a major breakthrough by introducing a new idea namely “Property H”
which has recently been justified as “Critical injection property” in [2]. The definition is as follows:

Definition 1.5. Let P(z) be a polynomial such that P′ (z) has mutually k distinct zeros given by d1, d2, . . . , dk with
multiplicities q1, q2, . . . , qk respectively. Then P(z) is said to satisfy critical injection property if P(di) , P(d j) for
i , j, where i, j ∈ {1, 2, . . . , k}.

From the definition, it is obvious that P(z) is injective on the set of distinct zeros of P′ (z) which are known
as critical points of P(z). Furthermore, any polynomial P(z) satisfying this property is called as “critically
injective polynomial”. Thus a critically injective polynomial has at-most one multiple zero.

Using this fundamental property, in [5], Fujimoto completely characterized monic polynomials with
only simple zeros to be a uniqueness polynomial.

Theorem B. [5] Suppose that P(z) is critically injective. Then P(z) will be a uniqueness polynomial if and only if

∑
1≤l<m≤k

ql qm >
k∑

l=1

ql .

In particular, the above inequality is always satisfied whenever k ≥ 4. When k = 3 and max{q1, q2, q3} ≥ 2 or when
k = 2, min{q1, q2} ≥ 2 and q1 + q2 ≥ 5, then also the above inequality holds.
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Moreover, in [4], Fujimoto proved that critical injection property suffices the set of zeros S of a SUPM
(resp. SUPE) to be a URSM (resp. URSE).

So it is needless to say that UPM (resp. UPE) and SUPM (resp. SUPE) both play a pivotal role in finding
unique range sets. In this context, recently the first author [1] introduced a strong uniqueness polynomial
whose zero set is also forming an unique range set. In the same paper, the first author posed a question:

Question A. “Does there exist any critically injective SUPM with degree less than 7 ?”

Motivated by the above question, the current paper has been organized. So at first we recall the
polynomial generating URSM introduced by Frank and Reinders in [3].

PFR(z) =
(n − 1)(n − 2)

2
zn
− n(n − 2)zn−1 +

n(n − 1)
2

zn−2
− c (c , 0, 1).

Obviously, PFR(z) is critically injective. Also in their paper, Frank-Reinders proved that PFR(z) is a SUPM for
n ≥ 8, when c , 0, 1; i.e., when PFR(z) has only simple zero. But this does not commensurate with the actual
definition of SUPM where restrictions over multiplicity are not taken into account. So natural question
arises what would happen if we consider multiple zeros of PFR(z)? In this regard, we have the following
theorem which is a direct improvement of the above result.

Theorem 1.1. Let PFR1 (z) =
(n−1)(n−2)

2 zn
− n(n − 2)zn−1 +

n(n−1)
2 zn−2

− c, where c ∈ C. Then PFR1 (z) is a critically
injective SUPM for n ≥ 8.

The following Lemmas are needed in this sequel.

Lemma 1.1. [9] Let f be a non-constant meromorphic function and let

R( f ) =

n∑
k=0

ak f k

m∑
j=0

b j f j

be an irreducible rational function in f with constant coefficients {ak} and {b j}, where an , 0 and bm , 0. Then

T(r,R( f )) = dT(r, f ) + S(r, f ),

where d = max{n,m}.

Lemma 1.2. If
ψ(t) = (n − 1)2(tn

− κ)(tn−2
− κ) − n(n − 2)(tn−1

− κ)2

and κ , 0, 1; then ψ(t) = 0 has no multiple root.

Proof. [Proof] Let F(t) = ψ(et)e(1−n)t for t ∈ C. Then by elementary calculations, we get

F(t) = (e(n−1)t + κ2e−(n−1)t) − κ(n − 1)2(et + e−t) + 2κn(n − 2).

Thus ψ(t) , 0 for t = 0. Next, if possible, let ψ(z0) = ψ′(z0) = 0 for some z0 ∈ C.
Then z0 , 0, and hence there exist some w0 ∈ C such that z0 = ew0 .

As F′(t) = ψ′(et)e(1−n)tet
− (n − 1)ψ(et)e(1−n)t, so F(w0) = F′(w0) = 0.

