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Abstract. In this paper, we discuss and obtain some new unique common fixed point theorems for two
mappings satisfying Kannan type mixed contractive conditions and Chatterjea type mixed contractive
conditions respectively on cone metric spaces over Banach algebras without the assumption of normality
and give some generalizations of Kannan type and Chatterjea type fixed point theorems.

1. Introduction

In 2007, cone metric spaces were reviewed by Huang and Zhang, as a generalization of metric spaces
(see [1]). The distance d(x, y) of two elements x and y in a cone metric space X is defined to be a vector
in an ordered Banach space E, quite different from that which is defined a non-negative real numbers in
general metric space. In 2011, Beg A, Azam A and Arshad M([2]) introduced the concept of topological
vector space-valued cone metric spaces, where the ordered Banach space in the definition of cone metric
spaces is replaced by a topological vector space.

Recently, some authors investigated the problems of whether cone metric spaces are equivalent to
metric spaces in terms of the existence of fixed points of the mappings and successfully established the
equivalence between some fixed point results in metric spaces and in (topological vector space-valued)
cone metric spaces, see [3-6]. Actually, they showed that any cone metric space (X, d) is equivalent to a
usual metric space (X, d∗), where the real-metric function d∗ is defined by a nonlinear scalarization function
ξe(see [4]) or by a Minkowski function qe(see[5]). After that, some other interesting generalizations were
developed, see. for instance, [7].

In 2013, Liu and Xu [8] introduced the concept of cone metric spaces over Banach algebras, replacing a
Banach space E by a Banach algebra A as the underlying spaces of cone metric spaces. And the authors
in [8-10] discussed and obtained Banach fixed point theorem, Kannan type fixed point theorem, Chatterjea
type fixed point theorem and Ćirić type fixed point theorem in cone metric spaces over Banach algebras.
Especially, the authors in [10] gave an example to show that fixed point results of mappings in this new
space are indeed more different than the standard results of cone metric spaces presented in literature.
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In 1968, Kannan[11] obtained the generalization of Banach contractive principle, that is, Kannan fixed
point theorem:
Theorem 1.1 Let X be a complete metric space and f : X → X a mapping. If there is a α ∈ [0, 1

2 ) such that
for each x, y ∈ X,

d( f x, f y) ≤ α [d(x, f x) + d(y, f y)].

Then f has a unique fixed point.
In 2011, Shukla and Tiwari[12] obtained the variant result of Kannan fixed point theorem:

Theorem 1.2 Let X be a complete metric space and f : X → X a mapping. If there is a α ∈ [0, 1
3 ) such that

for each x, y ∈ X,
d( f x, f y) ≤ α [d(x, f x) + d(y, f y) + d(x, y)].

Then f has a unique fixed point.
In 2010 and 2014, new generalizations of Kannan fixed point theorem are given in [13] and [14] respec-

tively:
Theorem 1.3 Let X be a complete metric space, T,S : X → X two mappings such that T is one to one,
continuous and subsequentially convergent(see [13-14]). If there is a α ∈ [0, 1

2 ) such that for each x, y ∈ X,

d(TSx,TSy) ≤ α [d(Tx,TSx) + d(Ty,TSy)].

Then S has a unique fixed point.
Theorem 1.4 Let X be a complete metric space, T, f : X → X two mappings such that T is one to one,
continuous and subsequentially convergent. If there is a α ∈ [0, 1

2 ) such that for each x, y ∈ X,

F(d(T f x,T f y)) ≤ α [F(d(Tx,T f x)) + F(d(Ty,T f y))],

where F : [0,∞)→ [0,∞) is a continuous and non-decreasing mapping satisfying F−(0) = {0}. Then f has a
unique fixed point.

In 1972, Chatterjea[15] obtained the another generalization of Banach contractive principle, that is,
Chatterjea fixed point theorem:
Theorem 1.5 Let X be a complete metric space, f : X → X a mapping. If there is a α ∈ [0, 1

2 ) such that for
each x, y ∈ X,

d( f x, f y) ≤ α [d(x, f y) + d(y, f x)].

Then f has a unique fixed point.
In this paper, we obtain new common fixed point theorems for two mappings satisfying mixed contrac-

tive conditions on cone metric spaces over Banach algebras and give fixed point theorems. These results
generalize and improve Banach fixed point theorem, Kannan fixed point theorem and Chatterjea fixed point
theorem and others on cone metric spaces over Banach algebras.

