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Abstract. Let R be a commutative ring with identity and X be a Tychonoff space. An ideal I of R is Von
Neumann regular (briefly, regular) if for every a ∈ I, there exists b ∈ R such that a = a2b. In the present
paper, we obtain the general form of a regular ideal in C(X) which is OA, for some closed subset A of βX,
for which Ac

∩X ⊆ (P(X))◦, where P(X) is the set of all P-points of X. We show that the ideals and subrings
such as CK(X), Cψ(X), C∞(X), SocmC(X) and MβX\X are regular if and only if they are equal to the socle of
C(X). We carry further the study of the maximal regular ideal, for instance, it is shown that for a vast class
of topological spaces (we call them OPD-spaces) the maximal regular ideal is OX\I(X), where I(X) is the set
of isolated points of X. Also, for this class, the socle of C(X) is the maximal regular ideal if and only if
I(X) contains no infinite closed set. We also show that C(X) contains an ideal which is both essential and
regular if and only if (P(X))◦ is dense in X. Finally it is shown that, for semiprimitive rings pure ideals are
of the form OA which A is a closed subset of Max(R), also a P-point of X = Max(R) is introduced and it is
shown that the maximal regular ideal of an arbitrary ring R is OX\P(X), which P(X) is the set of P-points of
X = Max(R).

1. Introduction and Preliminary Results

Throughout this paper, all rings R, are commutative with identity and all topological spaces are Ty-
chonoff. We denote by C(X) (resp., C?(X)) the ring of all real-valued (resp., bounded) continuous functions
on X. In this paper, we denote by βX the Stone-Cech compactification of X. For every f ∈ C(X), Z( f ) is the
set of zeros of f and Coz( f ) = X\Z( f ). For each ideal I in C(X), η(I) = ∩ f∈IZ( f ) and θ(I) = ∩ f∈IclβXZ( f ). For
every p ∈ βX, we set Op = { f ∈ C(X) : p ∈ intβXclβXZ( f )} and Mp = { f ∈ C(X) : p ∈ clβXZ( f )}. More generally
MA and OA, for A ⊆ βX are defined similarly. If A ⊆ X, we know that MA = MA = { f ∈ C(X) : A ⊆ Z( f )}
and OA = OA = { f ∈ C(X) : A ⊆ Z◦( f )}. An ideal I in C(X) is called fixed if η(I) , ∅, otherwise I is free. The
reader is referred to [23] and [37], for undefined terms and notations about the ring of continuous functions
and topology.

We denote the annihilator of a subset S of a ring R by Ann(S). By PS,MS and < S > (or SR) we mean
the intersection of minimal prime ideals containing S, maximal ideals containing S and the ideal generated
by S, respectively. Spec(R),Min(R),Max(R),Rad(R) and Jac(R) denote the set of all prime ideals, all minimal
prime ideals, all maximal ideals of R and their intersections, respectively. If I is an ideal of R, then the pure
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part of I is m(I) = {a ∈ R : I + Ann(a) = R}={a ∈ R : a = ai for some i ∈ I}. An ideal I is called pure if m(I) = I.
The socle of a ring is the sum of all minimal ideals of R. We denote the largest regular ideal of a ring (the
maximal regular ideal) by M(R). For more information about the maximal regular ideal, see [16] and [4]. A
non-zero ideal in a commutative ring is said to be essential if it intersects every non-zero ideal non-trivially.
A ring R is said to be reduced if it contains no non-zero idempotent or Rad(R) = (0). If Jac(R) = (0), then
we call R a semiprimitive ring. By a semiprime ideal we mean an ideal I that x2

∈ I implies x ∈ I. An ideal
I is said to be a P-ideal if every proper prime ideal in I is maximal in I, or equivalently, every prime ideal
which does not contain I is maximal in R, for instance see [8] and [34] .

In [8], it is shown that for a reduced ring these two concepts, regular and P-ideal, are equivalent.
Motivated by this, we consider regular ideals in reduced rings (specially in C(X)) with attention to this new
view. Although some papers which contains some facts about P-ideals (for instance [3], [8], [14], [34] and
[27]) helped us in this work, but it have to be mentioned that many of their results can be found in books
and papers about regular rings, because they have not noticed this equivalency. We avoid considering this
matter in this paper.

In Section 2, we study the regularity of some well-known ideals and subrings of C(X). First we obtain
the general form of the regular ideals of C(X). Then we observe that being an SVNL-ring has a close relation
with regularity in Gelfand rings. We also see that regularity of some of the ideals of C(X) is equivalent to
this fact that, they are the socle of C(X). The technique that we use in this section may help one to study the
regularity of other ideals and subrings of C(X).