Thus
(e(n−1)w0 + κ2e−(n−1)w0 ) = κ(n − 1)2(ew0 + e−w0 ) − 2κn(n − 2),

and
(e(n−1)w0 − κ2e−(n−1)w0 ) = κ(n − 1)(ew0 − e−w0 ).
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Therefore

4κ2 = (e(n−1)w0 + κ2e−(n−1)w0 )2
− (e(n−1)w0 − κ2e−(n−1)w0 )2

= (κ(n − 1)2(ew0 + e−w0 ) − 2κn(n − 2))2
− (κ(n − 1)(ew0 − e−w0 ))2

= 4κ2
{

(
(n − 1)2 cosh w0 − n(n − 2)

)2
− ((n − 1) sinh w0)2

},

i.e.,
(cosh w0)2

{(n − 1)4
− (n − 1)2

} = 2n(n − 1)2(n − 2) cosh w0 − {n2(n − 2)2 + (n − 1)2
− 1},

i.e., (cosh w0 − 1)2 = 0, that is, cosh w0 = 1, which implies z0 + 1
z0

= 2.
Hence z0 = 1 but ψ(1) = (1 − κ)2 , 0 as κ , 1. Thus our assumption is wrong. Hence the proof.

Lemma 1.3. If
ψ(t) = (n − 1)2(tn

− κ)(tn−2
− κ) − n(n − 2)(tn−1

− κ)2,

where t , 1 and κ , 0, 1; then ψ(t) = 0 and tn
− κ = 0 has no common root.

Proof. [Proof] Ifψ(t) = 0 and tn
−κ = 0 has a common root, then by the expression ofψ(t), we get tn−1

−κ = 0
and tn

− κ = 0. Then κ = tn = ttn−1 = tκ, which is impossible as κ , 0 and t , 1. Hence the proof.

Proof. [Proof of Theorem 1.1] It keeps nothing to prove that PFR1 (z) is critically injective. Since

P
′

FR1
(z) =

n(n − 1)(n − 2)
2

zn−3(z − 1)2

so obviously

PFR1 (z) + c − 1 = (z − 1)3
n−3∏
i=1

(z − ηi),

where ηi , 1 for all i = 1, 2, . . . ,n − 3 and

PFR1 (z) + c = zn−2(z − α1)(z − α2),

where αi , 0 for i = 1, 2. Suppose f and 1 be two non-constant meromorphic functions such that PFR1 (1) =
κPFR1 ( f ), where κ ∈ C \ {0}. Using Lemma 1.1, we get

T(r, f ) = T(r, 1) + O(1). (1.1)

Now we have the following cases:
Case-1 Let κ , 1.
Subcase-1.1. If c , 0, then we consider the following subcases:
Subcase-1.1.1. Let c , 1. Then proceeding same as in the line of proof of [p. 191, Case-2, [3]], we get

contradiction for n ≥ 8.
Subcase-1.1.2. Let c = 1. Then we have PFR1 ( f ) + 1

κ = 1
κ1

n−2(1 − α1)(1 − α2). Clearly 1
κ , 1 i.e., 1

κ , c and
1
κ , 0, i.e., 1

κ , c − 1. So PFR1 ( f ) + 1
κ has only simple zeros, say δi for i = 1, 2, . . . ,n. Therefore we have

n∏
i=1

( f − δi) =
1
κ
1n−2(1 − α1)(1 − α2).

Now using the second fundamental theorem and (1.1), we get

(n − 2)T(r, f ) ≤

n∑
i=1

N(r, δi; f ) + S(r, f ) (1.2)

≤ N(r, 0; 1) + N(r, α1; 1) + N(r, α2; 1) + S(r, f ),
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which is a contradiction for n ≥ 6.
Subcase-1.2. If c = 0, then we have

(n − 1)(n − 2)
2

( f n
− κ1n) − n(n − 2)( f n−1

− κ1n−1) +
n(n − 1)

2
( f n−2

− κ1n−2) = 0.

By putting h =
f
1
, we get

(n − 1)(n − 2)
2

(hn
− κ)12

− n(n − 2)(hn−1
− κ)1 +

n(n − 1)
2

(hn−2
− κ) = 0. (1.3)

If h is constant, then as 1 is non-constant, so from (1.3), we get hn
− κ = 0, hn−1

− κ = 0 and hn−2
− κ = 0. So

κ = hn = h.hn−1 = hκ, i.e., h = 1 and hence f ≡ 1. If h is non-constant, then again from equation (1.3), we
have (

1 −
n

n − 1
hn−1
− κ

hn − κ

)2

= −
nψ(h)

(n − 1)2(n − 2)(hn − κ)2 , (1.4)

where ψ(h) is a polynomial of degree 2n − 2 defined by

ψ(t) = (n − 1)2(tn
− κ)(tn−2

− κ) − n(n − 2)(tn−1
− κ)2.