2. Preliminaries

LetA always be a Banach algebra. That is,A is a real Banach space in which an operation of multipli-
cation is defined, subject to the following properties(for all x, y, z ∈ A, α ∈ R):

1. (xy)z = x(yz);
2. x(y + z) = xy + xz and (x + y)z = xz + yz;
3. α(xy) = (αx)y = x(αy);
4. ‖ xy ‖≤‖ x ‖‖ y ‖ .
In this paper, we shall assume that a Banach algebra has a unit (i.e., a multiplicative identity) e such

that ex = xe = x for all x ∈ A. an element x ∈ A is said to be invertible if there is an inverse element y ∈ A
such that xy = yx = e. The inverse of x denoted by x−1. For more detail, we refer to [16].

We say that {x1, x2, · · · , xn} ⊂ A commute if xix j = x jxi for all i, j ∈ {1, 2, · · · ,n}.
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Proposition 2.1([16]) LetA be a Banach algebra with a unit e, and x ∈ A. If the spectral radius r(x) of x is
less than 1, i.e.,

r(x) = lim
n→∞
‖ xn
‖

1
n = inf

n→∞
‖ xn
‖

1
n < 1.

Then (e − x) is invertible. Actually,

(e − x)−1 =

+∞∑
i=0

xi.

Remark 2.1 1) r(x) ≤‖ x ‖ for any x ∈ A(see [16]).
2) In Proposition 2.1, if the condition r(x) < 1 is replaced by the condition ‖ x ‖< 1, then the conclusion

remains true.
A subset P of a Banach algebraA is called a cone if
1. P is nonempty closed and {0, e} ⊂ P;
2. αP + βP ⊂ P for all non-negative real numbers α, β;
3. P2 = PP ⊂ P;
4. P ∩ (−P) = {0}.
Where 0 denotes the null of the Banach algebraA.
For a given cone P ⊂ A, we can define a partial ordering ≤ with respect to P by x ≤ y if and only if

y − x ∈ P. x < y stand for x ≤ y and x , y. While x � y will stand for y − x ∈ int P, where int P denotes the
interior of P. A cone P is called solid if int P , ∅.

The cone P is called normal if there is a number M > 0 such that for all x, y ∈ A.

0 ≤ x ≤ y =⇒ ‖ x ‖≤M ‖ y ‖ .

The least positive number satisfying the above is called the normal constant of P.
Here, we always assume that P is a solid and ≤ is the partial ordering with respect to P.

Definition 2.1([1, 9-10]) Let X be a non-empty set. Suppose that the mapping d : X × X→A satisfies
1. 0 ≤ d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y;
2. d(x, y) = d(y, x) for all x, y ∈ X;
3. d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.
Then d is called a cone metric on X and (X, d) is called a cone metric space(over a Banach algebraA).

Remark 2.2 The examples of cone metric spaces(over a Banach algebraA) can be found in [8-10].
Definition 2.2([1, 8]) Let (X, d) be a cone metric space over a Banach algebraA, x ∈ X and {xn} a sequence
in X. Then:

1. {xn} converges to x whenever for each c ∈ A with 0 � c there is a natural number N such that
d(xn, x)� c for all n ≥ N. We denote this by limn→∞ xn = x or xn → x.

2. {xn} is Cauchy sequence whenever for each c ∈ A with 0 � c there is a natural number N such that
d(xn, xm)� c for all n,m ≥ N.

3. (X, d) is a complete cone metric space if every Cauchy sequence in X is convergent.
Definition 2.3([17-18]) Let P be a solid cone in a Banach spaceA. A sequence {un} ⊂ P is a c-sequence if for
each c� 0 there exists n0 ∈N such that un � c for all n ≥ n0.
Proposition 2.2([17]) Let P be a solid cone in a Banach spaceA, {xn} and {yn} two sequences in P. If {xn} and
{yn} are c-sequences and α, β > 0, then {α xn + β yn} is a c-sequence.
Proposition 2.3([17]) Let P be a solid cone in a Banach algebra A and {xn} a sequence in P. Then the
following conditions are equivalent:

(1) {xn} is a c-sequence;
(2) for each c� 0 there exists n0 ∈N such that xn < c for all n ≥ n0;
(3) for each c� 0 there exists n1 ∈N such that xn ≤ c for all n ≥ n1.