As we said, in Section 2, we will see that the regularity of some ideals of C(X) make them to be CF(X),
hence naturally this question arises: in which class of spaces the socle of C(X) is the maximal regular ideal?
It is shown in [4, Corollary 5.5], that the maximal regular ideal is OX\P(X). In Section 3, by using this fact, we
answer to this question. We also present a prime representation of the maximal regular ideal in reduced
rings. Other questions such as when the maximal regular ideal is OX\I(X)and when it is MX\I(X), is answered
in this section. Section 4 is about studying the relation between essential ideals and regular ideals. We
observe when the regular ideals are not essential at all. What will happen when we have an ideal which is
both regular and essential in C(X). Finally, some facts about essential ideals is considered in Gelfand rings.
In the last section naturally, because of the close relation between Gelfand rings and C(X), we simulate
some of our results into Gelfand rings. We define some concepts of C(X) in an arbitrary ring and achieve
some results; for instance, we obtain a general form of regular ideals and pure ideals in Gelfand rings. Also
we obtain a representation for the maximal regular ideal.

For our purpose we need the following lemmas and propositions which are established and can be
found in [8, Theorem 3.3 and Theorem 3.5], [6], [4, Theorem 5.3] and [5, Theorem 2.4], respectively.

Lemma 1.1. Let R be a ring and Q ∈ Spec(R). If A = {P ∈ Min(R) : P ⊆ Q} and O(Q) = {a ∈ R : Ann(a) * Q},
then:

(a) m(Q) ⊆ O(Q) ⊆ ∩P∈AP;
(b) if Q is a pure ideal, then Q ∈Min(R).

Furthermore, if R is reduced, then:
(c) if Q ∈Max(R), then m(Q) = O(Q) = ∩p∈AP;
(d) if Q ∈Max(R), then Q is a pure ideal if and only if Q ∈Min(R).

Lemma 1.2. For a reduced ring an ideal I is a P-ideal if and only if it is a regular ideal.

Lemma 1.3. If f ∈ C(X), then < f > is a regular ideal if and only if Coz( f ) is a clopen (closed and open) P-space.

We know that there are many results about regular ideals in an arbitrary ring, for instance see [24]. Clearly
studying of regular ideals, with considering their new equivalent (P-ideal) in reduced rings, implies some
new facts about them in reduced rings. In the following we state some of these facts.

[24, Lemma 1.3], says that, if I is an ideal of R, then R is regular if and only if I and R/I are both regular,
this yields the following proposition.

Proposition 1.4. If one maximal ideal of R is regular, then R is regular.
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Proof. Let M be the regular maximal ideal of R, then R/M is a field, so it is regular, hence R is regular.

Recall that an ideal I of R is called sz◦-ideal (resp., z◦-ideal) if for every finite subset F ⊆ I (resp., a ∈ I),
PF ⊆ I (resp., Pa ⊆ I). Also an ideal I of R is called sz-ideal (resp., z-ideal) if for every finite subset F ⊆ I (resp.,
a ∈ I), MF ⊆ I (resp., Ma ⊆ I). For more information about these ideals for instance see [9]. In some papers
such as [31], sz◦-ideal (resp., z◦-ideal) are called ξ-ideal (resp., d-ideal). We need the following lemma to
say that a regular ideal in a semiprimitive ring is all the above ideals. The following lemma is proved for
a regular element in [8, Lemma 1.7], but one can easily see that it is also true for a finite set of regular
elements. We know that if F is a finite set of regular elements, then there exists a regular element a such
that < F >=< a >. Hence by using [9, Proposition 1.4], we have the following lemma.

Lemma 1.5. Let F be a finite subset of regular elements of a reduced ring R, then PF = Ann(Ann(F)) =< F >=<
a >= Pa.

Proposition 1.6. For a reduced ring R every regular ideal is an sz◦-ideal (hence z◦-ideal), furthermore if R is a
semiprimitive ring then a regular ideal is an sz-ideal (and so z-ideal).

Proof. By combining Lemma 1.5 and this fact that MF ⊆ PF, for a ring R that Rad(R) = Jac(R) and finite set F
(see [9, Proposition 2.9]), these results are clear.

In the next proposition we give new equivalent for regular rings when R is an arbitrary ring. Easily this
proposition follows from [24, Corollary 1.2] and [8, Proposition 3.7(a)].

Proposition 1.7. For a ring R, the following are equivalent:
(a) R is a regular ring;
(b) For every a ∈ R, aR is a semiprime ideal;
(c) For every a ∈ R, aR is a pure ideal.

Remark 1.8. It is easy to see that a minimal ideal in any ring is a P-ideal, and since the sum of P-ideals is
a P-ideal, the socle of any ring is a P-ideal. In special case when R is reduced, then minimal ideals of R
and the socle of R are regular ideals. Also if R is a semiprimitive ring (such as C(X)), then they are sz-ideal
(z-ideal). In [27], it is shown that the socle of C(X) is a z-ideal. This remark shows that the assertion is true
for all semiprimitive rings and in particular C(X).

We need the following lemma in this paper.

Lemma 1.9. If a regular ideal I contains a prime ideal, then it is minimal prime.

Proof. Since I is pure, I = m(I) ⊆ ∩P⊆I,P∈Min(R)P ⊆ I. Hence I is a minimal prime ideal.

