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Some Subclasses of Meromorphically Multivalent Functions
Associated with the Dziok-Srivastava Operator
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Abstract. We introduce two new subclasses H,x(A, A, B) and Q, x(A, A, B) of meromorphically multivalent
functions associated with the Dziok-Srivastava operator which is a special case of the Srivastava-Wright
operator. Distortion inequalities, partial sums and convolutional theorems for H, x(A, A, B) and Q,x(A, A, B)
are obtained.

1. Introduction

Let X, be the class of functions

f@=z7+) 02" (peN:=1(1,23,-)), (1.1)
n=p
which are analytic in the punctured open unit disk Uy = {z : 0 < |z| < 1}. For functions f and g analytic in
the open unit disk U = {z : |z| < 1}, we say that f is subordinate to g in U and write f < g, if there exists an
analytic function in U such that
lw(2)] < Iz

and  f(2) = gw(2) (z€ U).
Let

fild)=27+) a2 €x, (j=1,2).
n=p
Then the Hadamard product (or convolution) of f; and f; is defined by

(fir )2 =27+ ) an1auo2" = (fs * fi)(2).

n=p
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For complex parameters
ar, -, agand By, -0, B (B #EZy =1{0,-1,-2,---};j=1,---,5),
we now define the generalized hypergeometric function

qu(all'“ ,O(q,'ﬁ],"' /ﬁs;z)

as follows:

(@1)n - (ag)n 2"
gFs(ar, - ag B, -+, Bsi2) = ZA B)n-- (ﬁsqn

(g<s+1,9,se Ng=NU{0};ze l),

where (A1), is the Pochhammer symbol defined, in terms of the Gamma function, by

(A)V:=M={ ' (v=0;A € C\{0}),

T'(A) AA+1D)---(A+n-1), (veneN;AeC).

By convoluting the generalized hypergeometric function z77 -5 Fs(av, - -+, ay; 1, -+ , Bs; 2) with the function
f € &, Dziok and Srivastava [10] introduced the Dziok-Srivastava linear operator

Hp(alr' o /aq;ﬁll' o /,BS)

which is defined as follows:

Hp(all' o /aql‘ﬁll. o /ﬁs)f(z) = Z_p : F (al,’ o aq/‘ﬁlr‘ v ﬁs;z) *f(Z)
Z (a1)n - (D‘q na P,
(B (Bshn n!
For convenience, we write
Hp,q,s(al) = Hp(“lr s /aq;ﬁlr e ,,Bs)
and
(a1)n - (ag)n
nl (B (Bsn
It should be remarked in passing that the existing literature on Geometric Function Theory also contains
systematic investigations of various analytic function classes associated with a further generalization of the
Dziok-Srivastava operator, which is known as the Srivastava-Wright operator defined by using the Fox-
Wright generalized hypergeometric function (see, for details, [14] and [20]; see also [26] and the references

cited therein including [14] and [20]).
In the present paper, we assume that

[u(en) == (n € N).

N={1,23,---},ke N\{1},-1<B<0,B<A<], (1.2)
a;j>0(G=12,9andB;>0(j=1,---,s).
Lemma 1. Let % <A <1. Alsolet f € L, defined by (1.1) satisfy

p(A—B)'

Y[ = p(1 = D)5yl <

1-B (1.3)
n=p
Then
1 =M fx(z) = %szrl(leq,s(al)f(z))' < i :11;‘5 (zel), (1.4)
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where
19 j 27ti
fox(z) = % Z e]](pHp,q,s(al)f(eiz), & = exp (7) (1.5)
=0
and
0 (%£¢N),
Supk = k 1.6
v {1 ("2 e n). (0

Proof. In terms of (1.2) and (1.6), we see that
An—p(1 = A)oupr 2 p2A-1)20 (1.7)

forn>pand A > .
Let the inequality (1.3) hold. We deduce that

[(1= M2 fox(@) = 22 (Hp (@) f2) ] - 1
A=B[(1 = V2 fox(2) = 2241 (Hy g (a) f(2)) |

Z;o:p[/\n -p(1- A)én,p,k]rn((xl)anzn-'-p
p(A = B) + B YL [An = p(1 = A0y, i]T(r)a,z"*
< Z::ozp[/\n - P(l - A)én,p,k]rn(al)lanl
- P(A - B) +B Zzo:p[)\” - P(1 - A)én,p,k]rn(al)lun|
<1l (z=1).