Proposition 2.4([10]) Let P be a solid cone in a Banach algebra A and {un} a sequence in P. Suppose that
k ∈ P is an arbitrarily given vector and {un} is a c-sequence in P. Then {kun} is a c-sequence.
Proposition 2.5([10]) Let A be a Banach algebra with a unit e, P a cone in A and ≤ be the semi-order
generated by the cone P. The following assertions hold true:
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(i) For any x, y ∈ A, a ∈ P with x ≤ y, ax ≤ ay;
(ii) For any sequences {xn}, {yn} ⊂ A with xn → x and yn → y as n → ∞, where x, y ∈ A, we have

xnyn → xy as n→∞.
Proposition 2.6([10]) Let A be a Banach algebra with a unit e, P a cone in A and ≤ be the semi-order
generated by the cone P. Let λ ∈ P. If the spectral radius r(λ) of λ is less than 1, then the following
assertions hold true:

(i) Suppose that x is invertible and that x−1 > 0 implies x > 0, then for any integer n ≥ 1, we have
λn
≤ λ ≤ e.
(ii) For any u > 0, we have u � λu, i.e., λu − u < P.
(iii) If λ ≥ 0, then (e − λ)−1

≥ 0.
Proposition 2.7([10]) Let (X, d) be a complete cone metric space over a Banach algebraA and P a solid cone
in A and {xn} a sequence in X. If {xn} converges to x ∈ X, then we have

(i) {d(xn, x)} is a c-sequence.
(ii) For any p ∈N, {d(xn, xn+p)} is a c-sequence.

Lemma 2.1([19]) If E is a real Banach space with a cone P and if a ≤ λ a with a ∈ P and 0 ≤ λ < 1, then a = 0.
Lemma 2.2([20]) If E is a real Banach space with a cone P and if 0 ≤ u� c for all 0� c, then u = 0.
Lemma 2.3([20]) If E is a real Banach space with a solid cone P and if ‖ xn ‖→ 0 as n → ∞, then for any
0� c, there exists N ∈N such that, for any n > N, we have xn � c.
Lemma 2.4([10]) IfA is a Banach algebra and k ∈ Awith r(k) < 1, then ‖ kn

‖→ 0 as n→∞.
Lemma 2.5([10]) LetA be a Banach algebra and x, y ∈ A. If x and y commute, then the following hold:

(i) r(xy) ≤ r(x)r(y);
(ii) r(x + y) ≤ r(x) + r(y);
(iii) | r(x) − r(y) |≤ r(x − y).

Lemma 2.6([10]) LetA be a Banach algebra and {xn} a sequence inA. Suppose that {xn} converge to x ∈ A
and that xn and x commute for all n, then r(xn)→ r(x) as n→∞.
Lemma 2.7([21]) Let P be a solid cone in a Banach algebra A and {α, β, γ} ⊂ A with r(γ) < 1. If {α, β, γ}
commute, then

r
(
(e − γ)−1(α + β)

)
≤

r(α + β)
1 − r(γ)

≤
r(α) + r(β)

1 − r(γ)
.

In particular,

r
(
(e − γ)−1

)
≤

1
1 − r(γ)

≤
r(α) + r(β)

1 − r(γ)

for all α, β, γ ∈ Awith r(γ) < 1 and α + β = e and {α, β, γ} commute.
Lemma 2.8 ([21])(Cauchy Principle) Let (X, d) be a cone metric space over a Banach algebra A, P a solid
cone inA and k ∈ P with r(k) < 1. If a sequence {xn} ⊂ X satisfies that

d(xn+1, xn+2) ≤ kd(xn, xn+1),∀n = 0, 1, 2, · · · .

Then {xn} is a Cauchy sequence.
Lemma 2.9([21]) Let (X, d) be a cone metric space over a Banach algebraA, P a solid cone inA and {xn} ⊂ X
a sequence. If {xn} is convergent, then the limits of {xn} is unique.
Definition 2.4 Let (X, d) and (Y, ρ) be two cone metric spaces over Banach algebras A and B respectively,
P and Q be the corresponding solid cones in A and B respectively. We say that a mapping f : X → Y is
continuous at x∗ ∈ X if for each c ∈ B with 0� c, there exists b ∈ A with 0� b such that d(x, x∗)� b for all
x ∈ X implies ρ( f x, f x∗)� c.

If f is continuous at all x ∈ X, then we say that f is continuous on X.
Lemma 2.10 Let (X, d) and (Y, ρ) be two cone metric spaces over Banach algebras A and B respectively,
P and Q be the corresponding solid cones in A and B respectively. If f : X → Y is a mapping, then f is
continuous at x∗ ∈ X if and only if f xn → f x∗ as n→∞whenever {xn} ⊂ X converges to x∗ ∈ X.
Proof (=⇒) Suppose that xn → x∗. For any c ∈ B with 0 � c, by given conditions there exists b ∈ A with
0 � b such that d(x, x∗) � b implies ρ( f x, f x∗) � c. For b, there exists N ∈ N such that d(xn, x∗) � b for all
n > N, so d( f xn, f x∗)� c for all n > N. Hence f xn → f x∗ as n→∞.
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(⇐=) Suppose that f is not continuous at x∗, then there exists c ∈ B with 0 � c such that for any b ∈ A
with 0� b there is x ∈ X satisfying that d(x, x∗)� b but c − d( f x, f x∗) < intQ. Fix any b� 0, then 0� b

n for
all n ∈ N. Hence for b

n , there exists xn ∈ X such that d(xn, x∗) � b
n but c − d( f xn, f x∗) < intQ for all n ∈ N.