2. Regularity of Some Ideals of C(X)

In this section, we study the regularity of some well-known ideals of C(X). First we introduce some
notations that we will use in this section. CK(X) and Cψ(X) denote, respectively, the ideals of C(X), consisting
of functions with compact support (Supp( f ) = Coz( f )) and pseudo-compact support. Also we know from
[23] that CK(X) = ∩{I : I is a free ideal of C(X)} = OβX\X. C∞(X) is the subring, consisting of functions
vanishing at infinity. CF(X), consists of functions with finite cozero-set which is equal to the socle of C(X),
see [27]. It is also shown in [36, Theorem 3.6] and [14, Lemma 2.4] that, the socle of C(X) is OβX\I(X) which is
the intersection of essential ideals. For a topological space X, a point p ∈ βX such that for every f ∈ C(X),
p ∈ clβXZ( f ) implies that p ∈ intβXclβXZ( f ) (or Op = Mp) is called a P-point. X is called a P-space if each of its
points is a P-point. We denote by P(X), the set of all P-points of X, also the set of P-points of βX, with respect
to X, is denoted by Pβ(X). An essentially P-space, is a topological space X that at most one point of X fails
to be a P-point. The set of isolated points of X is denoted by I(X). The space X is said to be pseudo-discrete
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if the interior of all compact sets are finite. In [4], it is shown that the maximal regular ideal of C(X) is of the
form OX\P(X) and also OβX\Pβ(X) .

We know that for any two subsets A and B of βX, if OA
⊆ OB, then clβXB ⊆ clβXA. In the following we

characterize the general form of the regular ideals in C(X). First we need the following proposition.

Remark 2.1. We know that Op =
⋂
{P : P ∈Min(R),P ⊆Mp

} = m(Mp), also by [19] we have, θ(OA) =
θ(MA) = clβXA. In addition, [26, Corollary 4.5] says that for an ideal I in C(X) we have, m(I) =

⋂
I⊆M m(M).

By using all these facts we have the following proposition.

Proposition 2.2. The following facts hold:
(a) For each ideal I in C(X), m(I) = Oθ(I) and if I is pure, then I = Oθ(I);
(b) If A ⊆ βX and OA is pure, then OA = OclβXA;
(c) If A ⊆ X and OA is pure, then OA = OclXA;
(d) If A ⊆ βX, then m(MA) = m(OA) = OclβXA.

Proof. (a) By Remark 2.1, when I is pure, then I = m(I) =
⋂

I⊆Mp m(Mp) =
⋂

p∈θ(I) Op = Oθ(I).
(b) If OA is pure, then by (a), OA = Oθ(OA) = OclβXA.
(c) We know that A ⊆ clXA ⊆ clβXA, hence OA = OclβXA

⊆ OclXA
⊆ OA, thus OclXA = OA.

(d) m(MA) = Oθ(MA) = OclβXA = Oθ(OA) = m(OA).

Compare part (a) with [2, Theorem 2.2], part (b) with [1, Theorem 3.2] and part (d) with [2, Theorem 2.3
and Theorem 2.6]. A useful corollary of the above proposition is as follows:

Corollary 2.3. Other forms of the maximal regular ideal are OX\(P(X))◦ and OβX\intβX(Pβ(X)).

Proof. Since regular ideals are pure, then by Proposition 2.2, OX\P(X) = OclX(X\P(X)) = OX\(P(X))◦ . The second
part has a similar proof.

Proposition 2.4. Let I be an ideal of C(X). Then:
(a) I is a regular ideal if and only if it is of the form OA in which A is a closed subset of βX such that Ac

∩X ⊆ (P(X))◦;
(b) I is a regular ideal if and only if it is of the form OA in which A is a closed subset of βX such that Ac

⊆ intβXPβ(X).

Proof. (a). Let I is a regular ideal, then by Proposition 2.2 and Corollary 2.3, I = Oθ(I)
⊆ OX\(P(X))◦ . Thus,

X\(P(X))◦ ⊆ clβX(X\(P(X))◦) ⊆ clβX(θ(I)) = θ(I). Hence, if we put A = θ(I), then we are done. Conversely, if
I = OA, for which Ac

∩ X ⊆ (P(X))◦, then X\(P(X))◦ ⊆ X\(Ac
∩ X) = X ∩ A ⊆ A, so OA

⊆ OX\(P(X))◦ and hence
OA is regular.

(b). This is similar to the part (a).

We recall that an SVNL-ring is a ring that if < S >= R, for some non-empty subset S ⊆ R, then at least
one element of S is regular, or equivalently, all maximal ideals of R except maybe one of them are pure. By
a Gelfand ring (or PM-ring) we mean a ring for which every prime ideal is contained in a unique maximal
ideal. As we mentioned before, when a maximal ideal of a ring is regular, then the whole ring is regular.
Naturally this question arises: what will happen if we have a prime regular ideal? We reply to this question
in Gelfand rings, and in special case C(X). In [5], it is stated that every SVNL-ring is a Gelfand ring, we will
see in the next theorem when the converse is true. For other facts about SVNL-rings and Gelfand rings see
[5] and [17]. We frequently use the following lemma in this paper, which is established in [18, Theorem 1.2].
We note that one can easily see that when R is reduced then OM which is defined in [18], coincides m(M).