Hence, by the maximum modulus theorem, we arrive at (1.4).
Definition 1. A function f € ¥, is said to be in the class H,x(A, A, B) if and only if it satisfies the coefficient
inequality (1.3).
It follows from Lemma 1 that, if f € H,x(A, A, B), then the subordination relation (1.4) holds.
Definition 2. A function f € I, is said to be in the class Q, (A, A, B) if and only if it satisfies

S 2(A- B
N n[An = p(1 = Ao pallae)land < %. (18)

n=p

From the Definitions 1 and 2 one can see that Q, x(A, A, B) C Hyx(A, A, B). For f € ¥, defined by (1.1), we

have -
2777 + m =z7+ Z Eanz”,
p = P
which implies that
€ Qui(A, A, B) if and only if 2277 + 2f p(z) € H,1(A,A,B). (1.9)

Many interesting classes of meromorphically multivalent functions were considered by earlier authors
(see, e.g., [1-27] and the references therein). Motivated essentially by some recent works of Srivastava et al.
[7, 20-26], the main object of the present paper is to derive some distortion inequalities of functions in the
classes Hp,k()\, A,B) and Qp,k(/\, A, B). In particular some results of partial sums and convolution of functions
in these classes are also given.
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2. Main Results

Our first theorem is given by the following.

Theorem 1. Let ) 14 A—oB
p +A -
- - <A<
p € N and 20 -B) <AL1

Suppose that the sequence {I';(a1)} (1 > p) is nondecreasing.
() If f € Hyx(A, A, B), then for z € Uy,

_ A-B B A—B
2|7 - s B)rp(a1)|z|r’ <If@)) < 207 + s B>r,,(a1)'z' (2.1)
(ii) If f € Qx(A, A, B), then for z € Uy,
-p-1 A-B -1 ’ —p-1 A-B -1
POH” —QA_Du_mHmﬂMp)SUWMSPOHP +aA—nu—mmmoMp)‘ 22)

The bounds in (2.1) and (2.2) are sharp.
Proof. From (1.2) one can see easily that 1 < 1;({‘ g)B <L Let L e N. Forn > p and % € N, we have
n=p+k(l-1)( €N),0upr = Oppx = 1,and so

(1 = B)An = pA = Voupillulr) _ (24 =D = B)p(a1)

p(A - B) - A-B 23)
Forn > p and % ¢ N, we have 6, px = 611,k = 0 and
(1 - B)[An = p(1 = A)bypjc]ln(1) S Alp +1)(1 - B)I'y(a1)
p(A - B) - p(A - B)
, @AC 1);1__; Tplar) 2.4)

for <A<
)If f(z) =z + ZZ"ZP a,z" € Hy(A, A, B), then it follows from (2.3) and (2.4) that

(2 - 1)(1 B)r (a1) v Z' <1

which yields (2.1).
() If f(z) =27 + fo:p anz" € Qpi(A, A, B), then (2.3) and (2.4) yield

@24 - 1)1 - B)T (1) &
asm st

This leads to (2.2).
Further, the bounds in (2.1) and (2.2) are best possible which can be seen from the function f defined by

A-B

JO = DA By

7" € Qui(A, A, B) C Hpi(A, A, B). (2.5)

Theorem 2. Let

2
P eNand - <1<1.
k p+1
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Suppose that the sequence {I';(a1)} (n > p) is nondecreasing.
() If f € Hyx(A, A, B), then for z € Uy,

A-B A-B

|27 — ————zF < |f(z)| < |zI" + A(L = B)Lp(an)

A(1 = B)T,(a) 2 26

(ii) If f € Qx(A, A, B), then for z € Uy,

- A-B _ , e A-B -
(G ey e R O =i | 7

The bounds in (2.6) and (2.7) are sharp.
Proof. Let % ¢ N. Forn > p and % ¢ N, we have 6,k = 6,1 = 0 and

(1= B)[An —p(1 = D)onpplln(1) Al = B)p()

p(A—B) =T A-B @8)

Tl,p,k 7 k > ( N)

P
and so for prS) <AL,

(1= B)[An = p(1 = A)dypilln(1) . 1-B)[Ap+1) —p1 - )I(a1) S A1 = B)[y(a1)
p(A—B) - p(A - B) - A-B ’

2.9)

@ If f(z) =27+ Z;,”:p a,2" € Hyx(A, A, B), then it follows from (2.8) and (2.9) that
A= B)Ty(a1) Brmg
Z ja <1,

which leads to (2.6).
() If f(z) =27 + fo:p anz" € Qpi(A, A, B), then (2.8) and (2.9) give

A = B)Ty(a1)
=P Z ml<1,

which yields (2.7).
Furthermore, the function f defined by

A-B
Al = B)p(ar)
shows that the bounds in (2.6) and (2.7) are best possible.

