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Available at: http://www.pmf.ni.ac.rs/filomat

Common Fixed Point Results for Four Mappings
on Ordered Vector Metric Spaces

Hamidreza Rahimia, Mujahid Abbasb, Ghasem Soleimani Rada,c

aDepartment of Mathematics, Faculty of Science, Central Tehran Branch, Islamic Azad University, P.O. Box 13185/768, Tehran, Iran
bDepartment of Mathematics and Applied Mathematics, University of Pretoria, Hatfield, Pretoria, South Africa

cYoung Researchers and Elite club, Central Tehran Branch, Islamic Azad University, Tehran, Iran

Abstract. A vector metric space is a generalization of a metric space, where the metric is Riesz space
valued. We prove some common fixed point theorems for four mappings in ordered vector metric spaces.
Obtained results extend and generalize well-known comparable results in the literature.

1. Introduction and Preliminaries

Consistent with Altun and Cevik [6, 11], the following definitions and results will be needed in the
sequel.

A relation ≤ on E is called: (i) reflexive if x ≤ x for all x ∈ E (ii) transitive if x ≤ y and y ≤ z imply x ≤ z
(iii) antisymmetric if x ≤ y and y ≤ x imply x = y (iv) preorder if it is reflexive and transitive. (v) translation
invariant if x ≤ y implies (x + z) ≤ (y + z) for any z ∈ E (vi) scale invariant if x ≤ y implies (λx) ≤ (λy) for any
λ > 0. A preorder ≤ is called partial order or an order relation if it is antisymmetric.

Given a partially ordered set (E,≤), that is, the set E equipped with a partial order ≤, the notation x < y
stands for x ≤ y and x , y. An order interval [x, y] in E is the set {z ∈ E : x ≤ z ≤ y}.

A real linear space E equipped with an order relation ≤ on E which is compatible with the algebraic
structure of E is called an ordered linear space or ordered vector space. The ordered vector space (E,≤) is
called a vector lattice (or a Riesz space or linear lattice) if for every x,y ∈ E, there exist x ∧ y = inf{x,y} and
x∨ y = sup{x,y}. If we denote x+ = 0∨ x, x− = 0∨ (−x) and |x| = x∨ (−x), then x = x+

− x− and |x| = x+ + x−.
The cone {x ∈ E : x ≥ 0} of nonnegative elements in a Riesz space E is denoted by E+. A sequence of vectors
{xn} in E is said to decrease to an element x ∈ E if xn+1 ≤ xn for every n inN and x = inf{xn : n ∈N} = ∧n∈Nxn.
We denote it by xn ↓ x. A sequence of vectors {xn} in E is said to increase to an element x ∈ E if xn ≤ xn+1
for every n inN and x = sup{xn : n ∈ N} = ∨n∈Nxn. We denote it by xn ↑ x. E is said to be Archimedean if
1
n a ↓ 0 holds for every a ∈ E+. A sequence (bn) is said to be order convergent or o-convergent to b if there is
a sequence (an) in E satisfying an ↓ 0 and |bn − b| ≤ an for all n. We denote this by bn →o b. Moreover, (bn) is
said to be o−Cauchy if there exists a sequence (an) in E such that an ↓ 0 and |bn − bn+p| ≤ an holds for all n
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and p. E is said to be o− Cauchy complete if every o−Cauchy sequence is o−convergent. For notations and
other facts regarding Riesz spaces we refer to [5].

We begin with some important definitions.

Definition 1.1. (See [6, 11]). Let X be a nonempty set and E a Riesz space. A mapping d : X × X→ E is said to be
a vector metric or E-metric if it satisfies the following conditions:
(E1) d(x, y) = 0 if and only if x = y;
(E2) d(x, y) ≤ d(x, z) + d(y, z);
for all x, y, z ∈ X. We call (X, d,E) a vector metric space.

For arbitrary elements x, y, z and w of a vector metric space, the following holds true:

(Em1) 0 ≤ d(x, y);
(Em2) d(x, y) = d(y, x);
(Em3) |d(x, z) − d(y, z)| ≤ d(x, y);
(Em4) |d(x, z) − d(y,w)| ≤ d(x, y) + d(z,w).

Example 1.2. (See [6, 11]). A Riesz space E is a vector metric space with d : E× E→ E defined by d(x, y) = |x− y|.
This vector metric is called to be absolute valued metric on E.

Definition 1.3. (See [6, 11]).
(i) A sequence (xn) in a vector metric space (X, d,E) vectorial converges or E-converges to some x ∈ E (we write
xn →

d,E x), if there is a sequence (an) in E satisfying an ↓ 0 and d(xn, x) ≤ an for all n;
(ii) A sequence (xn) is called E-Cauchy sequence if there exists a sequence (an) in E such that an ↓ 0 and d(xn, xn+p) ≤ an
holds for all n and p;
(iii) A vector metric space X is called E-complete if each E-Cauchy sequence in X E-converges to a limit in X.

Lemma 1.4. (See [6, 11]). We have following properties in vector metric space X:
(a) The limit x is unique;
(b) Every subsequence of (xn) E-converges to x;
(c) If xn →

d,E x and yn →
d,E y, then d(xn, yn)→o d(x, y).