Lemma 2.5. A reduced ring R is a Gelfand ring if and only if for each M ∈Max(R), m(M) is contained in the unique
maximal ideal M.

Theorem 2.6. Let R be a reduced ring. The following are equivalent:
(a) R is an SVNL-ring that is not a regular ring;
(b) R is a Gelfand ring and M(R) = O(M) (= m(M)) for some non-pure maximal ideal M in R;
(c) R is a non-regular Gelfand ring and contains a regular ideal which is contained in a unique maximal ideal M.
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Proof. From [4, Theorem 2.2] and Lemma 1.1, it is evident that (a) implies (b). Trivially by using Lemma 2.5,
(b) implies (c). To prove (c)⇒ (a), let I be the regular ideal contained in a unique maximal ideal M, then for
every M , N ∈Max(R), we have I * N. Hence N is maximal and minimal prime and therefore pure, thus R
is an SVNL-ring.

Corollary 2.7. From the above theorem we can say that if a reduced Gelfand ring contains a regular ideal which
contains a prime ideal (briefly by Lemma 1.9, if a reduced Gelfand ring contains a prime regular ideal), then it is
an SVNL-ring. Furthermore, in particular, for a topological space X, if Ox, for some x ∈ X is regular, then by
this theorem, X is an essentially P-space. But if x ∈ βX\X and Ox is regular, then since Ox is a free regular ideal,
then by [34], X is a P-space. Moreover if for two distinct points x, y ∈ X, Ox and Oy are regular, then their sum
C(X) = Ox + Oy is regular and therefore X is a P-space. But if C(X) contains a non-maximal prime regular ideal,
then the following corollary holds. For an example that satisfies the conditions of the next corollary see Example 3.7.

Corollary 2.8. For a topological space X, C(X) contains a non-maximal prime regular ideal if and only if X is an
essentially P-space and non-P-space and the non-P-point of X is an F-point.

Proof. Necessity. Trivially, X is an essentially P-space and non-P-space. Let x be the non-P-point of X. If P
is the mentioned prime regular ideal, then by Lemma 1.9, P is minimal prime and Ox ⊆ P. But the maximal
regular ideal is Ox. Hence, P = Ox and thus x is an F-point.

Sufficiency. If all points of X are P-points except for one point x, then Mx is the only non-pure maximal
ideal, so by [4, Theorem 2.2], M(C(X)) = mMx = Ox. This means that M(C(X)) is the required non-maximal
prime regular ideal.

In the sequel we study the regularity of some well-known ideals and subrings of C(X). The first one is
an improvement and generalization, in an easier way of [14, Proposition 2.5] and [3, Theorem 3.2, Corollary
3.3 and Corollary 3.4].

Proposition 2.9. If an ideal I ⊆ Cψ(X) is a regular ideal, then I ⊆ CF(X).

Proof. Suppose that f ∈ I, then < f > is regular and f ∈ Cψ(X). Therefore, by Lemma 1.3, Coz( f ) is a
pseudo-compact P-space. Hence, by [23, 4K], Coz( f ) is finite and so f ∈ CF(X).

Corollary 2.10. In the above proposition, if CF(X) ⊆ I ⊆ Cψ(X), then I is regular if and only if I = CF(X). For
instance CK(X) and Cψ(X) have this condition. Also by [30, Theorem 2.2], the intersection of all free maximal ideals (or
MβX\X) and the intersection of all maximal essential ideals (or Socm(C(X)) = MβX\I(X), see [22]), have this condition,
in fact we have CF(X) ⊆ CK(X) ⊆MβX\X

⊆ Cψ(X) and CF(X) ⊆ Socm(C(X)) ⊆MβX\X
⊆ Cψ(X). Therefore, each one

of these ideals is regular if and only if it is equal to CF(X).

A subset B of βX is called a round subset if OB = MB, also by a µ-compact space we mean a topological
space X for which MβX\X = OβX\X, see [30]. Since Socm(C(X)) is regular if and only if Socm(C(X)) = CF(X), we
can add the regularity of Socm(C(X)) as another equivalent to [12, Theorem 2.4]. In addition, by Corollary
2.10, [11, Theorem 4.5] and by this fact that CF(X) ⊆ OβX\X

⊆MβX\X, the following proposition is clear:

Proposition 2.11. For a topological space X the following are equivalent:
(a) MβX\X is a regular ideal;
(b) MβX\X = CF(X);
(c) X is psudo-discrete and µ-compact (or βX\X is a round subset).

Clearly, CF(X) ⊆ Socm(C(X)) ⊆MX\I(X) and for example if Socm(C(X)) , CF(X), then MX\I(X) is not regular
in general (whereas OX\I(X) is always regular, because OX\I(X)

⊆ OX\P(X)). By this fact and according to
Corollary 2.10, a natural question arises that: Can we conclude that MX\I(X) = CF(X) when MX\I(X) is
regular? By the following proposition when I(X) is infinite the answer is no, see example 3.7. Also, in the
following proposition we try to find an equivalent topological property for the regularity of MX\I(X).
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Proposition 2.12. Let X be a topological space that I(X) = Coz( f ), for some f ∈ C(X), then MX\I(X) is a regular ideal
if and only if I(X) is closed.

