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Complete Moment Convergence for Weighted Sums of Extended
Negatively Dependent Random Variables

Yang Ding?, Xufei Tang?, Xin Deng?, Xuejun Wang?

?School of Mathematical Sciences, Anhui University, Hefei, 230601, P.R. China

Abstract. In this paper, the complete moment convergence for the weighted sums of extended negatively
dependent (END, in short) random variables is investigated. Some general conditions to prove the com-
plete moment convergence are provided. The results obtained in the paper generalize and improve the
corresponding ones for some dependent sequences.

1. Introduction

The concept of complete convergence was introduced by Hsu and Robbins [8] as follows: A sequence
{Xy, n > 1} of random variables is said to converge completely to the constant 0 if

ZP(|Xn — 0> ¢) <o, foralle>0.

n=1

Hsu and Robbins [8] proved that the sequence of arithmetic means of i.i.d. random variables converges
completely to the expected value if the variance of the summands is finite. Erdcs [5] proved the converse.
The result of Hsu-Robbins-Erdos is a fundamental theorem in probability theory and has been generalized
and extended in several directions by many authors. One can refer to Spitzer [17], Baum and Katz [2], Gut
[7], Qiu et al. [12], Sung [20], and so forth.

Chow [4] introduced a more general concept of the complete convergence. Let {Z,, n > 1} be a sequence
of random variables and a, > 0, b, > 0,4 > 0. If

ZanE{bn_1|Zn| - 8}7F < oo for some or all e >0,

n=1

then the above result was called the complete moment convergence.
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Recently Wang et al. [21] obtained the following result on complete convergence for weighted sums of
extended negatively dependent (END, in short) random variables.

Theorem 1.1. Let {X,,,n > 1} be a sequence of identically distributed END random variables with EX; = 0 and
E|XilP < oo for somep > 1/aand 1/2 < a < 1. Let {a,;, 1 <1 < n,n > 1} be an array of real numbers satisfying

Z a1 = O(n) forsomeq>p. (1)

Z i X

i=1

> en"‘] <oo, Ye>0. (2)

Noting that complete moment convergence is more general than complete convergence, we aim to gen-
eralize the complete convergence for weighted sums of END random variables with identical distribution
to the case of complete moment convergence with non-identical distribution. Now let us recall the concept
of END random variables.

Definition 1.2. Random variables Y1,Y>, ... are said to be extended negatively dependent (END, in short) if there
exists a constant M > 0 such that, for each n > 2,

POY1 < Y1y Yo < ) < MHP(Y,- <)

i=1

and

P(Y1> Y1, Y5 > Yu) < MHP(Yi > Yi)
i=1

hold for every sequence {y1, ..., Y} of real numbers.

The concept of END random variables was introduced by Liu [10]. When M = 1, the notion of END
random variables reduces to the well-known notion of negatively orthant dependent (NOD, in short)
random variables, which was firstly introduced by Ghosh [6]; some properties and limit results can be
found in Alam and Saxena [1], Block et al. [3], Joag-Dev and Proschan [9], Wu and Zhu [23], Shen [15], and
so on. As is mentioned in Liu [10], the END structure is substantially more comprehensive than the NOD
structure in that it can reflect not only a negative dependence structure but also a positive one, to some extent.
Liu [10] pointed out that the END random variables can be taken as negatively or positively dependent
and provided some interesting examples to support this idea. Joag-Dev and Proschan [9] also pointed out
that negatively associated (NA, in short) random variables must be NOD and NOD is not necessarily NA,
thus NA random variables are END. A great number of articles for NA random variables have appeared in
the literature. But very few papers are written for END random variables. For example, for END random
variables with heavy tails Liu [10] obtained the precise large deviations and Liu [11] studied sufficient
and necessary conditions for moderate deviations, Shen [14] established some probability inequalities and
moment inequalities for END random variables, Qiu et al. [13] and Wu and Guan [22] studied complete
convergence for weighted sums and arrays of rowwise END random variables, and so on.

The following concept of stochastic domination will play an important role throughout the paper.

Definition 1.3. A sequence {X,,n > 1} of random variables is said to be stochastically dominated by a random
variable X if there exists a positive constant C such that

P(IX,| > x) < CP(IX| > x) )

forallx >0andn > 1.
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Our main results are as follows.