For any a ∈ A with 0 � a, since b
n → 0(as n→ ∞), there exists N ∈ N such that b

n � a for all n > N, hence
d(xn, x∗) � a. This shows that xn → x∗ as n → ∞. But c − d( f xn, f x∗) < intQ for all n shows that f xn is not
convergent to f x∗. This is a contradiction, hence f is continuous at x∗.

Xu and Radenović [10] obtained the following Kannan type and Chatterjea type fixed point theorems
on cone metric spaces over Banach algebras, which are the generalizations of Theorem 1.1 and Theorem 1.5
respectively.
Theorem 2.1([10]) Let (X, d) be a complete cone metric space over a Banach algebraA and P is a solid cone
inA, f : X→ X a mapping. Suppose that there exists α ∈ P with r(α) < 1

2 such that for each x, y ∈ X,

d( f x, f y) ≤ α [d(y, f y) + d(x, f x)].

Then f has a unique fixed point.
Theorem 2.2([10]) Let (X, d) be a complete cone metric space over a Banach algebraA and P is a solid cone
inA, f : X→ X a mapping. Suppose that there exists α ∈ P with r(α) < 1

2 such that for each x, y ∈ X,

d( f x, f y) ≤ α [d(x, f y) + d(y, f x)].

Then f has a unique fixed point.

3. Common fixed points and fixed points

Let (X, d) be a cone metric space over a Banach algebra A, P a solid cone in A and f , 1 : X → X two
mappings. We say that f and 1 satisfy the mixed contractive condition if the following holds

d( f1x, 1 f y) ≤ α d(1x, f y), ∀ x, y ∈ X,

where α ∈ P with r(α) < 1.
Remark 3.1 If α ∈ [0, 1), then the above concept is the contractive version of the concept of mixed expansive
condition defined in [22].

At first, we give a unique common fixed point theorem for two mappings satisfying Kannan type mixed
contractive conditions.
Theorem 3.1 Let (X, d) be a cone metric space over a Banach algebraA and P is a solid cone inA, f , 1 : X→ X
two mappings. Suppose that there exist {α, β, γ} ⊂ P with r(α) + r(β) + r(γ) < 1 which commute such that
for each x, y ∈ X, x , y,

d( f1x, 1 f y) ≤ α d( f y, 1 f y) + β d(1x, f1x) + γ d( f y, 1x) (3.1)

If f X or 1X is complete, then f and 1 have a unique common fixed point.
Proof Take any element x0 ∈ X and construct a sequence {xn}

∞

0 satisfying

x2n+1 = f x2n, x2n+2 = 1x2n+1, n = 0, 1, · · · . (3.2)

If there exists n such that x2n = x2n+1, then d(x2n, x2n+1) = 0. By (3.1),

d(x2n+1, x2n+2) = d( f1x2n−1, 1 f x2n)
≤ α d( f x2n, 1 f x2n) + β d(1x2n−1, f1x2n−1) + γ ( f x2n, 1x2n−1)
= α d(x2n+1, x2n+2) + β d(x2n, x2n+1) + γ (x2n+1, x2n)
= α d(x2n+1, x2n+2),

hence
(e − α)d(x2n+1, x2n+2) ≤ 0. (3.3)
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But r(α) < 1 implies (e−α)−1
≥ 0 by Proposition 2.6, so d(x2n+1, x2n+2) = 0 by (3.3) and Proposition 2.5, hence

x2n = x2n+1 = x2n+2, therefore x2n is a common fixed point of f and 1. Similarly, if there exists n such that
x2n+1 = x2n+2, then we can prove that x2n+1 is a common fixed point of f and 1. So we assume that xn , xn+1
for all n = 0, 1, 2 · · · .

For any fixed n,

d(x2n+1, x2n+2) = d(1 f x2n, f1x2n−1)
≤ α d( f x2n, 1 f x2n) + β d(1x2n−1, f1x2n−1) + γ d( f x2n, 1x2n−1)
= α d(x2n+1, x2n+2) + (β + γ)d(x2n, x2n+1)

and

d(x2n+2, x2n+3) = d(1 f x2n, f1x2n+1)
≤ α d( f x2n, 1 f x2n) + β d(1x2n+1, f1x2n+1) + γ d( f x2n, 1x2n+1)
= (α + γ) d(x2n+1, x2n+2) + β d(x2n+2, x2n+3).