Proof. Since I(X) = Coz( f ), for some f ∈ MX\I(X) and this ideal is regular, it follows that I(X) is closed.
Conversely, if I(X) is closed, then all its subsets are closed and since f ∈MX\I(X) we have that Coz( f ) ⊆ I(X),
so Coz( f ) is also closed. Therefore, MX\I(X) is regular.

Proposition 2.13. The following statements are equivalent:
(a) C∞(X) is a regular ring;
(b) C∞(X) is a regular ideal;
(c) C∞(X) = CF(X);
(d) X is psudo-discrete and I(X) is finite.

Proof. By [7, Theorem 4.1], C∞(X) = CK(X), so (a)⇒ (b). If (b) holds, then by [15, Proposition 1.8], we must
have C∞(X) = CK(X). On the other hand by Corollary 2.10, regularity of CK(X) implies that CK(X) = CF(X).
(c)⇒ (a) is trivial and by [11, Theorem 4.5], (c)⇔ (d) is trivial.

Remark 2.14. First we note that we can add these equivalent to [7, Theorem 4.1], but we need a little
correction of that theorem. According to this proposition and since I(X) is finite, [14, Proposition 2.8 and
Corollary 2.9], are trivial. As another result of this proposition and by using the chains in Corollary 2.10 and
this fact from [25, Theorem 3.2] that MβX\X

⊆ C∞(X), one can easily see that if one of the above conditions
holds, then we have:

C∞(X) = CK(X) = Socm(C(X)) = MβX\X = CF(X).

3. On the Maximal Regular Ideal of a Reduced Ring via C(X)

By [16], the maximal regular ideal of a ring R is M(R) = {x ∈ R : xR is regular}. In [4, Theorem 1.3], it is
shown that, the maximal regular ideal is the intersection of the pure parts of those maximal ideals M of R,
that are not pure. Now according to Lemma 1.1, which says that, in a reduced ring an ideal M is maximal
and minimal prime if and only if M is pure, the following proposition can be extracted easily, which is a
prime representation of the maximal regular ideal in a reduced ring.

Proposition 3.1. In reduced rings the maximal regular ideal has the following representation in the form of the
intersection of prime ideals

M(R) =
⋂

P∈Min(R)\Max(R) P=
⋂

P∈Spec(R)\Max(R) P.

In [8], it is shown that the maximal P-ideal is of the above form. Hence we state the above facts to make
clear the relation between existing facts about the maximal regular ideal and the maximal P-ideal.

Clearly, CF(X) is a regular ideal and consequently the maximal regular ideal of C(X) must contain CF(X).
Naturally, it is important to know when the maximal regular ideal has its smallest form, on the other words,
when the maximal regular ideal is CF(X). The next concept helps us to answer this question. Also it helps
us to show when the maximal regular ideal is OX\I(X) and when is MX\I(X). For finding definitions and other
facts about the following topological concepts, the reader is referred to [20].

Definition 3.2. A topological space X is said to be an OPD-space if each open subset of P- points of X is
discrete.

Clearly, a topological space X is an OPD-space if and only if (P(X))◦ = I(X).
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Remark 3.3. A vast class of topological spaces are OPD-space. For instance we state some of them:
(1) Let X be a K-space, by [33, Proposition 4.1] and by the fact that every open subset of a K-space is

a K-space, we have that (P(X))◦ is a K-space and also a P-space, hence it is discrete and open, thus we
have (P(X))◦ = I(X). Therefore K-spaces and their subclasses such as compact spaces, first countable spaces,
locally compact spaces, metric spaces and sequential spaces are OPD-space, see [20, 3.3].

(2) The spaces for which P(X) is discrete are trivially OPD-space. For instance when P(X) is countable,
then by [23, 4K.1], P(X) is discrete.

(3) Another example of OPD-spaces are those spaces for which each point is a Gδ-set, in this case, because
of [23, 4L.1], we have P(X) = I(X) and therefore (P(X))◦ = I(X).

We mentioned before that OX\I(X) is a regular ideal. But it is shown in the next proposition when it is the
maximal regular ideal.

Proposition 3.4. OX\I(X) is the maximal regular ideal if and only if X is an OPD-space.

Proof. OX\I(X) is the maximal regular ideal if and only if OX\I(X) = OX\(P(X))◦ ; if and only if X\I(X) = X\(P(X))◦;
if and only if I(X) = (P(X))◦; if and only if X is an OPD-space.

Although if M(C(X)) = CF(X), then X has no infinite clopen discrete subspace, but for OPD-spaces the
converse is also true.

Theorem 3.5. Let X be an OPD-space, then the maximal regular ideal is the socle of C(X) if and only if I(X) contains
no infinite closed set.

Proof. Necessity. Let M(C(X)) = CF(X), then suppose on the contrary that I(X) contains a closed infinite set
A, then A = Coz( f ) and Coz( f ) is a clopen infinite P-space. Hence, by Lemma 1.3, f ∈M(C(X))\CF(X) which
is a contradiction.