By using Lemmas (1.2) and (1.3), we can write equation (1.4) as

(
1 −

n
n − 1

hn−1
− κ

hn − κ

)2

= −n

2n−2∏
i=1

(h − αi)

(n − 1)2(n − 2)(hn − κ)2 , (1.5)

where αi’s are mutually distinct zeros of ψ(h).
Thus using the second fundamental theorem, we get

(2n − 4)T(r, h) ≤

2n−2∑
i=1

N(r, αi; h) + S(r, h)

≤
1
2

2n−2∑
i=1

N(r, αi; h) + S(r, h)

≤ (n − 1)T(r, h) + S(r, h),

which is a contradiction for n ≥ 4.
Case-2 Let κ = 1. This case also can be resorted same as in the line of proof of (p. 191, Case-3, [3]) and

we can get f ≡ 1 for n ≥ 6.
Hence the proof.

Remark 1.1. Applying part-b of Theorem-8 of [8] and Subcase-1.2. of the Theorem 1.1, it is easy to verify that
(n−1)(n−2)

2 zn
− n(n − 2)zn−1 +

n(n−1)
2 zn−2 is a four degree SUPE.

Next we consider the following polynomial introduced by the first author in [1].

PB(z) =

m∑
i=0

(
m
i

)
(−1)i

n + m + 1 − i
zn+m+1−i + c = Q(z) + c,

where Q(z) =

m∑
i=0

(
m
i

)
(−1)i

n + m + 1 − i
zn+m+1−i and c (, 0,−Q(1)) is a constant.
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In [1], the first author proved that PB(z) is a critically injective SUPM when n ≥ 3, m ≥ 3 and c = 1, i.e.,
a SUPM of degree 7. But had the Theorem 1.1 in [1] been proved independently for the case c = 1, it could
have been proved that PB(z) is a SUPM for n = 3, m = 2 and c = 1 i.e., a SUPM of degree 6.

One more thing is to be noticed that if m = 2, then PB(z) reduces to

PB(z) =
zn+3

n + 3
− 2

zn+2

n + 2
+

zn+1

n + 1
+ c,

where c , 0,− 2
(n+1)(n+2)(n+3) .

Multiplying by (n+1)(n+2)(n+3)
2 to the above polynomial, we get

PB1 (z) =
(n + 1)(n + 2)

2
zn+3
− (n + 1)(n + 3)zn+2 +

(n + 2)(n + 3)
2

zn+1
− c1,

where c1 = −c (n+1)(n+2)(n+3)
2 . Now putting n + 3 = n1, we have

PB1 (z) =
(n1 − 1)(n1 − 2)

2
zn1 − n1(n1 − 2)zn1−1 +

n1(n1 − 1)
2

zn1−2
− c1,

where c1 = −c n1(n1−1)(n1−2)
2 and c , 0,− 2

n1(n1−1)(n1−2) , i.e., c1 , 0, 1, which is nothing but PFR(z). So PB(z) is a
generalization of PFR(z). In [1], first author could prove that PFR(z) is a critically injective SUPM of degree
6, only for c1 = −60. But in the next theorem, we shall prove it in more general settings.

Theorem 1.2. PFR2 (z) =
(n−1)(n−2)

2 zn
−n(n− 2)zn−1 +

n(n−1)
2 zn−2

− c, where c ∈ C \ { 12 } is a critically injective SUPM
for n ≥ 6.

Proof. [Proof] Let f and 1 be two non-constant meromorphic functions such that PFR2 ( f ) = κPFR2 (1) for
κ ∈ C \ {0}. Using Lemma 1.1, we easily get (1.1). Let

P1(z) =
(n − 1)(n − 2)

2
zn
− n(n − 2)zn−1 +

n(n − 1)
2

zn−2.

Therefore PFR2 ( f ) = κPFR2 (1) implies

P1( f ) − c = κ(P1(1) − c). (1.6)

Now we consider the following cases:
Case-1 Let κ , 1. Then we discuss the following subcases:
Subcase-1.1. If c = 0, then we can resolve it similarly as done in Subcase 1.2. of Theorem 1.1 and get a

contradiction for n ≥ 6.
Subcase-1.2. If c , 0, then from (1.6), we get

P1( f ) = κ

(
P1(1) −

c(κ − 1)
κ

)
.

Clearly c(κ−1)
κ , 0 as c , 0. Now we have the following subcases:

Subcase-1.2.1. Let c(κ−1)
κ , 1. So P1(1) − c(κ−1)

κ has only simple zeros and let us denote them by δ
′

i for
i = 1, 2, . . . ,n. That is, we get

f n−2( f − α1)( f − α2) = κ
n∏

i=1

(1 − δ
′

i).