Hence we have the following results respectively:

d(x2n+1, x2n+2) ≤ K1d(x2n, x2n+1) (3.4)

and
d(x2n+2, x2n+3) ≤ K2d(x2n+1, x2n+2), (3.5)

where K1 = (e − α)−1(β + γ), K2 = (e − β)−1(α + γ). Let K = K1K2.
Since {α, β, γ} commute and (e − β)−1 =

∑
∞

i=0 β
i and (e − α)−1 =

∑
∞

i=0 α
i, so {α, β, γK1,K2} also commute.

Hence by Lemma 2.5 and Lemma 2.7,

r(K) ≤ r(K1)r(K2) ≤
r(β) + r(γ)

1 − r(α)
r(α) + r(γ)

1 − r(β)
< 1. (3.6)

Using mathematical induction, we obtain

d(x2n+1, x2n+2) ≤ K1 d(x2n, x2n+1) ≤ K1K2d(x2n−1, x2n) ≤ · · · ≤ KnK1d(x0, x1) (3.7)

and
d(x2n+2, x2n+3) ≤ K2d(x2n+1, x2n+2) ≤ Kn+1d(x0, x1). (3.8)

For any p, q ∈N with p < q,

d(x2p+1, x2q+1) ≤
2q∑

i=2p+1

d(xi, xi+1) ≤
(
K1

q−1∑
i=p

Ki +

q∑
i=p+1

Ki
)
d(x0, x1) ≤ (e − K)−1Kp(K1 + K)d(x0, x1). (3.9)

Similarly,

d(x2p, x2q+1) ≤
2q∑

i=2p

d(xi, xi+1) ≤
( q∑

i=p

Ki + K1

q−1∑
i=p

Ki
)
d(x0, x1) ≤ (e − K)−1Kp(e + K1)d(x0, x1); (3.10)

d(x2p, x2q) ≤
2q−1∑
i=2p

d(xi, xi+1) ≤
( q−1∑

i=p

Ki + K1

q−1∑
i=p

Ki
)
d(x0, x1) ≤ (e − K)−1Kp(e + K1)d(x0, x1); (3.11)

d(x2p+1, x2q) ≤
2q−1∑

i=2p+1

d(xi, xi+1) ≤
(
K1

q−1∑
i=p

Ki +

q−1∑
i=p+1

Ki
)
d(x0, x1) ≤ (e − K)−1Kp(K1 + K)d(x0, x1). (3.12)



Y. Piao, S. Xu / Filomat 32:6 (2018), 2067–2079 2073

Since ‖ Kn
‖→ 0 as n→∞ by Lemma 2.4 and (3.6), we have

‖ (e − K)−1Kp(K1 + K)d(x0, x1) ‖→ 0 as p→∞ (3.13)

and
‖ (e − K)−1Kp(e + K1)d(x0, x1) ‖→ 0 as p→∞. (3.14)

Therefore by Lemma 2.3, for any 0� c there exists N such that

(e − K)−1Kp(K1 + K)d(x0, x1)� c, ∀ p > N (3.15)

and
(e − K)−1Kp(e + K1)d(x0, x1)� c, ∀ p > N. (3.16)

Combining (3.9)-(3.12) and (3.15)-(3.16), we show that there is a n0 ∈ N such that d(xm, xn) � c for all
n > m > n0. Hence {xn} is a Cauchy sequence.

Suppose that f X is complete. Since x2n+1 ∈ f X and {xn} is a Cauchy sequence, there exist u ∈ f X and
v ∈ X such that x2n+1 → u = f v as n → ∞. Also we obtain x2n+2 → u as n → ∞ since d(x2n+2,u) ≤
d(x2n+1, x2n+2) + d(x2n+1,u). By (3.1),

d(u, 1u) = d(u, 1 f v)
≤ d(u, x2n+3) + d(x2n+3, 1 f v)
= d(u, x2n+3) + d( f1x2n+1, 1 f v)
≤ d(u, x2n+3) + α d( f v, 1 f v) + β d(1x2n+1, f1x2n+1) + γ d( f v, 1x2n+1)
= d(u, x2n+3) + α d(u, 1u) + β d(x2n+2, x2n+3) + γ d(u, x2n+2),

hence
(e − α)d(u, 1u) ≤ (e + β)d(u, x2n+3) + (β + γ)d(u, x2n+2),

i.e.,
d(u, 1u) ≤ (e − α)−1(e + β)d(u, x2n+3) + (e − α)−1(β + γ)d(u, x2n+2).

Since xn converges to u, by Proposition 2.4 and Proposition 2.7, for each c � 0 there exists N ∈ N such
that for all n > N,

(e − α)−1(e + β)d(u, x2n+3)�
c
2
, (e − α)−1(β + γ)d(u, x2n+2)�

c
2
,

hence for all n > N,
d(u, 1u)� c.