Sufficiency. We show that M(C(X)) = CF(X). If f ∈ M(C(X)), then Coz( f ) is an open P-space, so
by hypothesis Coz( f ) ⊆ I(X). Hence, again by hypothesis and closedness of Coz( f ), it is finite and thus
f ∈ CF(X).

There exists another class of topological spaces which are not necessarily an OPD-space but for them
the maximal regular ideal is CF(X). As we show below for pseudo-compact spaces and their subclasses
such as sequentially compact spaces and countably compact spaces the maximal regular ideal is CF(X).

Proposition 3.6. If X is a pseudo-compact space, then CF(X) is the maximal regular ideal.

Proof. Clearly CF(X) is regular. Now, suppose that I is a regular ideal and f ∈ I. Hence, Coz( f ) is a clopen
P-space. But every clopen subset of a pseudo-compact space is pseudo-compact, so Coz( f ) is a pseudo-
compact P-space and hence it is finite, thus f ∈ CF(X). This implies that CF(X) is the maximal regular
ideal.

Finally we give an example that can be used for many parts of this paper.

Example 3.7. The topological space Σ in [23, 4M], is an example of an F-space and an essentially P-space (σ
is an F-point). The maximal regular ideal of Σ is OX\P(X) = Oσ, which is a prime regular ideal. In addition,
the space Σ is an example of a topological space X (that is even a normal space), for which CF(X) is not the
maximal regular ideal, because CF(X) cannot be a prime ideal, see [21, Proposition1.2]. Also this space is
an example of a topological space for which MX\I(X) = Mσ is not a regular ideal.
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4. Essential Ideals and Regular Ideals

In this section, we study essential ideals and look for their relation with regular ideals. First we give some
well-known facts and lemmas about essential ideals. Note that, by Coz(I) we mean ∪ f∈ICoz( f ). Trivially we
have that (η(I))c = Coz(I).

Lemma 4.1. For an ideal I in C(X), the following statements are equivalent ([10, Theorem 3.1]:
(a) An ideal I in C(X) is an essential ideal;
(b) (
⋂

Z[I])◦ = (η(I))◦ = ∅;
(c) Coz(I) is a dense subset of X.

Lemma 4.2. For a reduced ring R, I is essential if and only if Ann(I) = (0).

Lemma 4.3. For a semiprimitive ring R we have Ann(I) = ∩I*MM.

Remark 4.4. Since for any ring R, Jac(R)∩M(R) = (0), [16, Theorem 5], we conclude that if Jac(R) , (0), then
regular ideals are not essential at all. Hence, in studying the relation between regular ideals and essential
ideals in a ring R, without loss of generality, we can assume that Jac(R) = (0). There are many rings R for
which Jac(R) = (0) and have no regular essential ideal. For instance, we know that every finitely generated
regular ideal is principal. But if I =< a > is a principal regular ideal, then for some b, 0 , 1− ab ∈ Ann(I), so
Ann(I) , (0). Therefore principal regular ideals of a reduced ring, such as minimal ideals, are non-essential.
Furthermore, we can say that the rings for which every ideal is finitely generated (i.e., Noetherian rings),
have no regular essential ideal.

Now first we characterize those spaces for which there is an ideal in C(X) which is both regular and
essential. The following lemma is similar to [22, Lemma 2.9].

Lemma 4.5. Let A be a closed subset of X. Then the following are equivalent:
(a) The ideal OA is essential;
(b) The ideal MA is essential;
(c) A◦ = ∅.

Proof. Trivially (a)⇒ (b). Since η(MA) = η(OA) = A = A and by Lemma 4.1, (b)⇒ (c) and (c)⇒ (a).

Theorem 4.6. Let X be a topological space, then C(X) contains an ideal which is both regular and essential if and
only if (P(X))◦ is dense in X.

Proof. If C(X) contains an essential and regular ideal, then M(C(X)) is also essential. Therefore, to prove
this proposition we need to show that M(C(X)) is essential if and only if (P(X))◦ = X. By the previous
lemma and by Corollary 2.3, M(C(X)) = OX\(P(X))◦ is essential if and only if (X\(P(X))◦)◦ = ∅, by using easy
topological techniques the latter is equivalent to the density of (P(X))◦.

Remark 4.7. In OPD-spaces, since we have (P(X))◦ = I(X), by [11, Corollary 2.3] and [22, Proposition 2.10],
the following are equivalent:

(a) There is an ideal which is both essential and regular;
(b) The maximal regular ideal (or OX\I(X)) is essential;
(c) I(X) is dense in X;
(d) The socle of C(X) is an essential ideal;
(e) Socm(C(X)) is an essential ideal;
( f ) Every intersection of essential ideals is essential.

We now generalize some results about essential ideals in C(X) to Gelfand rings. Clearly, the results in
C(X) are an especial case of these results. First, we show that in a semiprimitive Gelfand ring essentiality of
each M0 ∈ Max(R) yields essentiality of m(M0). Then motivated by [10, Corollary 3.3], we show that in an
arbitrary semiprimitive Gelfand ring every ideal containing a prime ideal is an essential ideal or minimal
prime and maximal ideal. We next show that having no essential ideal in a reduced ring (not necessarily a
Gelfand ring) implies the regularity of the ring.
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Lemma 4.8. Let R be a semiprimitive Gelfand ring. If M0 ∈ Max(R), then M0 is an essential ideal if and only if
m(M0) is an essential ideal.