Therefore by the second fundamental theorem and (1.1), we get

(n − 2)T(r, 1) ≤

n∑
i=1

N(r, δ
′

i ; 1) + S(r, 1) (1.7)

≤ N(r, 0; f ) + N(r, α1; f ) + N(r, α2; f ) + S(r, 1),
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which is a contradiction for n ≥ 6.
Subcase-1.2.2. Let c(κ−1)

κ = 1. Then from (1.6), we get

P1( f ) − c(1 − κ) = κP1(1).

Obviously c(1 − κ) , 0. Now we claim that c(1 − κ) , 1 because if c(1 − κ) = 1, then κ = c−1
c . We also have

c(κ−1)
κ = 1, i.e., κ = c

c−1 . Therefore c−1
c = c

c−1 , i.e., c = 1
2 , a contradiction. Hence P1( f ) − c(1 − κ) = κP1(1) has

only simple zeros and let them be δ
′′

, for i = 1, . . . ,n, i.e., we have

n∏
i=1

( f − δ
′′

i ) = κ1n−2(1 − α1)(1 − α2).

Again using the second fundamental theorem and (1.1), we have

(n − 2)T(r, f ) ≤

n∑
i=1

N(r, δ
′′

; f ) + S(r, f ) (1.8)

≤ N(r, 0; 1) + N(r, α1; 1) + N(r, α2; 1) + S(r, f ),

which is a contradiction for n ≥ 6.
Case-2 Let κ = 1. Then proceeding same as resorted in (p. 191, Case-3, [3]), we can get f ≡ 1 for n ≥ 6.

Thus the proof follows.

The above theorem clearly implies that if we assume c ∈ C \ 1
2 in PFR(z), then degree of the SUPM can be

reduced significantly. So natural question arises:

Question 1.1. Is it possible to reduce the degree of SUPM

PFR(z) =
(n − 1)(n − 2)

2
zn
− n(n − 2)zn−1 +

n(n − 1)
2

zn−2
−

1
2

upto 6 ?

Now let us define the following notion:

Definition 1.6. Let
p(z) = anzn + an−1zn−1 + · · · + a1z + a0

be a polynomial with the property that an , 0. Then p(z) is called an initial term gap polynomial (ITGP) if ai = 0 but
a j , 0 for at least one j such that 1 ≤ j < i < n; and for an initial term non-gap polynomial (ITNGP), there does not
exist any such i.

So certainly PB(z) and PFR(z) are examples of ITNGP and PY(z) = zn + azn−r + b, the polynomial demon-
strated by Yi [10] is an example of ITGP. Till now we have discussed and improved previous results of
SUPM for existing ITNGP so our next discussion naturally turns towards SUPM for existing ITGP.

Henceforth, let us recapitulate PY(z) = zn + azn−r + b, where n, r are two positive integers having no
common factors, r ≥ 2 and a(, 0), b(, 0) are so chosen that PY(z) has n distinct zeros. Yi proved that PY(z)
is a SUPM for n ≥ 2r + 4 (see p.79, Case 3, first part, [10]).

Moreover, in 2000, Fujimoto showed that PY(z) is a SUPM for n > r + 1, when r ≥ 3 (see p. 1192, example
4.10., [4]). For r = 2, we prove the next theorem.

Remark 1.2. The question posed by the first author in [1] would have been more relevant for ITNGP.

Theorem 1.3. If P(z) = z5 + az3 + b, where ab , 0 and a, b are chosen in such a way that P(z) has only simple zero,
then P(z) is a critically injective SUPM if a5

b2 , −
55

33 .
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Remark 1.3. Though Theorem 1.3 can be proved as an application of Theorem 3.2, case-3 (p.42, [5]) yet for the sake
of convenience we give the proof in detail.

We need the following Lemma to proceed further.

Lemma 1.4. [5](P. 42, Lemma 3.3) Let P(z) be a critically injective monic polynomial such that

P′(z) = A(z − d1)q1 (z − d2)q2 ...(z − dk)qk ,

where d1, d2, . . . , dk are mutually distinct, A ∈ C \ {0} and P(z) has only simple zeros with k = 3 satisfying the
condition P( f ) = cP(1) for any two non-constant meromorphic functions f and 1, where c is any non-zero constant.
If for c , 1, Λ := {(l,m) |P(dl) = cP(dm)}, then there are some indices m and m′ such that (l0,m) ∈ Λ and (m′, l0) ∈ Λ
for some l0 satisfying ql0 ≥ 2.

Proof. [Proof of Theorem 1.3] Undoubtedly P(z) is a special form of PY(z) for n = 5 and r = 2, so it is
critically injective. Let f and 1 be two non-constant meromorphic functions such that P( f ) ≡ κP(1), where
κ ∈ C \ {0}. Now we consider two cases:

Case-1 Let κ , 1. In this case, P′(z) = 5z2(z2 + 3a
5 ). Let d1 and d2 are the zeros of the equation (z2 + 3a

5 ) = 0
and d3 = 0. Clearly, P(d3) = b and d1 + d2 = 0.