Theorem 1.4. Let p > 1/aand 1/2 < a < 1. Let {X,,,n > 1} be a sequence of mean zero END random variables,
which is stochastically dominated by a random variable X with E|XP < 0. Assume that {a,;,1 <i<n,n>1}isan

array of real numbers satisfying (1) for some q > max{p, ~= /2} Then

i nap—oz—2E {

n

Z i Xi

i=1

+
- en“} < oo, Ye>0. 4)
n=1

If further assume that E|X|F log"(1 + |X|) < oo, then

(o)
Z n%=%2E I max
1<k<n

n=1

k

Z ani X;
-1

+
- ena} < oo, Ye>0. (5)

Remark 1.5. Comparing Theorem 1.1 with Theorem 1.4, we have the following generalizations:
(i) Complete convergence in Theorem 1.1 is extended to complete moment convergence in Theorem 1.4;
(ii) The condition of identical distribution in Theorem 1.1 is weakened by stochastic domination in Theorem 1.4.

Remark 1.6. Theorem 1.4 only discusses the case p > + > 1. Actually, the case p = 1 is also very interesting and it
is still an open problem whether (2) holds for the partial sums of an END sequence when p = 1. However, if we add
some strong condition on moment, we can get the following result.

Theorem 1.7. Let {X,,,n > 1} be a sequence of mean zero END random variables, which is stochastically dominated

by a random variable X with E|X|log(1 + |X|) < oo. Assume that {a,;,1 < i < n,n > 1} is an array of real numbers
satisfying (1) for some q > 1. Then

n2E { Y

If further assume that E|X| log3(1 +1X]) < oo, then

.
,-—en} < o0, Ye>0. (6)

:Mg

k

n2E { max ZamXi
1<k<n =

Throughout the paper, let {X,,,n > 1} be a sequence of random variables defined on a fixed probability
space (Q,F,P). Let I(A) be the indicator function of the set A. The symbol C denotes generic positive
constants, whose value may vary from one place to another. Denote log x = In max({x, e}.

+
- en} < oo, Ye>0. (7)

:Mg

2. Proofs of the Main Results

To prove the main results of the paper, we need the following lemmas. The first one was obtained by
Liu [10].

Lemma 2.1. Let X1, Xy, ..., X, be END random variables. Assume that fi, fa, ..., fu are Borel functions all of which
are monotone increasing (or all are monotone decreasing). Then f1(X1), f2(X2), ..., fu(Xy) are END random variables.

The second one is a basic property for stochastic domination. For the proof, one can refer to Shen et al.
[16].
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Lemma 2.2. Assume that {X,,,n > 1} is an array of random variables stochastically dominated by a random variable
X. Then for all &« > 0 and b > 0, there exists positive constants Cy and C, such that

EIX,|*I(1X,, < b]) < C1 [EIX|*I(IX] £ b) + b*P(IX]| > b)]
and

8)
EIX,I(X,| > b) < GEIX|*I(X] > b).

)
Consequently, E|X,|* < CE|X]*.
Sung [19]

The third one is very important to prove complete moment convergence. For the proof, one can refer to

Lemma 2.3. Let {Y;, 1 <i <n}and {Z;,1 <i < n} be sequences of random variables. Then for any q > 1,¢ > 0 and
a>0,
Z(Yi +Zj)

: 1 1
E[ —sa] <(=+—)—
= el q
i=1

Y e R

The next one was obtained by Shen [14]

n

+E

and

n
>
i=1

)l

Lemma 2.4. For any r > 1, if {X,,,n > 1} is a sequence of END random variables with EX,, = 0 for every n > 1
then there exists is a positive constant C, depending only on r such that for alln > 1

n r n
E Z; Xi| < CrZ; EIXi"
i= i=

holds when 1 <r < 2 and

k

Xy

k

R

E

holds when r > 2.

By Lemma 2.4 and the same argument as that of Theorem 2.3.1 in Stout [18], the following lemma holds

Lemma 2.5. Forany r > 1, if {X,,,n > 1} is a sequence of END random variables with EX,, = 0 for every n > 1
then there exists is a positive constant C, depending only on r such that for alln > 1

Xi| | < C(logny Z EIXi|"

i=1

E | max
1<k<n

-

1

Il
—_

holds when 1 < r < 2 and

E | max

r/2
1<k<n

-

Xi| | < C(logn) ZE|X|r

1

I
—_

Z EIX:[2

i=1

holds when r > 2.
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Based on the above lemmas, we can present the proofs for the main results.