Proof. Suppose that M0 is essential. Since R is semiprimitive and by using Lemma 2.5 and Lemma 4.3,
we have Ann(m(M0)) =

⋂
m(M0)*M M =

⋂
M,M0

M, thus Ann(m(M0)) ∩ M0 =
⋂

M∈Max(R) M = (0), hence
Ann(m(M0)) = (0), so m(M0) is an essential ideal. The converse is trivial.

Lemma 4.9. If R is a reduced ring and I is an ideal containing a prime ideal of R, then I is essential or minimal prime.

Proof. Let I be a non-essential ideal, then by Lemma 4.2 Ann(I) , (0). Let I contains a minimal prime ideal,
say P. We show that I = P. Let 0 , x ∈ Ann(I), since R is reduced x < I, it follows that xI = (0) ⊆ P and x < P.
Therefore, I ⊆ P and this implies that I = P.

These lemmas imply the following facts. We note that Proposition 4.10 is an improvement of [32,
Corollary 5].

Proposition 4.10. Let R be a semiprimitive Gelfand ring, then each ideal containing a prime ideal, is an essential
ideal or a minimal prime and maximal ideal, hence a pure maximal ideal.

Proof. Let I be a non-essential ideal in R, we show that I is a maximal and minimal prime ideal. Suppose
that M is the unique maximal ideal containing I. Then by Lemma 4.8, M is also non-essential, hence by
Lemma 4.9 and by the fact that M is a non-essential ideal, it is a minimal prime ideal. This implies that I is
a minimal prime and maximal ideal.

Remark 4.11. As a corollary of Lemma 4.9, if a reduced ring R contains no essential ideal or equivalently
all the maximal ideals of R are non-essential, then all maximal ideals are also minimal prime; this implies
the regularity of the ring. An easy corollary of Lemma 4.8 is that, in C(X) as an especial case, Mx is essential
if and only if m(Mx) = Ox is essential. The following remark is also the topological form of Lemma 4.8 in
C(X).

Remark 4.12. Let X be a topological space, then by [10, Remark 3.2] whenever x ∈ X is a non-isolated
point, then Ox is an essential ideal. The converse is also true; because, Ox is an essential ideal if and only if
(∩Z[Ox])◦ = ({x})◦ = ∅; if and only if x is a non- isolated point; if and only if Mx is an essential ideal. Hence,
we can say that all prime ideals of C(X) are essential if and only if I(X) = ∅.

5. Regularity in Gelfand Rings

In this section the maximal spectrum of R (Max(R)) is topologized by Zariski topology; i.e., by assuming
as a base for closed sets:

h(a) = {M ∈Max(R) : a ∈M}.

Hence closed sets are of the form h(I) =
⋂

a∈I h(a) = {M ∈ Max(R) : I ⊆ M}, for some ideal I in R. We define
hc(a) = Max(R)\h(a). We recall that Max(R) is a T1 and compact topological space. We mentioned before that
for a reduced ring O(M) = {a ∈ R : Ann(a) * M} = m(M) =

⋂
P⊆M P. An easy calculation shows that when

Jac(R) = (0), then hc(I) ⊆ h(J) if and only if IJ = (0) and h(I) ⊆ hc(J) if and only if < I, J >= R. Let A ⊆Max(R),
we define the following ideals which are defined in [18] and [36] in a similar way:

OA = {a ∈ R : A ⊆ (h(a))◦} and MA = {a ∈ R : A ⊆ h(a)}.

One can easily observe that when Jac(R) = (0), then M ∈ (h(a))◦ if and only if a ∈ O(M). Hence, we have the
following facts:

OA = {a ∈ R : A ⊆ (h(a))◦} =
⋂

M∈A{a ∈ R : M ∈ (h(a))◦} =
⋂

M∈A O(M),
MA = {a ∈ R : A ⊆ h(a)} =

⋂
M∈A{a ∈ R : M ∈ h(a)} =

⋂
M∈A M.



A.R. Aliabad et al. / Filomat 31:12 (2017), 3715–3726 3724

Now, we are ready to transfer some of the results of this paper, which are about regular ideals and maximal
regular ideals, into Gelfand rings. We first need the following lemmas:

Lemma 5.1. A reduced ring R is a Gelfand ring if and only if for every ideal I we have h(m(I)) = h(I).

Proof. Necessity. We show that for a Gelfand ring, h(m(I)) = h(I). According to [26, Theorem 5.2], it
is enough to show that for every x, y ∈ R having < x > + < y >= R, there exists u, v ∈ R for which
< x > + < u >=< y > + < v >= R and uv = 0. Suppose that < x > + < y >= R, then there exist s, t ∈ R
such that xt + ys = 1. By [17, Theorem 4.1], there are a, b ∈ R such that (1 − axt)(1 − bys) = 0. Now, if we set
u = 1 − axt and v = 1 − bys, then uv = 0 and < x > + < u >=< y > + < v >= R.