Lemma 1.5. (See [6]). If E is a Riesz space and a ≤ ka where a ∈ E+ and k ∈ [0, 1), then a = 0.

Remark 1.6. (See [6, 11]).
(i) The difference between vector metric and Zabrejko’s metric defined in [38] is that the Riesz space has also a lattice
structure;
(ii) One of the differences between vector metric and Huang-Zhang’s metric given in [17] is that there exists a cone
due to the natural existence of ordering on Riesz space. The other difference is that vector metric omits the requirement
for the vector space to be a Banach space;
(iii) Set E = R, the concepts of vectorial convergence and convergence in metric coincide. If X = E and d is absolute
valued vector metric, then vectorial convergence and convergence in order are same. In the case set E = R, the
concepts of E-Cauchy sequence and Cauchy sequence are the same.

For more details on fixed point theorems in cone metric spaces, we refer to [17, 19, 30, 32, 34] and
references contained therein.

Definition 1.7. (See [24]). Let f , 1 : X → X be mappings of a set X. If f w = 1w = z for some z ∈ X, then w is
called a coincidence point of f and 1, and z is called a point of coincidence of f and 1.

Sessa [36] defined the concept of weakly commuting to obtain common fixed point for a pairs of
maps. Jungck generalized the idea of commuting mappings, first to compatible mappings [22] and then
to weakly compatible mappings [23]. There are examples that show that each of these generalizations of
commutativity is a proper extension of the previous definition.
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Definition 1.8. (See [24]). Let f , 1 : X→ X be mappings of a set X. Then f and 1 are said to be weakly compatible
if they commute at every coincidence point.

Lemma 1.9. (See [2]). Let f and 1 be weakly compatible self-maps of a set X. If f and 1 have a unique point of
coincidence z = f w = 1w, then z is the unique common fixed point of f and 1.

The study of unique common fixed points of mappings satisfying strict contractive conditions has been
at the center of vigorous research activity. For work in this direction, we refer to [2, 4, 8, 14, 24, 30, 31] and
references contained therein.

Existence of fixed points in ordered metric spaces has been introduced and applied by Ran and Reurings
[33]. Recently, many researchers have obtained fixed point and common fixed point results in partially
ordered metric space (see, e.g., [3], [9], [13], [16], [25], [28] and [35]). The aim of this paper is to initiate
study of common fixed point of four mappings in the frame work of ordered vector metric spaces.

2. Main Results

Let X be any nonempty set and f , 1,S,T : X→ X four mappings such that f (X) ⊆ T(X), 1(X) ⊆ S(X).
Let x0 be an arbitrary point of X. Choose x1 ∈ X such that f x0 = Tx1, x2 ∈ X such that 1x1 = Sx2. This

can be done as f (X) ⊆ T(X) and 1(X) ⊆ S(X).
Continuing this way, construct a sequence {yn} defined by: y2n−1 = Tx2n−1 = f x2n−2, and y2n = Sx2n =

1x2n−1, for all n ≥ 0. The sequence {yn} in X is said to be a Jungck type iterative sequence with initial guess
x0.

Definition 2.1. (See [3]). Let (X,�) be a partially ordered set. A pair
(

f , 1
)

of self-maps of X is said to be weakly
increasing if f x � 1 f x and 1x � f1x for all x ∈ X.

Now we give a definition of partially weakly increasing pair of mappings.

Definition 2.2. Let (X,�) be a partially ordered set and f and 1 be two self-maps on X. An ordered pair ( f , 1) is said
to be partially weakly increasing if f x � 1 f x for all x ∈ X.

Note that a pair ( f , 1) is weakly increasing if and only if ordered pair ( f , 1) and (1, f ) are partially weakly
increasing.

For an example of an ordered pair ( f , 1) of self-maps f and 1 which is partially weakly increasing but
not weakly increasing, we refer to [3].

Definition 2.3. Let (X,�) be a partially ordered set. A mapping f is called a weak annihilator of 1 if f1x � x for all
x ∈ X.

Example 2.4. Let X = [0, 1] be endowed with usual ordering and f , 1 : X → X be defined by f x = x2, 1x = x3.
Obviously, f1x = x6

≤ x for all x ∈ X. Thus f is a weak annihilator of 1.

Definition 2.5. Let (X,�) be a partially ordered set. A mapping f is called dominating if x � f x for each x in X.

Example 2.6. Let X = [0, 1] be endowed with usual ordering and f : X → X be defined by f x = x
1
3 . Since

x ≤ x
1
3 = f x for all x ∈ X. Therefore f is a dominating map.

Example 2.7. Let X = [0,∞) be endowed with usual ordering and f : X → X be defined by f x = n
√

x for x ∈ [0, 1)
and f x = xn for x ∈ [1,∞), for any n ∈N. Clearly, for every x in X we have x ≤ f x.