Therefore, by Lemma 2.2, we have
u = 1u.

By (3.1) again,

d(u, f u) = d( f1u, 1 f v) ≤ αd( f v, 1 f v) + βd(1u, f1u) + γd( f v, 1u) = βd(u, f u),

hence
(e − β)d(u, f u) ≤ 0.

Therefore d(u, f u) = 0, i.e., u = f u by Proposition 2.5 and Proposition 2.6. This show that u is the common
fixed point f and 1.

Suppose that u∗ is also common fixed point of f and 1 but u∗ , u, then by (3.1),

d(u,u∗) = d( f1u, 1 f u∗) ≤ α d( f u∗, 1 f u∗) + β d(1u, f1u) + γ d( f u∗, 1u) = γ d(u.u∗),

hence
(e − γ)d(u,u∗) ≤ 0.
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Therefore u = u∗ by Proposition 2.5 and Proposition 2.6. This contradiction shows that u is the unique
common fixed point of f and 1. Similarly, we obtain the same result for the case that 1X is complete.

Using Theorem 3.1, we obtain the following result.
Corollary 3.1 Let (X, d) be a complete cone metric space over a Banach algebraA and P is a solid cone inA,
f , 1 : X→ X two mappings. Suppose that there exist {α, β, γ} ⊂ P with r(α) + r(β) + r(γ) < 1 which commute.
If (3.1) holds and f or 1 is onto, then f and 1 have a unique common fixed point.

Using Theorem 3.1, we can obtain the following unique common fixed point theorems for two mappings
satisfying weak Kannan type mixed (see Theorem 1.2) and Kannan type mixed (see Theorem 1.1) contractive
conditions.
Theorem 3.2 Let (X, d) be a cone metric space over a Banach algebraA and P is a solid cone inA, f , 1 : X→ X
two mappings. Suppose that there exists γ ∈ P with r(γ) < 1

3 such that for each x, y ∈ X, x , y,

d( f1x, 1 f y) ≤ γ [d( f y, 1 f y) + d(1x, f1x) + d( f y, 1x)].

If f X or 1X is complete, then f and 1 have a unique common fixed point.
Proof Let α = β = γ in Theorem 3.1, then the conclusion follows from Theorem 3.1.
Theorem 3.3 Let (X, d) be a cone metric space over a Banach algebraA and P is a solid cone inA, f , 1 : X→ X
two mappings. Suppose that there exists α ∈ P with r(α) < 1

2 such that for each x, y ∈ X, x , y,

d( f1x, 1 f y) ≤ α [d( f y, 1 f y) + d(1x, f1x)].

If f X or 1X is complete, then f and 1 have a unique common fixed point.
Proof Let α = β, γ = 0 in Theorem 3.1, then the conclusion follows from Theorem 3.1.

Using Corollary 3.1, we obtain the next two fixed point theorems, which are the variant forms of Kannan
type- Chatterjea type fixed point theorems(i.e., Theorem 2.1 and Theorem 2.2) and Banach contraction
principle.
Theorem 3.4 Let (X, d) be a complete cone metric space over a Banach algebraA and P is a solid cone inA,
f : X→ X a mapping. Suppose that there exists γ ∈ P with r(γ) < 1

2 such that for each x, y ∈ X, x , y,

d( f x, f y) ≤ γ [d(x, f x) + d( f y, x)].

Then f has a unique fixed point.
Proof Let α = 0, β = γ and 1 = 1X in (3.1), then the conclusion follows from Corollary 3.1.
Theorem 3.5 Let (X, d) be a complete cone metric space over a Banach algebraA and P is a solid cone inA,
f : X → X a mapping. Suppose that there exists β ∈ P with r(β) < 1 [or γ ∈ P with r(γ) < 1] such that for
each x, y ∈ X, x , y,

d( f x, f y) ≤ β d(x, f x) [or d( f x, f y) ≤ γ d(x, f y)].

Then f has a unique fixed point.
Proof Let α = γ = 0[or α = β = 0] and 1 = 1X in (3.1), then the conclusion follows from Corollary 3.1.

Now, we give the continuous and non-surjective version of Corollary 3.1.
Theorem 3.6 Let (X, d) be a complete cone metric space over a Banach algebra A and P is a solid cone in
A, f , 1 : X → X two continuous mappings. If that there exist {α, β, γ} ⊂ P with r(α) + r(β) + r(γ) < 1 which
commute such that (3.1) holds. Then f and 1 have a unique common fixed point.
Proof Following the proof of Theorem 3.1, we have a sequence {xn} satisfying (3.2) such that {xn} is a Cauchy
sequence, hence there exists u ∈ X such that xn → u as n→∞. By Lemma 2.10 and the continuity of f and
1, we have

x2n+1 = f x2n → f u, x2n+2 = 1x2n+1 → 1u.