Sufficiency. By Lemma 2.5, it is clear.

Lemma 5.2. For a Gelfand ring R, the set B = {h(a) : a ∈ R} form a neighborhood base for the topology of Max(R).

Proof. Let hc(I) be an open set in Max(R) and M0 ∈ hc(I), thus by the previous lemma M0 ∈ hc(m(I)).
Therefore, there exists a ∈ m(I) such that a < M0. Since a ∈ m(I), it follows that a = ai. If we set b = 1 − i,
then ab = 0, and so M0 ∈ hc(a) ⊆ h(b). On the other hand, clearly < I, b >= R, hence h(b) ⊆ hc(I). Therefore,
M0 ∈ hc(a) ⊆ h(b) ⊆ hc(I), this complete the proof.

Lemma 5.3. A closed set in Max(R) is an intersection of neighborhoods of the form h(a) if and only if {hc(a)}a∈R form
a neighborhood base for the topology of Max(R).

Proof. Necessity. Let M ∈ hc(I), thus M < h(I), hence there exists a ∈ R such that M < h(a) and h(I) ⊆ ((h(a))◦.
Therefore,

M ∈ hc(a) ⊆Max(R)\(h(a))◦ ⊆ h(I)⇒M ∈ hc(a) ⊆ hc(a) ⊆ h(I).

Sufficiency. Let h(I) be a closed set in Max(R) and M < h(I), thus M ∈ hc(I). Hence. there exists xM ∈ R
such that hc(xM) ⊆ hc(I) and hc(xM) is a neighborhood of M. i.e. there exists aM ∈ R such that:

M ∈ hc(aM) ⊆ hc(xM) so M < h(aM) and h(I) ⊆Max(R)\hc(xM) ⊆ h(aM).

Finally, it is clear that h(I) =
⋂

M<h(I) h(aM).

Proposition 5.4. For an arbitrary Gelfand ring R each closed set is an intersection of neighborhoods of the form h(a).

Proof. If U is an open set in Max(R) and M ∈ U, then by Lemma 5.2 there exist a, b ∈ R such that M ∈ hc(b) ⊆
h(a) ⊆ U, and so M ∈ hc(b) ⊆ hc(b) ⊆ h(a) ⊆ U. Hence, again by Lemma 5.3, we are done.

The following lemma has a similar statement for C(X).

Lemma 5.5. For a Gelfand ring OB
⊆ OA implies that A ⊆ B.

Proof. Let M < B, then by Proposition 5.4 there exists a ∈ R such that B ⊆ (h(a))◦ and M < h(a). Therefore,
a ∈ OB

⊆ OA, and hence A ⊆ (h(a))◦ ⊆ h(a). Consequently, A ⊆ h(a), M < h(a) and therefore M < A.

Proposition 5.6. Pure ideals of any semiprimitive ring are of the form OA which A is a closed set in Max(R).

Proof. For this purpose we show that for a semiprimitive ring m(I) = Oh(I). Suppose that a ∈ Oh(I), so we have
that h(I) ⊆ int(h(a)). Hence, there exists an ideal J of R such that h(I) ⊆ hc(J) ⊆ h(a). Therefore, < I, J >= R
and aJ = 0. Thus, there are j ∈ J and i ∈ I such that i + j = 1. Hence, a = ai and consequently a ∈ m(I).
Conversely, let a ∈ m(I), hence a = ai, for some i ∈ I. Now if we set x = 1 − i, then h(I) ⊆ hc(x) ⊆ h(a) and
hence a ∈ Oh(I).
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Example 5.7. This example shows that the semiprimitivity of R is necessary. Let R be a local ring, so it is
not semiprimitive. If the unique maximal ideal of R is M and if J ( M, then pick a ∈ M\J. Now h(a) = {M}
is a neighborhood of h(J) but a < m(J). Thus, a ∈ Oh(J)

\m(J), consequently m(J) , Oh(J).

By a P-point in Max(R) we mean M ∈Max(R) such that O(M) = M. As before we denote by P(X), the set
of all P-points of Max(R).

If we set X = Max(R), then the following theorem is exactly like [4, Corollary 5.5].

Theorem 5.8. The maximal regular ideal of an arbitrary ring is of the form OX\P(X).

Proof. By [AHAS06, Theorem 1.3], M(R) =
⋂

M,O(M) O(M) = OX\P(X).

We end the paper by finding a general form of regular ideals in semiprimitive Gelfand rings.

Theorem 5.9. Let R be a semiprimitive Gelfand ring, then I is regular in R if and only if I = OB, for some B such
that X\B ⊆ P(X), where X = Max(R).

Proof. Since I is regular, it is pure. Then by Proposition 5.6, there exists a closed subset B of X such that
I = OB. On the other hand OX\P(X) is the greatest maximal ideal and so OB

⊆ OX\P(X). Therefore, by Lemma
5.5 we have

X\P(X) ⊆ X\P(X) ⊆ B = B.

The converse is trivial.
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