Proof. (Proof of Theorem 1.4) First, we will give the proof of (4). Without loss of generality, we assume a,; > 0
forall1 <i<mn,n > 1. Define

Y; = —nI(X; < —n%) + X;I(1Xi] < n®) + n®I(X; > n®)

and
Y, = (Xl‘ + n"‘)I(Xi < —n"‘) + (X,‘ - n”‘)I(X,- > n"‘).

By Lemma 2.1, it is easy to see that {Y;,1 <i < n} and {a,;Y;,1 < i < n} are END for each n > 1. Applying
Lemma 2.3 with a = n%, we can obtain that

I~ +
Z ap—a— ZE{ZaniXi _ Si’la}
n=1 i=1

n

< Zn“” a- 2{Cn «@-DE|Y a,:(Yi - EY))
n=1

i=1
We consider the following two cases.
(i) If g > 2, by (10), it is easy to see that

o +
Z nP-a-2F { - en“}
n=1
o . n q/2 ) n
CY n*r=120Y " ja,lTEIY; - EYilf + (Z |a,,i|2E|Y,-|2] + ) 2N Y|

q n

E Z a(Y/ - EY')

i=1

} (10)

n

Z i X

i=1

<
n=1 i=1 i=1 n=1 i=1
) n 00 n q/2 ) n
< CY a2y Tl + C )| nood? [Z |am|2E|Yi|2] + Ym0 Y Y|
n=1 i=1 n=1 i=1 n=1 i=1
= L +DL+I1s. (11)

For I;, we have by Lemma 2.2, (1) and E[XJ’ < co that

o] n
L= CY 2N g fE |-nt1(X; < —n®) + Xid(Xil < n®) + n®I(X; > n))t

n=1 i=1
(o) n

< CY Y oy (EIXPIOX] < 1) + nIP(Xi] > 1)
n=1 i=1
00 n

< €Y n12 Y jaylf (EIXIIIX] < n®) +nIP(IX] > n®)
n=1 i=1

< Y EXPI(X] < 1)+ C Y nTP(X] > 1)
n=1 n=1

= CY por-ar- 1Z}sp(m((m 1% < |X] < m®) + CZ ap- 1ZP(m“ <IX| < (m + 1)%)

n=1 m=1 m=n
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o0 (e8] n
C Z n=-1E|XPI0 < [X] < 1) + C Z pop-aq-1 Z EIXII((m — 1)* < |X] < m®)

n=1 n=1 m=2

+C Z nar-1 Z P(m® < |X| < (m +1)%)
n=1 m=n

I + I + L3.

It follows by g > p that ap — ag — 1 < =1, hence I;; < o0, and

m

In+l; < C Z EIXII((m — 1)* < |X] < m®) Z noP=ag-l 4 CZ P(m® < |X| < (m + 1)%) Z o1
n=m

m=2

A

m=1 n=1

C Y m¥=MEXPI((m = 1)* < |X| < m®) + C Y mPEI(m® <|X| < (m +1)")

<
m=2 m=1
< CEIXP < 0. (12)
For the second part of (11), if p > 2, we take g > ~— /12 that

o0 n q/2
o= C) nver? (Z |am|2E|Yi|2]

n=1 i=1

IA

o n q/2
C ) nevmar2 {Z o PEXPIIXi| < 1)+ n2*P(IX;] > n“»}

n=1 i=1

IA

o n q/2
Y norai {Z laniP(EIXPIOX] < n*) + EIXPI(X] > n“))}

n=1 i=1

C Z noP=a1-240/2 < oo (13)

n=1

IA

If1 <p<2,itfollowsby g >2thatap — 2+ g/2 — %5 < -1, hence

oo n q/2
C) nev-ea? [2 |am-|2E|Yi|2]
= i=1

L, =

n=1
00 n q/2

< C) nevea? {Z I PEIXPIOXi] < n) + n2*P(X,] > n“))}
n=1 i=1
0o n q/2

< CZ noP=ai-2 {Z la,iPn*@P(EIXPI(X]| < n®) + EIXFPI(X] > n"‘))}
n=1 i=1

oo n q/2
= C Z nap—aq—Z (Z |am|2na(2—p)E|X|p]
n=1 i=1

< CZ noP2+/2-% < oo, (14)

n=1
By C; inequality, we have

1/q

n 1/q
< [n”‘l Z Iam-lq] <Cn.
i=1
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For the third part of (11), by the definition of Y, we have

I3

IA

IA

<

<

o n
C Z nap—a—2 Z‘ |am|E|Yt/|
n=1 i=1
o n
Y nr2 Y EXAIX] > )
n=1 i=1

C Y n " EIXI(X] > n°)

n=1

C Z pnov-a-l Z EIX|I(m® < |X] < (m + 1)%)

n=1 m=n
) m
a a ap—a—1
CZ;E|X|I(m < IX] < (m+1) )Z;n
m= n=

C Y m P EIXUn® < |X| < (m+1)°)
m=1

CEIX|P < oo.