Next, we derive several results of the partial sums of functions in the classes H, (A, A, B)and Q, (A, A, B).
Let f € I, be given by (1.1) and define the partial sums s1(z) and s,,(z) by

f@)=z7+ 7" € Qux(A, A, B) C Hyi(A, A, B) (2.10)

p+m=2
s1(z) =z P and s,,(z) = z7F + Z a,z" (m e N\ {1}). (2.11)
n=p
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For simplicity we use the notation y, (n > p) as following;:

_ (1 - B)[/\I’l - P(l - A)én,p,k]rn(al)
= p(A - B)

, (2.12)

Theorem 3. Suppose that the sequence {I';(a1)} (n > p) is nondecreasing and I';(a1) > 1. Let f €
Hyx(A, A, B) and let

max{1+A_2B P }S/\Sl. (2.13)

20-B) 'p+1

Then for m € N, we have

@\ .
Re(sm (z)) >1 — (zel) (2.14)
and
Sm(z) Yp+m-1
Re( @ ) > T (zel). (2.15)

The bounds in (2.14) and (2.15) are sharp for each m.
Proof. For n > p, we have from (2.12) and (2.13) that

_ (1 = B)[An = p(1 = )by ]Tn(1) ,A=-BEA-1)

Vn "(A_B) > 1-B >1 (2.16)
and
(1-B)A-p(1-7N)]
Vsl = Vn + p(A—B)
>y, (2.17)

Let f € Hyx(A, A, B). Then it follows from (2.16) and (2.17) that

p+m=2 00 00
Y+ v Yl <) yalalalad <1 (me N\ (1)), (218)
n=p n=p+m-1 n=p
If we put
f@
p1(z) =1+ Ypima (m -1

forz € Uand m € N \ {1}, then p;(0) = 1 and we deduce from (2.18) that

Vp+m-1 Z;ozpﬂn—l a,z""?
2(1+ X057 0u2™P) + Vpemot Dot 2"
< Vp+m-1 Z:o:p+m—1 lax|
T 22X 00 ] = Vpemor Do laal

<1 (zel; meN\{1)).

p1(z) - 1’ _
p@z)+1

This implies that Re(pi(z)) > 0 for z € U, and so (2.14) holds for m € N \ {1}.
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Similarly, by setting

pa(z) = (1 + Vp+m—1)?_(zz)) = Vp+m-1,

it follows from (2.18) that

(1 + Vpem-1) Lt pim 2"
2 (1 + ZZ?;*Z anz”+P) (1= Vprmt) Lot A2
< (4 Ypem-1) Lolpim-r nl
T 22800 sl = Ppenat = 1) s laal

<1 (zelU; meN\({1}).

pa(z) — 1’
pa(z) +1

Hence we have (2.15) form € N \ {1}.
For m =1, replacing (2.18) by

o)

o0
Yo ) ol <) yalan <1
n=p n=p

and proceeding as the above, we see that (2.14) and (2.15) are also true.
Furthermore, taking the function f defined by

p+m—1

f)=z7+2 € Hyx(A, A, B),

p+m-1

we have s,,(z) = z77,

Re(f(z))—>1—

. o
(@) as z — exp

Yp+m-1 2p+m-—1

and

Re(sm(z)) - Vpem-1 as z — 1.
f(Z) 1+ Vp+m—l

The proof of the theorem is thus completed.
Corollary 1. Let the assumptions of Theorem 3 hold. Then, for z € U, we have

@A-1)(A-B)~(A-B) (2_7’ eN
2A-1)(1-B k ’

Re(Zf(2) >{ 0% Als) (2_P ¢N)
A(1-B) k ’

and

(2A-1)1-B) 2
e( 1 ) > | FBEaT) (277] eN),
- p

2f(z) ATHD) F¢N).
The results are sharp.