Therefore, f u = u = 1u by Lemma 2.9. The rest is similar to the proof of Theorem 3.1.
Using Theorem 3.6, we can give two unique fixed point theorems, i.e., generalized Kannan type fixed

point theorem and generalized Banach contractive principle.
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Theorem 3.7 Let (X, d) be a complete cone metric space over a Banach algebra A and P is a solid cone in
A, f : X → X a continuous mapping. Suppose that there exists α ∈ P with r(α) < 1

2 such that for each
x, y ∈ X, x , y,

d( f 2x, f 2y) ≤ α [d( f y, f 2y) + d( f x, f 2x)].

Then f has a unique fixed point.
Proof Let f = 1, α = β, γ = 0 in Theorem 3.6, then the conclusion follows from Theorem 3.6.
Theorem 3.8 Let (X, d) be a complete cone metric space over a Banach algebra A and P is a solid cone in
A, f : X → X a continuous mapping. Suppose that there exists γ ∈ P with r(γ) < 1 such that for each
x, y ∈ X, x , y,

d( f 2x, f 2y) ≤ γ d( f x, f y).

Then f has a unique fixed point.
Proof Let f = 1, α = β = 0 in Theorem 3.6, then the conclusion follows from Theorem 3.6.
Remark 3.2 Obviously, the contractive condition in Theorem 3.7 is weaker than Kannan type contractive
condition(see Theorem 1.1 and Theorem 2.1). In fact, the contractive condition in Theorem 3.7 can be
written as

d( f ( f x), f ( f y)) ≤ γ [d( f y, f ( f y)) + d( f x, f ( f x))], ∀ x, y ∈ X, x , y. (3.17)

(3.17) is equivalent to the following

d( f x, f y) ≤ γ [d(y, f y) + d(x, f x)], ∀ x, y ∈ f (X). (3.18)

Similarly, the contractive condition in Theorem 3.8 can be written as

d( f x, f y) ≤ γ d(x, y), ∀ x, y ∈ f (X). (3.19)

Hence the contractive condition in Theorem 3.8 is weaker than Banach contractive condition.
Example 3.1 Let A = C1

R
[0, 1] and define a norm on A by ‖ x ‖= ‖ x ‖∞ + ‖ x′ ‖∞ for x ∈ A. Define

multiplication in A as just pointwise multiplication. Then A is a real Banach algebra with unit e = 1. The
set P = {x ∈ A : x ≥ 0} is not normal(see[10, 23]).

Let X = {a, b, c} and define d : X × X→A as follows: for each t ∈ [0, 1] and x ∈ X,

d(a, b)(t) = d(b, a)(t) = et, d(a, c)(t) = d(c, a)(t) = 3et, d(b, c)(t) = d(c, b)(t) = 2et, d(x, x)(t) = 0.

Then (X, d) is a complete cone metric space over a Banach algebraAwithout normality.
Define a mapping f : X→ X by f a = a, f b = c, f c = a. Let α ∈ P be α(t) = 1

5 t + 1
4 for all t ∈ [0, 1]. It is easy

to prove that r(α) = 9
20 <

1
2 .

f 2x = a for all x ∈ X implies that d( f 2x, f 2y) = 0 for all x, y ∈ X, hence the contractive condition in
Theorem 3.7 is satisfies. Therefore f has a unique fixed point a.

On the other hand, if f satisfies Kannan type contractive condition, then there exists α′ ∈ P with r(α′) < 1
2

satisfies
d( f x, f y) ≤ α′ (d(x, f x) + d(y, f y)),∀ x, y ∈ X,

especially,
d( f a, f b) ≤ α′ (d(a, f a) + d(b, f b)).

hence for all t ∈ [0, 1],
d( f a, f b)(t) ≤ [α′ (d(a, f a) + d(b, f b))](t),

but
d( f a, f b)(t) = d(a, c)(t) = 3et, [α′ (d(a, f a) + d(b, f b))](t) = [α′ d(b, c)](t) = 2α′(t)et, ∀ t ∈ [0, 1],

hence
3et = d( f a, f b)(t) ≤ [α′ (d(a, f a) + d(b, f b))](t) = 2α′(t)et,
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so

α′(t) ≥
3
2
, ∀ t ∈ [0, 1].

Therefore

r(α′) = lim
n→∞
{‖ (α′(t))n

‖∞ + ‖ ((α′(t))n)′ ‖∞}
1
n ≥ lim

n→∞
{‖ (α′(t))n

‖∞}
1
n ≥

3
2
,

which is a contradiction. This shows that f does not satisfy the Kannan contractive condition, hence
Theorem 3.7 is a generalization of Kannan type fixed point theorem(i.e., Theorem 2.1).