(if) If 1 < g <2, by (10), we have that

IN

IN

IN

<

The rest of the proof is similar to those of I; and I3, so we omit the details.

0o

Z nap—a—ZE {

n=1

n

Z i X

i=1

+
- en“}

n=1 i=1 n=1

n=1 n=1 n=1

n=1 n=1 n=1

C Z n=a-LE|IX11(X] < n%) + C Z n=*1E|X|1(X] > n®)

n=1 n=1

Iy + Is.

4347

(15)

o n (S n
CY =12 Y lal! (EIXIIIXI| < n®) +n*IP(Xi| > n) + ) n=2 Y layEIXIIXi| > n)
i=1

C Y n T XX < n®) + C Y n¥TPIXi| > 1) + Y n T EX(X] > n)

C Y n I EIXPI(X] < n®) + C Y @7 P(X] > n®) + Y n T EIXI(X] > 1)

(16)

According to (11)-(16), (4) holds. Next, we present the proof of (5). Similar to the proof of (4) and using
the second inequality of Lemma 2.3, we also get that

IA

=1

i=1

Z n*=92E ! max Z ani X;| — en”
— 1<k<n | 4=

Z nap—a—z Cn_“(q_l)E max Z uni(Yi - EYI) + E max
—~ 1<ks<n I<ksn

o k q o k
Z n%~%~2E max Z a,i(Yi— EY))| + Z n%~2E max
1<k<n |4 1<k<n |4
n=1 i=1 n=1 i=1

We consider the following two cases.

Z a,i(Yi = EY))

Z a,i(Yi = EY))

|
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.
- ena}
n n q/2
n =02 1oghnd Y anlTEIY;l" + [Z |am-|2E|Y1-|2]
i=1 i=1

n
= 2logn Y lalEIY]|

i=1

Case 1: if g > 2, then we have that

(o]
Z‘ n~2F I max
1<k<n

n=1

k

Z ani X;
1

i=

C

IA
+
D= 1D

=
Il
—_

n n

1

i=1 i=1

=
Il
—_

n
n=2logn Y lalEIY]|

i=1

11

=
[y

4348

0 q/2
12 loghn Y laul"EYil + C ) | n=42logn [Z |am|2E|Yl-|2]
n=1

= Ig+1;+Is. (17)
For Is, we have by Lemma 2.2, (1) and E|X’ log’(1 + |X]) < oo that
o] n
I, < CZ n=04-2 ool Z lail? (EIXTI0X] < n®) + n®P(Xi| > n))
n=1 i=1
< C Z n=11 Jogl nEX7I(|X] < n%) + C Z n " log! nP(|X| > n°)
n=1 n=1
o] n
= C Z n=04-1 oo Z EIXII((m — 1)* < |X] < m®)
n=1 m=1
+C 2 n"login Z P(m® < |X| < (m+1)%)
n=1 m=n
< C Z m= Jlog! mE|X|7I((m — 1)* < |X| < m®)
m=1
+C 2 m* log? mEI(m* < |X| < (m + 1)%)
m=1
< CEXPlog/(1+X]) < oo. (18)
For the second part of (17), if p > 2, we have by g > Iff—;/lz and Lemma 2.2 that
[ n
o= CY n i 2log (Y laPEIYiR)
n=1 i=1
o n /2
< CQ i logln {Z 0 PEIXPIOXI < 1) + 02 P(Xi| > n“))}
n=1 i=1
0 n q/2
< CZ n=a1-2 oo {Z i PEIXPIX] < n) + EIXPI(X] > n"‘))}
n=1 i=1
< CZ 240121000 1y < oo, (19)

B
I
—_
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If1 <p <2, itfollows by g > 2 thatap —2 + g/2 — %51 < —1, hence