Now, by the Lemma 1.4, there are indices m,m′ such that

P(d3) = κP(dm) and P(dm′ ) = κP(d3), (1.9)

where {m,m′} ∈ {1, 2, 3}.
If m=3, then by the equation (1.9), we get κ = 1, which is a contradiction.

Similarly, if m′ = 3, then κ = 1, a contradiction.
If m=2, then either m′ = 2 or m′ = 1.

In this case, if m′ = 1, then by the equation (1.9), we get P(d2) = b
κ and P(d1) = bκ.

Now

P(d2) = P(−d1)
= −d5

1 − ad3
1 + b

= −d5
1 − ad3

1 − b + 2b.

Thus
P(d2) + P(d1) = 2b.

As b , 0 and κ , 0, we get κ2
− 2κ + 1 = 0, i.e., κ = 1, a contradiction.

If m′ = 2, then by the equation (1.9), we get P(d2) = b
κ and P(d2) = bκ, which gives κ2 = 1, i.e., κ = ±1.

If κ = −1, then P(d2) = −b, which implies d3
2(d2

2 + a) = −2b. So squaring on both sides and then putting
the value of d2

2, we get a5

b2 = − 55

33 , a contradiction.
If m=1, then either m′ = 2 or m′ = 1. Then proceeding similarly as above case, we arrive at contradiction.

Case-2 Let κ = 1. Then we have

f 5 + a f 3
≡ 15 + a13. (1.10)

By putting f = 1h in above, we get

12(h5
− 1) ≡ −a(h3

− 1). (1.11)

First we assume that h is a non-constant function. Then we can write (1.11) as

12
≡ −a

(h − v)(h − v2)
(h − u)(h − u2)(h − u3)(h − u4)

, (1.12)
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where u = exp((2πi)/5) and v = exp((2πi)/3). Clearly ui , v j as gcd(3, 5) = 1.
It is clear from equation (1.12) that any zero of h − ui (resp. zero of h − v j) is a of order atleast 2 (resp. 2)
(i = 1, 2, 3, 4). Thus by the second fundamental theorem, we get

4T(r, h) <
4∑

i=1

N(r,ui; h) +

2∑
j=1

N(r, v j; h) + S(r, h) (1.13)

≤ 3T(r, h) + S(r, h),

which is a contradiction.
Thus h is a constant function. But as 1 is a non-constant meromorphic function, so from (1.11), we have

(h5
− 1) ≡ 0 and (h3

− 1) ≡ 0.

Thus h ≡ 1, i.e., f ≡ 1. Hence the proof follows.

Similarly, as Theorem 1.1, here we also investigate the case: if multiple zeros of PY(z) are taken under
consideration, then “is PY(z) a SUPM?” and if so then “what about the degree of PY(z)?” The next theorem
includes all the answers of these questions.

Theorem 1.4. If P(z) = zn + azn−r + b, where a , 0, b , 0, r ≥ 2, gcd(n,n− r) = 1, then P(z) is a critically injective
SUPM (resp. SUPE) for n ≥ r + 5 (resp.r + 4).

Proof. [Proof] Clearly from the given polynomial P(z), we have P′ (z) = zn−r−1(nzr + (n − r)a). So zeros of
P′ (z) are 0 and ci for i = 0, 1, . . . , r − 1. Now we can write

ci = ωiα,

where ω is the r-th root of unity and αr = −
(n−r)a

n . Also

P(ci) = cn
i + acn−r

i + b = ωinαn + aωi(n−r)α(n−r) + b = ωi(n−r)(αn + aα(n−r)) + b.

As gcd(r,n − r) = gcd(n,n − r) = 1, so ωi(n−r) , ω j(n−r) for i , j, hence P(ci) , P(c j) for i , j. Also P(ci) , P(0).
Hence P(z) is critically injective.
Let f and 1 be two non-constant meromorphic functions such that P( f ) = κP(1) for κ ∈ C \ {0}. Thus in view
of Lemma 1.1, we get

T(r, f ) = T(r, 1) + O(1). (1.14)

Now we consider the following cases:
Case-1 Let κ , 1. Then from P( f ) = κP(1), we get

f n + a f (n−r) + b = κ(1n + a1(n−r) + b)

=⇒ f n + a f (n−r) = κ
(
1n + a1(n−r) + b

(
κ − 1
κ

))
. (1.15)

Since b , 0 and κ , 1, then b(κ−1
κ ) , 0. So we need to discuss the following subcases:

Subcase-1.1 If b(κ−1
κ ) = −βi for any i ∈ {0, 1, . . . , (r− 1)}, where βi = cn

i + ac(n−r)
i , ci are the zeros of f r +

(n−r)a
n

for i = 0, 1, . . . , (r − 1), then (1.15) becomes

f (n−r)( f r + a) = κ(1 − ci)2(1 − ζ1)...(1 − ζn−2), (1.16)

where ζ j’s are distinct and ζ j , ci for j = 1, 2, . . . ,n − 2 and i = 0, 1, . . . , (r − 1). Therefore from (1.16), we get

n−2∑
j=1

N(r, ζ j; 1) + N(r, ci; 1) = N(r, 0; f ) +

r∑
j=1

N(r, % j; f ),
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where % j’s are distinct zeros of f r + a for j = 1, 2, . . . , r . Now, using the second fundamental theorem and
(1.14), we get

(n − 2)T(r, 1) ≤

n−2∑
j=1

N(r, ζ j; 1) + N(r, ci; 1) + N(r,∞; 1) + S(r, 1) (1.17)

≤ (r + 2)T(r, f ) + S(r, 1),

which is a contradiction for n ≥ r + 5.
Subcase-1.2 If b(κ−1

κ ) , −βi for all i ∈ {0, 1, . . . , (r − 1)}, then from (1.15) we get

f (n−r)( f r + a) = κ(1 − γ1)(1 − γ2) . . . (1 − γn), (1.18)

where each γi are distinct for i = 1, 2, . . . ,n. Therefore from (1.18) we get

n∑
i=1

N(r, γi; 1) = N(r, 0; f ) +

r∑
j=1

N(r, % j; f ). (1.19)

Henceforth, using (1.19), (1.14) and the second fundamental theorem, we get

(n − 1)T(r, 1) ≤

n∑
i=1

N(r, γi; 1) + N(r,∞; 1) + +S(r, 1) (1.20)

≤ (r + 2)T(r, f ) + S(r, 1),

which is a contradiction for n ≥ r + 5.
If f and 1 are entire functions, then from (1.17) and (1.20), we get contradiction for n ≥ r + 4.
Case-2 If κ = 1, then P( f ) = P(1). Thus

f n + a f (n−r) + b ≡ 1n + a1(n−r) + b. (1.21)

Let f . 1. Then suppose h =
f
1
. Since a , 0, so from equation (1.21), we get

1r = −a
h(n−r)

− 1
hn − 1

. (1.22)

Now we consider two subcases:
Subcase-2.1 Let n − r = 1. Then we can write (1.22) as,

1n−1 = −a
1

(h − ξ1) . . . (h − ξn−1)
, (1.23)

where ξn
i = 1 and ξi , 1 for i = 1, 2, . . . ,n − 1. It is also clear from equation (1.23) that each ξi point of h is of

multiplicity atleast (n-1). Therefore from the second fundamental theorem, we have

(n − 3)T(r, h) ≤

n−1∑
i=1

N(r, ξi; h) + S(r, h) (1.24)

≤ (
n − 1
n − 1

)T(r, h) + S(r, h),

which is a contradiction for n ≥ 5.
Subcase-2.2 Let n − r ≥ 2. Then again we can write equation (1.22) as

1r = −a
(h − ν1) . . . (h − νn−r−1)

(h − ξ1)...(h − ξn−1)
,
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where νi and ξi are respectively (n− r)-th and n-th root of unity with νi , 1 and ξi , 1. Also νi , ξi for each
i as gcd(n,n − r) = 1. Also each ξi and νi point of h is of multiplicity atleast 2 because r ≥ 2. Thus using the
second fundamental theorem, we get

(n − 2)T(r, h) ≤

n−1∑
i=1

N(r, ξi; h) + N(r, νi; h) + S(r, h) (1.25)

≤ (
n − 1

2
)T(r, h) +

1
2

T(r, h) + S(r, h),

which is a contradiction for n ≥ 5.
But if f and 1 are entire functions, then

N(r, ξi; h) ≤ N(r, 1) = S(r, 1) = S(r, h).

Hence we get a contradiction from (1.24) and (1.25) for n ≥ 4. Therefore f ≡ 1. Hence the proof.

Remark 1.4. i) If gcd(n,n − r) , 1 in the above Theorem 1.4, then there exist many polynomials of the form
P(z) = zn + azn−r + b, where gcd(n,n− r) = d > 1, but P( f ) = P(σ f ), where σ is the non-real d’th root of unity.
Therefore P(z) is not a UPM at all. So gcd(n,n − r) = 1 is essential for P(z) to be a SUPM.

ii) If r = 1, then for any any non-constant meromorphic function h, we set

f = −a
hn−1

1 − hn , 1 = −ah
hn−1

1 − hn .