Note that it is not hard to find four mappings to satisfy all of above definitions (see [1, 12, 29, 37]).
The following theorem is ordered vector metric version of Theorem 2.1 of [21] and Theorem 2.2 of [4].
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Theorem 2.8. Let (X,�) be a partially ordered set such that there exists a E-metric on X with E be an Archimedean.
Let f , 1, S and T be self maps on X, (T, f ) and (S, 1) partially weakly increasing with f (X) ⊆ T(X) and 1(X) ⊆ S(X),
dominating maps f and 1 are weak annihilators of T and S, respectively. Suppose the mappings f , 1,S,T : X → X
satisfy the following condition:

d( f x, 1y) ≤ kux,y( f , 1,S,T) (1)

for all comparable elements x, y ∈ X, where k ∈ [0, 1) is a constant and

ux,y( f , 1,S,T) ∈
{
d(Sx,Ty), d( f x,Sx), d(1y,Ty),

1
2

[d( f x,Ty) + d(1y,Sx)]
}
.

If for a nondecreasing sequence {xn} with xn � yn for all n and yn →
d,E u implies that xn � u and the pairs { f ,S} and

{1,T} are weakly compatible, then f , 1, S and T have a common fixed point provided that one of f (X), 1(X), S(X), or
T(X) is a E-complete subspace of X. Moreover, the set of common fixed points of f , 1, S and T is well ordered if and
only if f , 1, S and T have one and only one common fixed point.

Proof. Suppose x0 is an arbitrary point of X. Construct Jungck type iterative sequence {yn} in X with initial
guess x0. This can be done because f (X) ⊆ T(X), and 1(X) ⊆ S(X). By given assumptions x2n−2 � f x2n−2 =
Tx2n−1 � f Tx2n−1 � x2n−1, and x2n−1 � 1x2n−1 = Sx2n � 1Sx2n � x2n. Thus, for all n we have xn � xn+1. We first
show that

d(y2n+1, y2n+2) ≤ kd(y2n, y2n+1) (2)

for all n. From (1), we have

d(y2n+1, y2n+2) = d( f x2n, 1x2n+1) ≤ kux2n,x2n+1 ( f , 1,S,T)

for n = 1, 2, · · · , where

ux2n,x2n+1 ( f , 1,S,T) ∈
{
d(y2n, y2n+1), d(y2n+1, y2n+2),

d(y2n, y2n+1) + d(y2n+1, y2n+2)
2

}
.

If ux2n,x2n+1 ( f , 1,S,T) = d(y2n, y2n+1), then clearly (2) holds. If ux2n,x2n+1 ( f , 1,S,T) = d(y2n+1, y2n+2), then according
to Lemma 1.5, d(y2n+1, y2n+2) = 0 and clearly (2) holds. Finally, suppose that

ux2n,x2n+1 ( f , 1,S,T) =
d(y2n, y2n+1) + d(y2n+1, y2n+2)

2
.

Then

d(y2n+1, y2n+2) ≤
k
2

d(y2n, y2n+1) +
1
2

d(y2n+1, y2n+2)

holds. Similarly, we have

d(y2n+2, y2n+3) ≤ kd(y2n+1, y2n+2). (3)

Therefore, from (2) and (3), we get

d(yn, yn+1) ≤ knd(y0, y1).

Now, for all n and p, we have

d(yn, yn+p) ≤ d(yn, yn+1) + d(yn+1, yn+2) + · · · + d(yn+p−1, yn+p)

≤ (kn + kn+1 + · · · + kn+p−1)d(y0, y1)

≤
kn

1 − k
d(y0, y1).
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Since E is Archimedean then {yn} is an E-Cauchy sequence. Suppose that S(X) is complete. Then there
exists a v in S(X), such that Sx2n = y2n →

d,E v. Hence there exists a sequence {an} in E such that an ↓ 0 and
d(Sx2n, v) ≤ an. On the other hand, we can find a w in X such that Sw = v. Now, we show that f w = v.
Since x2n+1 � 1x2n+1 and 1x2n+1 →

d,E v implies that x2n+1 � v and v � 1v = 1Sw � w implies that x2n+1 � w.
Consider

d( f w, v) ≤ d( f w, 1x2n+1) + d(1x2n+1, v) ≤ kuw,x2n+1 ( f , 1,S,T) + an+1,

where

uw,x2n+1 ( f , 1,S,T) ∈
{
d(Sw,Tx2n+1), d( f w,Sw), d(1x2n+1,Tx2n+1),

d( f w,Tx2n+1) + d(1x2n+1,Sw)
2

}
for all n. There are four possibilities.

Case 1.

d( f w, v) ≤ d(Sw,Tx2n+1) + an+1 ≤ an+1 + an+1 ≤ 2an.

Case 2.

d( f w, v) ≤ kd( f w,Sw) + an+1 ≤ kd( f w, v) + an.

Thus d( f w, v) ≤ 1
1−k an.

Case 3.

d( f w, v) ≤ d(1x2n+1,Tx2n+1) + an+1 ≤ 2an+1 + an+1 ≤ 3an.

Case 4.

d( f w, v) ≤
d( f w,Tx2n+1) + d(1x2n+1,Sw)

2
+ an+1

≤
1
2

d( f w, v) + 2an.