(o] n
I, = C Z nP=a1-21ogl n(Z la.i*E|Y;?)7/?
i1

n=1

IA

oo n q/2
Y n e logln {Z o PEIXPIXi| < 1)+ n2*P(Xi| > n“))}

n=1 i=1

o0 n q/2
C)  nri2logln {Z P @ PEIXPIX] < n%) + EIXPI(X] > n“))}

<
n=1 i=1
00 n /2
= C) nri2logy [Z lauPn*CPEIXP
n=1 i=1
< CZ nop-2H/2=g log’n < co. (20)

n=1

For the third part of (17), by the definition of Y, we have

[eS) n
Is = CY n"2logn ) lalElY]]
n=1 i=1

o n
C Z n =2 logn Z lanl EIXGI(1Xi] > n)
n=1

i=1

IA

< C Z n=2" Jog nE|X|I(|1X] > n%)
n=1

< CEIXPPlog(l +|X]) < co. (21)

Case 2:if 1 < g < 2, we have that

n=1 i=1
[o5] n oo n
< C Z nP=09-2 ool Z i "ElY;17 + Z n*=2ogn Z lalEIY7]. (22)
n=1 i=1 n=1 i=1

The rest of the proof is similar to those of Is and Is, so we omit the details.
According to (17)-(22), (5) holds. The proof is completed. [

Proof. (Proof of Remark 1.6 (i)
The complete moment convergence implies complete convergence, which can be verified by the follow-
ing statement:
+
- sn“}

(o]
o > Yowrag
n
Zanixi
i1

n

Z ani X;

i=1

— Znap—a—Zf P[
n=1 0

n=1

> en® + x] dx
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Z ani X;

i=1
> Zen“] .

n
Z Ani Xi
The proof is completed. O

Proof. (Proof of Theorem 1.7) First, we give the proof of (6). Without loss of generality, we assume a,,; > 0 for
alll <i<n,n>1. Define

\Y
gk

BN

<

%

S
e i)
3
’U =
—

> en® + x] dx

[\
™
ek
=
<
L
5
—

Y; = —nl(X; < —n) + X;I(|1X;| < n) + nl(X; > n)

and
= (X; + mI(X; < —n) + (X; — m)I(X; > n).

Taking g = 2 and a = n in Lemma 2.3, we have by Lemma 2.2 and Lemma 2.4 that

—ZE{Zam ; n}+

n

2 n

L i

< n2{Ccn'E Z anu(Yi—EY)| +E Z a(Y/ - EY')
n=1 i=1 i=1
= cy n?® Z ani(Yi = EY) +Y n? Z ai(Y{ — EY))
n=1 i=1 n=1 i=1
< C Z n Z auPIEXPL0X] < ) +n?PXi| > m)] + ) 02 Y lawl EIXALOX;| > n)
n=1 n=1 i=1
< C Z n2EX?I(1X] < n) + CZ nLEIXII(X] > n) + CZ n! Z EIX|I(m < |X| < (m + 1))
n=1 n=1 n=1 m=n
= CZmZP((m—l) <|X| < m)Zn +CZE|X|I(m <X < (m+1) )Zn
n=1
< CZ mP((m —1) < |X| < m) + CZ ENX|I(m < |X| < (m + 1)) logm
m=1 m=1
< CE[X| + CE|X|log(1 + |X]) < oo,
which implies (6).

Next, we will prove (7). Taking g = 2 and a = n in Lemma 2.3, we have by Lemma 2.2 and Lemma 2.5

that
+
k

Y au(Yi - EY))
i=1

k

Z a5 X;
=}

(o]
Z 2E { max
= 1<k<n

n

2 k

Y @Y/ —EY))

i=1

(o]
< anz Cn'E max

1<k<n

+ E max
1<k<n

n=1
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ani(Yi — EY;)

k 2 k
=1

_ _3 o ' R
B C;n E{gka;; Zam(yt EY)) +;n E{?kas)fl

i=1

< CY nPlog?n ) IauPIEXIIX < m) +mP(Xi| > ]+ ) nlogn Y lawlEIXI(Xi| > n)
n=1 i=1 n=1 i=1
< C Z n2log? nEX2I(IX| < n) + C Z n~'log? nE|X|I(1X| > n) + Z n log nEIX|I(|X| > n)
n=1 n=1 n=1
< CZ n2 log2 n Z m*P((m - 1) < |X| < m) + CZ nt log2 n Z ElX|I(m < |X] < (m+1))
n=1 m=1 n=1 m=n
+ Z n'logn Z EIX|I(m < |X| < (m + 1))
n=1 m=n
< C Z mlog? mP((m —1) < |X| < m) + C Z E|X|log® mI(m < |X] < (m + 1))

m=1 m=1

+CZ ElX|log? mI(m < |X] < (m + 1))

m=1

< CEX|log’(1 +X]) < o0,

which implies (7). The proof is completed. [
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