Then (
f
1

)n−1 (
f + a
1 + a

)
=

1
hn−1

hn−1
− hn

1 − h
= 1.

That is, P( f ) = P(1) holds for any b ∈ C but f = h1. Obviously P(z) is not a UPM. Therefore r ≥ 2 is also
essential for P(z) to be SUPM.

iii) Now it comes to ab , 0, which is sufficient for P(z) = zn + azn−r + b to be SUPM, so it is inevitable to ask what
will happen if ab = 0 ? If both a and b becomes zero, then it is obvious that P(z) is not a SUPM. If ab = 0 and
a + b , 0 then the following three theorem will tell us that ab , 0 is not only sufficient but also necessary for
P(z) to be SUPM.

If a = 0, then we have the following result:

Theorem 1.5. Suppose P(z) = zn + b, where b , 0. If for any two non-constant meromorphic functions f and 1 ,
P( f ) = κP(1) holds, then f = ω1, where ω is the n-th root of unity for n ≥ 4.

Proof. [Proof] In this case, ( f n + b) = κ(1n + b).
Assume κ , 1, then by putting f = 1h, we get

1n(hn
− κ) = b(κ − 1).

As 1 is non-constant meromorphic function and κ , 1, so h is a non-constant meromorphic function. It is
also clear that each ξ

′

i-pt of h (where (ξ
′

i)
n = κ) is a pole of 1 and hence ξ

′

i-pt of h is of multiplicity atleast n.
Thus applying the second fundamental theorem, we have

(n − 2)T(r, h) ≤

n∑
i=1

N(r, ξ
′

i ; h) + S(r, h)

≤ T(r, h) + S(r, h),

which is a contradiction as n ≥ 4.
Thus κ = 1, hence f = ω1, where ω is the n-th root of unity. Hence the proof.
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Next we assume that b = 0. To deal this case, we need to initiate the following definition:

Definition 1.7. If for a non-constant polynomial P(z) in C and for two non-constant meromorphic (resp. entire)
functions f and 1, P( f ) ≡ κP(1) implies f = 1 for any non-zero complex constant κ ∈ C\B, where B ⊂ C is some
finite set, then the polynomial P(z) in C is called a restricted strong uniqueness polynomial for meromorphic
(resp. entire) functions over B, where B = C \ B. We say P(z) is a RSUPMB (resp. RSUPEB) in brief.

If we take B = φ in the above definition, we get the usual definition of SUPM (resp. SUPE).

Theorem 1.6. Suppose P(z) = zn + azn−r, where gcd(n, r) = 1 and r ≥ 2. If a , 0, then P(z) is a RSUPM (resp.
RSUPE) of degree n ≥ 5 (resp. 4) over B, where B = {z | zr = 1 but z , 1}.

Proof. [Proof] Obviously P(z) is critically injective. Now suppose for any two non-constant meromorphic
functions f and 1 and a non-zero constant κ ∈ C \ B, P( f ) ≡ κP(1) holds. Then

( f n
− κ1n) ≡ −a( f n−r

− κ1n−r). (1.26)

Putting f = 1h we get

1r(hn
− κ) ≡ −a(hn−r

− κ). (1.27)

Then

T(r, h) = O(T(r, 1)) and S(r, h) = S(r, 1). (1.28)

Now we consider two cases:
Case-1 Assume f . 1. Then κ , 1, otherwise proceeding same as Case-2 of Theorem 1.4, we get f ≡ 1,

which is impossible. Also we have

1r(hn
− κ) ≡ −a(hn−r

− κ). (1.29)

Assume that h is a constant function. Then as 1 is non-constant meromorphic function, so we have

(hn
− κ) = 0 and (hn−r

− κ) = 0.

Thus hr = 1. But h , 1 as κ , 1, so h = ω, where ω(, 1) is the r-th root of unity. Hence κ ∈ B, which is again
a contradiction.
Thus h is a non-constant meromorphic function. Now we can write equation (1.29) as

1r
≡ −a

(h − ν′1)(h − ν′2)...(h − ν′n−r)

(h − ξ′1)(h − ξ′2)...(h − ξ′n)
, (1.30)

where ν j’s are the zeros of (hn−r
− κ) for i = 1, 2, . . . ,n − r and ξi’s are the zeros of (hn

− κ), for j = 1, 2, . . . ,n.
Here hn−r

−κ = 0 and hn
−κ = 0 has no common zero, otherwise, if α be a common zero, then αn = αn−r = κ,

i.e., αr = 1, which gives α = 1 or ωi for i = 1, 2, . . . , (r− 1) and hence κ = 1 or ωi for i = 1, 2, . . . , r− 1, which is
a contradiction.