Thus d( f w, v) ≤ 4an.
Since the infimum of sequences on the right side of last inequality are zero, then d( f w, v) = 0, that is, f w = v.
Therefore, f w = Sw = v.
Since v ∈ f (X) ⊆ T(X), there exists a z ∈ X such that Tz = v. Now, we show that 1z = v. As x2n � f x2n and
f x2n →

d,E v implies that x2n � v and v � f v = f Tz � z implies that x2n � z. Consider

d(v, 1z) ≤ d(v, f x2n) + d( f x2n, 1z) ≤ an + kux2n,z( f , 1,S,T),

where

ux2n,z( f , 1,S,T) ∈
{
d(Sx2n,Tz), d( f x2n,Sx2n), d(1z,Tz),

d( f x2n,Tz) + d(1z,Sx2n)
2

}
for all n. There are four possibilities.

Case 1.

d(v, 1z) ≤ an + d(Sx2n,Tz) ≤ an + an+1 ≤ 2an.

Case 2.

d(v, 1z) ≤ an + d( f x2n,Sx2n) ≤ an + 2an ≤ 3an.
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Case 3.

d(v, 1z) ≤ an + kd(1z,Tz) ≤ an + kd(1z, v).

Thus d(v, 1z) ≤ 1
1−k an.

Case 4.

d(v, 1z) ≤ an +
d( f x2n,Tz) + d(1z,Sx2n)

2

≤ 2an +
1
2

d(v, 1z).

Thus d(v, 1z) ≤ 4an.
Since the infimum of sequences on the right side of last inequality are zero, then d(v, 1z) = 0, that is, 1z = v.
Therefore, 1z = Tz = v. Thus { f ,S} and {1,T} have a common point of coincidence in X. Now, if { f ,S} and
{1,T} are weakly compatible, f v = f Sw = S f w = Sv = v1 (say) and 1v = 1Tz = T1z = Tv = v2 (say). Now

d(v1, v2) = d( f v, 1v) ≤ kuv,v( f , 1,S,T),

where

uv,v( f , 1,S,T) ∈
{
d(Sv,Tv), d( f v,Sv), d(1v,Tv),

d( f v,Tv) + d(1v,Sv)
2

}
{
0, d(v1, v2)

}
.

Hence, d(v1, v2) = 0, that is, v1 = v2. If { f ,S} and {1,T} are weakly compatible, then v is a unique fixed point
of f , 1, S and T by Lemma 1.9. The proofs for the cases in which 1(X), S(X) or T(X) is complete are similar.
Conversely, if f , 1, S and T have a unique common fixed point, then the set of common fixed point of f , 1,
S and T being singleton is well ordered.

Corollary 2.9. Let (X,�) be a partially ordered set such that there exists a E-metric on X with E be an Archimedean.
Let f and 1 be dominating self maps on X satisfy the following condition:

d( f x, 1y) ≤ kux,y( f , 1) (4)

for all comparable elements x, y ∈ X, where k ∈ [0, 1) is a constant and

ux,y( f , 1) ∈
{
d(x, y), d( f x, x), d(1y, y),

1
2

[d( f x, y) + d(y, 1x)]
}
.

If for a nondecreasing sequence {xn} with xn � yn for all n and yn →
d,E u implies that xn � u, then f and 1 have a

common fixed point provided that one of f (X) or 1(X) is a E-complete subspace of X. Moreover, the set of common
fixed points of f and 1 is well ordered if and only if f and 1 have one and only one common fixed point.

Theorem 2.10. If we replace the condition of weak compatibility of pairs { f ,S} and {1,T} in Theorem 2.8 by the
following condition: either
(i) { f ,S} are compatible, f or S is continuous and {1,T} are weakly compatible; or
(ii) {1,T} are compatible, 1 or T is continuous and { f ,S} are weakly compatible,

then the conclusions of Theorem 2.8 remain valid.

Proof. Following the similar arguments to those in the proof of Theorem 2.8, {yn} is an E-Cauchy sequence.
Suppose that S(X) is complete. Then there exists a v in S(X), such that Sx2n = y2n →

d,E v. Hence there exists
a sequence {an} in E such that an ↓ 0 and d(Sx2n, v) ≤ an.

Assume that S is continuous. As { f ,S} are compatible, so we have limn→∞ f Sx2n = limn→∞ S f x2n = Sv.
Also, x2n+1 � 1x2n+1 = Sx2n+2. Now from (1), we have

d( f Sx2n+2, 1x2n+1) ≤ kuSx2n+2,x2n+1 ( f , 1,S,T),
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where

uSx2n+2,x2n+1 ( f , 1,S,T) ∈ {d(SSx2n+2,Tx2n+1), d( f Sx2n+2,SSx2n+2),

d(1x2n+1,Tx2n+1),
d( f Sx2n+2,Tx2n+1) + d(1x2n+1,SSx2n+2)

2
}.

On taking limit as n→∞, we obtain d(Sv, v) ≤ kuv,x2n+1 ( f , 1,S,T), where

uv,x2n+1 ( f , 1,S,T) ∈ {d(Sv, v), d(Sv,Sv), d(v, v),
d(Sv, v) + d(v,Sv)

2
}

= {d(Sv, v), 0}.

Now if uv,x2n+1 ( f , 1,S,T) = d(Sv, v), then d(Sv, v) ≤ kd(Sv, v), and Sv = v. Also if uv,x2n+1 ( f , 1,S,T) = 0 then we
obtain d(Sv, v) ≤ k(0) and Sv = v.