Replacing H, (A, A, B) by Qyx(A, A, B), it follows from Theorem 3 that the inequalities (2.14) and (2.15)
are true. In Theorem 4 below we improve the bounds in (2.14) and (2.15) for f € Q,x(A, A, B).

Theorem 4. Suppose that the sequence {I';(a1)} (n > p) is nondecreasing and I'y(a;) > 1. Let f €

Qpx(A, A, B) and let the condition (2.13) in Theorem 3 be satisfied. Then for m € N, we have

Re( f@ ) >1-1 P (zel) (2.19)

Sm(z) p +m— 1)7/p+m—1
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and

‘e (sm(z)) s _PAm e (2.20)

f@ ) p+p+m=1)ypma
The bounds in (2.19) and (2.20) are sharp for the function f defined by

pzp+m—1

+
p+m- 1)Vp+m—l

f@)=="

€ Qp,k(/\l A/ B)

Proof. By virtue of the assumptions of Theorem 4, it follows from (2.16) and (2.17) that

p+m=2 oo o
(p+m—=1)Ypima n
Yl L N <Y Dydad <1 meN\ ) (221)
n=p P n=p+m-1 n=p P
and
(o] (o) n
Vp Z la,| < Z —Vnlan] < 1. (2.22)
n=p n=p p
If we put
_ (P +m— 1)Vp+m—1 f(Z)
pz) =1+ el 1
and

p+m-— 1)7/P+m1) Sm(z) _ (p+m-— 1)Vp+m—1
f(2) P ’

then (2.21) and (2.22) lead to Re(p;(z)) > 0 (z € U; m € N; j = 1,2). Hence we have (2.19) and (2.20).
Sharpness can be verified easily.
Finally, we derive certain convolution properties of functions in the classes H,x(A, A, B) and Q, (A, A, B).
Theorem 5. Let f € H,x(A, A, B). Then

pa(z) = (1 + (

(Hpgs(a1)f #hs)(z) #0 (z€ Up; 0 €C, lo| =1), (2.23)
where )
___,  AM1+Bo) ' zF A(1 + Bo) ‘ zP* B 1-M)(1 + Bo)
hol@) =27+ To T T2 po(A—B) (1-2)p sA—B)
and
& (2en)
Gpk(@) =1 (%]

2p
1—2F (7 ¢ N) :
Proof. For f € H,x(A, A, B), from Lemma 1 we have (1.4), which is equivalent to

1+ Ao
1+ Bo

(1= A2 fyi(2) - %z”“(leqls(al)f(z))' # (zelU; 0€C, |ol=1, 1+ Bo #0),
or to

(1 +Bo)[(1 = A)fyi(z) - %z(Hp,q,s(al)f(z))’] —-(1+A0)z7#0 (zelUy ce€C, lol=1). (2.24)
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Obviously
2V =Hpqs()f(z) * 277 (2.25)

and

_M =Hp,;s(a1)f(z) * [Z_p - ;19 i nz”]

P =
»_ 7 zP*1 596
= p,q,s(al)f(z)*(z - 1_2—m)- (2.26)
If we put
Jok(z) = Hpgs(a1)f(2) * (27 + gpi(2)), (2.27)
then for 2% €N,
Gpp@) =Y Oy = ) 2 = — (2.28)
n=p 1=0 —z
and for 27” ¢ N,
= H[F[+1)-r
_ K[2]+)-p _ 2
Ipi(z) = ;Z (F 1) = T (2.29)
Now, making use of (2.24) to (2.29), we arrive at
H, 1+ Bo)|(1 - )" Py 3 2 1+A0)z "} #0
pas(@)f(z) * (1 + Bo) [(1 = A)zP + gpx(z)) + A{z7F — 15" m) —(1+Ao)z ", #
forz € Uy, 0 € C and |o| = 1. This gives the desired result (2.23).
Corollary 2. Let f € Q,x(A, A, B). Then
L @)
Hpqs(a1)f(z) #2277 + ¥ #0 (zely o0€C lol=1), (2.30)

where /1,(z) is the same as in Theorem 5.
Proof. From (1.10) and Theorem 5 we have

N z(Hpq,5(a1) f(2))

H,, (1) f(z) + (2277 + 2@ _ (- sho(2) 20 (z€ Uy 0 €C, lo] = 1).
pA P
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