Therefore applying the same technique as in Case-2 of Theorem 1.4 we get a contradiction for n ≥ 5 (resp.
n ≥ 4).

Case-2 Next we assume that f ≡ 1.
Hence the proof.

In view of Theorem 1.6, the natural inquisition would be to study the situation when the constant κ run over
the whole complex plane C.

In the following theorem, we can settle this problem.

Theorem 1.7. Suppose P(z) = zn + azn−r, where gcd(n, r) = 1 and r ≥ 2 and a , 0. If for any two non-constant
meromorphic (resp. entire) functions f and 1, P( f ) = κP(1) holds, then f = ω1, where ω is the r-th root of unity and
n ≥ 5 (resp. 4) is an integer.
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Proof. [Proof] In this theorem, we consider two cases:
Case-1 If κ ∈ B, then by Theorem 1.6, we get f ≡ 1.
Case-2 Let κ ∈ B, i.e., κ , 1 and κ = ωi (i = 1,2,. . . ,(r-1)), where ω(, 1) and ωr = 1.

Now as gcd(n,n − r) = 1, so gcd(n, r) = 1 and gcd(r,n − r) = 1. Thus there exist integers p, q, s, t such that
ns + rt = 1 and (n − r)p + rq = 1. Thus

ωi = (ωns+rt)i = [{ω}ns
{ωr
}
t]i = (ωsi)n,

and
ωi = (ω(n−r)p+rq)i = [{ω}(n−r)p

{ωr
}
q]i = (ωpi)(n−r).

Also,
ωpi = (ωi)p = ((ωsi)n)p = (ωpsi)n = (ωpsi)n−r(ωpsi)r = (ωpsi)(n−r) = ((ωpi)n−r)s = ωsi.

By the given condition, here we can also get equation (1.27), i.e.,

1r(hn
− κ) = −a(hn−r

− κ) (1.31)

Next we consider two subcases:
Subcase-2.1 Suppose that h is a constant function. Then as 1 is non-constant, so from (1.31), we have

(hn
− κ) = 0 and (hn−r

− κ) = 0.

Thus hr = 1. If h = 1, then κ = 1, which is contradiction. So h = ω, where ω (, 1) is the r-th root of unity.
Hence f = ω1.

Subcase-2.2 Assume that h is a non-constant meromorphic function.
In this case, equation (1.31) can be written as

1r = −a
hn−r
− ωi

hn − ωi

= −a
hn−r
− (ωpi)n−r

hn − (ωsi)n

= −a
hn−r
− (ωpi)n−r

hn − (ωpi)n

Hence

1r = −a

(h − ωpi)
n−r−1∏

j=1
(h − λ j)

(h − ωpi)
n−1∏
t=1

(h − µt)
, (1.32)

where λ j and µt are distinct zeros of hn−r
− ωi and hn

− ωi respectively. Also λ j , µt.
We omit rest of the proof of this theorem since same can be dealt as in the line of proof of Case-2 of

Theorem 1.4.
This completes the proof.

Now for all the above and existing results of SUPM (resp. SUPE), it is ineluctable to ask whether the strong
uniqueness polynomials can further be generalized with any linear transformation? Next two theorems
serve us the answer.

Theorem 1.8. Let P1 be a SUPM. Then P1oP2 is a SUPM if and only if P2 is a UPM.

Proof. [Proof] Let us assume that for any two non-constant meromorphic functions f and 1 and a non-zero
constant κ ∈ C, (P1oP2)( f ) = κ(P1oP2)(1). Then clearly f = 1 as P1 is a SUPM and P2 is a UPM.
Conversely, for any two non-constant meromorphic functions f and 1, suppose P2( f ) = P2(1). Then
(P1oP2)( f ) = (P1oP2)(1), which implies f = 1 as P1oP2 is a SUPM.
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Corollary 1.1. If P(z) is a SUPM (resp. SUPE), then P(az+b) is also SUPM (resp. SUPE) for any non-zero complex
constant a.

Proof. [Proof] As P2(z) = az + b is a UPM for any non-zero complex constant a and P(z) is a SUPM, then by
the above theorem we have PoP2 is a SUPM, i.e., P(az + b) is a SUPM.

After the vivid discussion of critically injective SUPM (resp. SUPE) for ITGP we are concluding the paper
with the following ineluctable question.

Question 1.2. Does there exist any critically injective SUPM of degree 5 having multiple zeros?
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