Now, since x2n+1 � 1x2n+1 and 1x2n+1 →
d,E v as n → ∞, x2n+1 � v and (1) becomes d( f v, 1x2n+1) ≤

kuv,x2n+1 ( f , 1,S,T), where

uv,x2n+1 ( f , 1,S,T) ∈ {d(Sv,Tx2n+1), d( f v,Sv), d(1x2n+1,Tx2n+1),
d( f v,Tx2n+1) + d(1x2n+1,Sv)

2
}.

On taking limit as n→∞, we have d( f v, v) ≤ kuv,x2n+1 ( f , 1,S,T), where

uv,x2n+1 ( f , 1,S,T) ∈ {d(Sv, v), d( f v,Sv), d(v, v),
d( f v, v) + d(v,Sv)

2
}

= {0, d( f v, v),
d( f v, v)

2
}.

Now if uv,x2n+1 ( f , 1,S,T) = 0, then d( f v, v) ≤ k(0) implies that f v = v. Also for uv,x2n+1 ( f , 1,S,T) = d( f v, v),
we have d( f v, v) ≤ kd( f v, v) which implies that f v = v. Finally, If uv,x2n+1 ( f , 1,S,T) = d( f v, v)/2, then
d( f v, v) ≤ (k/2)d( f v, v) gives that f v = v. Hence we have f v = Sv = v.

As v ∈ f (X) ⊆ T(X), there exists a z ∈ X such that Tz = v. Now, we show that 1z = v. As x2n � f x2n and
f x2n →

d,E v implies that x2n � v and v = f v = f Tz � z implies that x2n � z. Consider

d(v, 1z) ≤ d(v, f x2n) + d( f x2n, 1z) ≤ an + kux2n,z( f , 1,S,T),

where

ux2n,z( f , 1,S,T) ∈
{
d(Sx2n,Tz), d( f x2n,Sx2n), d(1z,Tz),

d( f x2n,Tz) + d(1z,Sx2n)
2

}
for all n. There are four possibilities.

Case 1.

d(v, 1z) ≤ an + d(Sx2n,Tz) ≤ an + an+1 ≤ 2an.

Case 2.

d(v, 1z) ≤ an + d( f x2n,Sx2n) ≤ an + 2an ≤ 3an.

Case 3.

d(v, 1z) ≤ an + kd(1z,Tz) ≤ an + kd(1z, v).

Thus d(v, 1z) ≤ 1
1−k an.
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Case 4.

d(v, 1z) ≤ an +
d( f x2n,Tz) + d(1z,Sx2n)

2

≤ 2an +
1
2

d(v, 1z).

Thus d(v, 1z) ≤ 4an.
Since the infimum of sequences on the right side of last inequality are zero, d(v, 1z) = 0, that is, 1z = v.
Therefore, 1z = Tz = v. Thus v is the coincidence point of pair {1,T} in X. Since {1,T} are weakly compatible,
therefore 1v = 1Tz = T1z = Tv. Now

d(v, 1v) = d( f v, 1v) ≤ kuv,v( f , 1,S,T),

where

uv,v( f , 1,S,T) ∈ {d(Sv,Tv), d( f v,Sv), d(1v,Tv),
d( f v,Tv) + d(1v,Sv)

2
}

= {d(v, 1v), 0, d(1v, 1v),
d(v, 1v) + d(1v, v)

2
}

= {d(v, 1v), 0}.

If uv,v( f , 1,S,T) = d(v, 1v), then d(v, 1v) ≤ kd(v, 1v) implies v = 1v. Also if uv,v( f , 1,S,T) = 0, then d(v, 1v) = 0
implies that v = 1v. Therefore v is the common fixed point of f , 1, S and T.

The proofs for the other cases are similar.

Example 2.11. Let E = (C[0,1],R), P = {ϕ ∈ E : ϕ ≥ 0} ⊂ E, X = [0,∞) and d : X × X → E defined by
d(x, y)(t) =

(∣∣∣x − y
∣∣∣) et, where et

∈ E. Then (X, d) is a E-metric space. We consider a ordering � on X defined as

x � y⇐⇒ y ≤ x for all x, y ∈ X.

Consider four mappings f , 1,T,S : X→ X defined by

f x =
3x
5
, 1x =

2x
5
, Tx =

5x
3
, Sx =

5x
2
, for all x ∈ X.

Clearly, f (X) ⊆ T(X) and 1(X) ⊆ S(X). Also, the pairs (T, f ) and (S, 1) partially weakly increasing, that is,

Tx =
5x
3
≥ x = f Tx, which gives Tx � f Tx and Sx =

5x
2
≥ x = 1Sx, which gives Sx � 1Sx. Also, f and 1 are

dominating maps, that is, f x =
3x
5
≤ x and 1x =

2x
5
≤ x for all x ∈ X implies that x � f x and x � 1x for all x ∈ X.

Furthermore, f and 1 are weak annihilators of T and S, respectively, that is, f Tx � x and 1Sx � x for all x ∈ X.
Now, for all x, y ∈ X,

d( f x, 1y)(t) =

(∣∣∣∣∣3x
5
−

2y
5

∣∣∣∣∣) et =
1
5

(∣∣∣3x − 2y
∣∣∣) et,

d(Sx,Ty)(t) =

(∣∣∣∣∣5x
2
−

5y
3

∣∣∣∣∣) et,

d( f x,Sx)(t) =
(∣∣∣∣∣3x

5
−

5x
2

∣∣∣∣∣ et
)

= (
19x
10

)et,
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d(1y,Ty)(t) =

(∣∣∣∣∣2y
5
−

5y
3

∣∣∣∣∣ et
)

= (
19y
15

)et,

d( f x,Ty) + d(1y,Sx)(t) =

(∣∣∣∣∣3x
5
−

5y
3

∣∣∣∣∣ +

∣∣∣∣∣2y
5
−

5x
2

∣∣∣∣∣) et.

If x ≥ y, then

d( f x, 1y)(t) =
1
5

(∣∣∣3x − 2y
∣∣∣) et

≤ (
3
5

x)et

≤ k(
19x
10

)et

= kd( f x,Sx)(t)
= kux,y( f , 1,S,T).

And if x ≤ y, then

d( f x, 1y)(t) =
1
5

(∣∣∣3x − 2y
∣∣∣) et

≤
2
5

yet

≤ k(
19y
15

)et

= kd(1y,Ty)(t)
= kux,y( f , 1,S,T).

Thus all the conditions of Theorem 2.8 are satisfied with k =
3
4
∈ [0, 1). Note that 0 is the unique common fixed point

of the mappings f , 1, S and T.

The following corollary extends well known Fisher’s result [15] to ordered vector metric spaces with E
is Archimedean.

Corollary 2.12. Let (X,�) be a partially ordered set such that there exists a E-metric on X with E be an Archimedean.
Let f , 1, S and T be self-maps on X, (T, f ) and (S, 1) partially weakly increasing with f (X) ⊆ T(X) and 1(X) ⊆ S(X),
dominating maps f and 1 are weak annihilators of T and S, respectively. Suppose the mappings f , 1,S,T : X → X
satisfy

d( f x, 1y) ≤ kd(Sx,Ty)

for all comparable elements x, y ∈ X. If for a nondecreasing sequence {xn}with xn � yn for all n and yn →
d,E u implies

that xn � u and the pairs of mappings { f ,S} and {1,T} are weakly compatible, then f , 1, S and T have a common fixed
point provided that one of f (X), 1(X), S(X), or T(X) is a E-complete subspace of X. Moreover, the set of common fixed
points of f , 1, S and T is well ordered if and only if f , 1, S and T have one and only one common fixed point.

The following result is obtained from Theorem 2.8.

Corollary 2.13. Let (X,�) be a partially ordered set such that there exists a E-metric on X with E be an Archimedean.
Let f , 1, S and T be self-maps on X, (T, f ) and (S, 1) partially weakly increasing with f (X) ⊆ T(X) and 1(X) ⊆ S(X),
dominating maps f and 1 are weak annihilators of T and S, respectively. Suppose the mappings f , 1,S,T : X → X
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satisfy the following condition

d( f mx, 1ny) ≤ kux,y( f m, 1n,Sm,Tn)

for all comparable elements x, y ∈ X, and some m,n ∈N, where k ∈ [0, 1) is a constant and

ux,y( f m, 1n,Sm,Tn) ∈ {d(Smx,Tny), d( f mx,Smx), d(1ny,Tny),
1
2

[d( f mx,Tny) + d(1ny,Smx)]}.

If for a nondecreasing sequence {xn} with xn � yn for all n and yn →
d,E u implies that xn � u and the pairs of

mappings { f ,S} and {1,T} are weakly compatible, then f , 1, S and T have a common fixed point provided that one of
f (X), 1(X), S(X), or T(X) is a E-complete subspace of X. Moreover, the set of common fixed points of f , 1, S and T is
well ordered if and only if f , 1, S and T have one and only one common fixed point.

The following theorem is ordered vector metric version of Theorem 2.8 of [4].

Theorem 2.14. Let (X,�) be a partially ordered set such that there exists a E-metric on X with E be an Archimedean.
Let f , 1, S and T be self maps on X, (T, f ) and (S, 1) partially weakly increasing with f (X) ⊆ T(X) and 1(X) ⊆ S(X),
dominating maps f and 1 are weak annihilators of T and S, respectively. Suppose the mappings f , 1,S,T : X → X
satisfy the following condition

d( f x, 1y) ≤ k1d(Sx,Ty) + k2d( f x,Sx) + k3d(1y,Ty) + k4d( f x,Ty) + k5d(1y,Sx) (5)

for all comparable elements x, y ∈ X, where ki for i = 1, 2, · · · , 5 are nonnegative constants with

k1 + k2 + k3 + 2 max{k4, k5} < 1.

If for a nondecreasing sequence {xn} with xn � yn for all n and yn →
d,E u implies that xn � u and the pairs of

mappings { f ,S} and {1,T} are weakly compatible, then f , 1, S and T have a common fixed point provided that one of
f (X), 1(X), S(X), or T(X) is a E-complete subspace of X. Moreover, the set of common fixed points of f , 1, S and T is
well ordered if and only if f , 1, S and T have one and only one common fixed point.

Proof. We define sequences {xn} and {yn} as in the proof of Theorem 2.8. From (5), we have

d(y2n+1, y2n+2) = d( f x2n, 1x2n+1)
≤ k1d(y2n, y2n+1) + k2d(y2n+1, y2n) + k3d(y2n+2, y2n+1)

+ k4d(y2n+1, y2n+1) + k5d(y2n+2, y2n).

Consequently,

d(y2n+1, y2n+2) ≤ αd(y2n, y2n+1) (6)

where α = k1+k2+k5
1−k3−k5

< 1. Similarly,

d(y2n+3, y2n+2) = d( f x2n+2, 1x2n+1)
≤ k1d(y2n+2, y2n+1) + k2d(y2n+3, y2n+2) + k3d(y2n+2, y2n+1)

+ k4d(y2n+3, y2n+1) + k5d(y2n+2, y2n+2).

Consequently,

d(y2n+3, y2n+2) ≤ αd(y2n+2, y2n+1) (7)

where α = k1+k3+k4
1−k2−k4

< 1. From (6) and (7), we have

d(yn, yn+1) ≤ αnd(y0, y1).
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By the same arguments as in Theorem 2.8 we conclude that {yn} is a E-Cauchy sequence. Suppose that S(X)
is complete. Then there exists a v in S(X), such that Sx2n = y2n →

d,E v. Hence there exists a sequence {an} in
E such that an ↓ 0 and d(Sx2n, v) ≤ an. On the other hand, we can find a w in X such that Sw = v. Now, we
show that f w = v. As x2n+1 � 1x2n+1 and 1x2n+1 →

d,E v implies that x2n+1 � v and v � 1v = 1Sw � w implies
that x2n+1 � w. Using (5), we get

d( f w, v) ≤ d( f w, 1x2n+1) + d(1x2n+1, v)
≤ k1d(Sw,Tx2n+1) + k2d( f w,Sw) + k3d(1x2n+1,Tx2n+1) + k4d( f w,Tx2n+1)

+ k5d(1x2n+1,Sw) + d(1x2n+1, v)
≤ (k1 + k3 + k4)d(v,Tx2n+1) + (k2 + k4)d( f w, v) + (k3 + k5 + 1)d(1x2n+1, v).

Consequently,

d( f w, v) ≤
k1 + 2k3 + k4 + k5 + 1

1 − k2 − k4
an,

for all n. Thus d( f w, v) = 0, i.e. f w = v. Since v ∈ f (X) ⊆ T(X), there exists a z ∈ X such that Tz = v. Now,
we show that 1z = v. As x2n � f x2n and f x2n → v implies that x2n � v and v � f v = f Tz � z implies that
x2n � z. Now

d(v, 1z) ≤ d(v, f x2n) + d( f x2n, 1z)
≤ d(v, f x2n) + k1d(Sx2n,Tz) + k2d( f x2n,Sx2n) + k3d(1z,Tz)

+ k4d( f x2n,Tz) + k5d(1z,Sx2n)
≤ (k1 + k2 + k5)d(v,Sx2n) + (k3 + k5)d(1z, v) + (k2 + k4 + 1)d( f x2n, v).

Consequently,

d(1z, v) ≤
k1 + 2k2 + k4 + k5 + 1

1 − k3 − k5
an,

for all n. Thus d(1z, v) = 0, i.e. 1z = v. Now, if { f ,S} and {1,T} are weakly compatible, f v = f Sw = S f w =
Sv = v1 (say) and 1v = 1Tz = T1z = Tv = v2 (say). From (5), we get

d(v1, v2) = d( f v, 1v)
≤ k1d(Sv,Tv) + k2d( f v,Sv) + k3d(1v,Tv) + k4d( f v,Tv) + k5d(1v,Sv)
= (k1 + k4 + k5)d(v1, v2).

which implies that d(v1, v2) = 0 by Lemma 1.5. Thus v1 = v2. If { f ,S} and {1,T} are weakly compatible, then
v is a unique fixed point of f , 1, S and T by Lemma 1.9. The proofs for the cases in which 1(X), S(X) or
T(X) is complete are similar. Conversely, if f , 1, S and T have a unique common fixed point, then the set of
common fixed point of f , 1, S and T being singleton is well ordered.

Example 2.15. Let E = R, X = [0,∞) equipped with absolute valued metric d(x, y) = |x − y| for x, y ∈ X and ≤ be
usual ordering on E = R. Now, consider a new ordering � on X as follows:

x � y⇐⇒ y ≤ x, ∀x, y ∈ X.

Let f , 1,T,S : X → X be define by f (x) = 1(x) = ln(x + 1) and T(x) = S(x) = ex
− 1. Since we have 1 + x ≤ ex for

each x ∈ X so f (x) = 1(x) = ln(x + 1) ≤ x, which implies that x � f (x) and x � 1(x). Thus f and 1 are dominating
maps. Also, we have f T(x) = 1S(x) = ln(ex) = x ≥ x for each x ∈ X, which implies that f Tx � x and 1Sx � (x).
Thus f and 1 are weak annihilators of T and S. Moreover, we have S(x) = T(x) = ex

− 1 ≥ x = f T(x) = 1S(x), which
follows that T(x) � f T(x) and S(x) � 1S(x). Thus, (T, f ) and (S, 1) are partially weakly increasing with f (X) ⊆ T(X)
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and 1(X) ⊆ S(X). Also, the pairs of mappings { f ,S} and {1,T} are weakly compatible and the range of all of mappings
are a closed subset of X. Moreover, using mean value theorem we have

d( f x, 1y) = | ln(x + 1) − ln(y + 1)| ≤ k|x − y| ≤ k|ex
− ey
| = kd(Tx,Sy)

for all x, y ∈ X, where k = 1
1+c ∈ [0, 1) with c between x and y. Thus f , 1 , S and T satisfy all the condition given in

Theorem 2.14. Moreover, 0 is a unique common fixed point of f , 1, S and T.

Theorem 2.16. If we replace the condition of weak compatibility of pairs { f ,S} and {1,T} in Theorem 2.14 by the
following condition: either
(i) { f ,S} are compatible, f or S is continuous and {1,T} are weakly compatible; or
(ii) {1,T} are compatible, 1 or T is continuous and { f ,S} are weakly compatible,

then the conclusions of Theorem 2.14 remain valid.

Proof. Following the similar arguments to those given in proof of Theorem 2.10, the result follows.

3. Application

Let X = L2(Ω) be the set of comparable functions on Ω whose square is integrable on Ω where Ω = [0, 1].
The set X is endowed with the partial order � given by: x, y ∈ X, x � y⇔ x(t) ≤ y (t), for all t ∈ Ω. Consider
the integral equations

x(t) =
∫
Ω

q1(t, s, x(s))ds + v(t),

y(t) =
∫
Ω

q2(t, s, x(s))ds + v(t),
(8)

where q1, q2 : Ω × Ω × R → R and v : Ω → R+ are given continuous mappings. Altun and Simsek [7]
obtained the common solution of integral equations (8) as an application of their result in ordered metric
spaces. We shall study sufficient condition for the existence of common solution of integral equations in
framework of E-metric spaces. For E = R2, we define d : X × X→ E by

d(x, y) = (sup
t∈Ω

∣∣∣x(t) − y(t)
∣∣∣ , c sup

t∈Ω

∣∣∣x(t) − y(t)
∣∣∣),

where c > 0 and the coordinate wise ordering defined by (x1, y1) ≤ (x2, y2) if and only if x1 ≤ x2 and y1 ≤ y2.
Then d is a E-metric on X. Suppose that the following conditions holds:

(i) For each s, t ∈ Ω, we have

u1(t) ≤
∫
Ω

q1(t, s,u1(s))ds

and

u2(t) ≤
∫
Ω

q2(t, s,u2(s))ds.

(ii) There exists p : Ω→ Ω satisfying∫
Ω

∣∣∣q1(t, s,u(s)) − q2(t, s, v(s))
∣∣∣ ds ≤ p(t) |u(t) − v(t)|

for each s, t ∈ Ω with sup
t∈Ω

p(t) ≤ k where k ∈ [0, 1).
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Then the integral equations (8) have a common solution in L2(Ω).

Proof. Define ( f x)(t) =
∫
Ω

q1(t, s, x(s))ds + v(t) and (1x)(t) =
∫
Ω

q2(t, s, x(s))ds + v(t). From (i), we have

( f x)(t) =

∫
Ω

q1(t, s, x(s))ds + v(t)

≥ x (t) + v(t)
≥ x(t)

and

(1x)(t) =

∫
Ω

q2(t, s, x(s))ds + v(t)

≥ x (t) + v(t)
≥ x (t) .

Thus f and 1 are dominating maps on X. Now, for all comparable x, y ∈ X, we have

d( f x, 1y) = (sup
t∈Ω

∣∣∣( f x)(t) − (1y)(t)
∣∣∣ , c sup

t∈Ω

∣∣∣( f x)(t) − (1y)(t)
∣∣∣)

=

sup
t∈Ω

∣∣∣∣∣∣∣∣
∫
Ω

q1(t, s, x(s))ds −
∫
Ω

q2(t, s, y(s))ds

∣∣∣∣∣∣∣∣ , c sup
t∈Ω

∣∣∣∣∣∣∣∣
∫
Ω

q1(t, s, x(s))ds −
∫
Ω

q2(t, s, y(s))ds

∣∣∣∣∣∣∣∣


≤

sup
t∈Ω

∫
Ω

∣∣∣q1(t, s, x(s)) − q2(t, s, y(s))
∣∣∣ ds, c sup

t∈Ω

∫
Ω

∣∣∣q1(t, s, x(s)) − q2(t, s, y(s))
∣∣∣ ds


≤ (sup

t∈Ω
p(t)

∣∣∣x(t) − y(t)
∣∣∣ , c sup

t∈Ω
p(t)

∣∣∣x(t) − y(t)
∣∣∣)

≤ k(sup
t∈Ω

∣∣∣x(t) − y(t)
∣∣∣ , c sup

t∈Ω

∣∣∣x(t) − y(t)
∣∣∣)

= kd(x, y)
= kux,y( f , 1),

where

ux,y( f , 1) = d(x, y) ∈
{
d(x, y), d( f x, x), d(1y, y),

1
2

[d( f x, y) + d(y, 1x)]
}
.

Thus (4) is satisfied. Now we can apply Corollary 2.9 to obtain the common solutions of integral equations
(8) in L2(Ω).
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