Next, we will discuss unique common fixed point problems for two mappings with Chatterjea type
mixed contractive conditions.
Theorem 3.9 Let (X, d) be a cone metric space over a Banach algebraA and P is a solid cone inA, f , 1 : X→ X
two mappings. Suppose that there exist {α, β, γ} ⊂ P with 2 max{r(α), r(β)} + r(γ) < 1 which commute such
that for each x, y ∈ X, x , y,

d( f1x, 1 f y) ≤ α d( f y, f1x) + β d(1x, 1 f y) + γ d( f y, 1x). (3.20)

If f X or 1X is complete, then f and 1 have a unique common fixed point.
Proof Consider the sequence {xn} satisfying (3.2).

If there exists n such that x2n = x2n+1, then d(x2n, x2n+1) = 0, hence by (3.20),

d(x2n+1, x2n+2) = d( f1x2n−1, 1 f x2n)
≤ α d( f x2n, f1x2n−1) + β d(1x2n−1, 1 f x2n) + γ d( f x2n, 1x2n−1)
= β [d(x2n, x2n+1) + d(x2n+1, x2n+2)] + γ d(x2n+1, x2n)
= β d(x2n+1, x2n+2),

hence
(e − β)d(x2n+1, x2n+2) ≤ 0. (3.21)

But r(β) < 1 implies that (e − β) is invertible and (e − β)−1
≥ 0, hence from (3.21), we obtain

x2n+2 = x2n+1 = x2n.

Hence it is easy to check that x2n is a common fixed point of f and 1. Similarly, if there exists n such that
x2n+1 = x2n+2, then x2n+1 is a common fixed point of f and 1. So we can assume that xn , xn+1, n = 0, 1, 2 · · · .

For any fixed n, by (3.20),

d(x2n+2, x2n+3) = d(1 f x2n, f1x2n+1)
≤ α d( f x2n, f1x2n+1) + β d(1x2n+1, 1 f x2n) + γ d( f x2n, 1x2n+1)
= (α + γ) d(x2n+1, x2n+2) + α d(x2n+2, x2n+3).

Hence using r(α) < 1, we can obtain

d(x2n+2, x2n+3) ≤ (e − α)−1(α + γ) d(x2n+1, x2n+2). (3.22)

Similarly,

d(x2n+1, x2n+2) = d(1 f x2n, f1x2n−1)
≤ α d( f x2n, f1x2n−1) + β d(1x2n−1, 1 f x2n) + γ d( f x2n, 1x2n−1)
= β d(x2n+1, x2n+2) + (β + γ)d(x2n, x2n+1).

Hence
d(x2n+1, x2n+2) ≤ (e − β)−1(β + γ) d(x2n, x2n+1). (3.23)
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Let L1 = (e−α)−1(α+γ), L2 = (e−β)−1(β+γ) and L = L1L2, then {α.β, γ,L1,L2} commute, hence by Lemma
2.5 and Lemma 2.7,

r(L) ≤ r(L1)r(L2) ≤
r(α) + r(γ)

1 − r(α)
r(β) + r(γ)

1 − r(β)
< 1.

Modifying the proof of Theorem 3.1 and using (3.22), (3.23) and r(L) < 1, we can prove {xn} is a Cauchy
sequence.

Suppose that f X is complete. Since x2n+1 ∈ f X and {xn} is a Cauchy sequence, there exist u ∈ f X and
v ∈ X such that x2n+1 → u = f v as n → ∞. Also we obtain x2n+2 → u as n → ∞ since d(x2n+2,u) ≤
d(x2n+1, x2n+2) + d(x2n+1,u). By (3.20),

d(u, 1u) = d(u, 1 f v)
≤ d(u, x2n+3) + d(x2n+3, 1 f v)
≤ d(u, x2n+3) + d( f1x2n+1, 1 f v)
≤ d(u, x2n+3) + α d( f v, f1x2n+1) + β d(1x2n+1, 1 f v) + γ d( f v, 1x2n+1)
= d(u, x2n+3) + α d(u, x2n+3) + β d(x2n+2, 1u) + γ d(u, x2n+2)
≤ (e + α)d(u, x2n+3) + β[d(u, x2n+2) + d(u, 1u)] + γ d(u, x2n+2),

hence
d(u, 1u) ≤ (e − β)−1(e + α)d(u, x2n+3) + (e − β)−1(β + γ)d(u, x2n+2).

Since xn converges to u, so for each c� 0 there exists N ∈N such that for all n > N,

(e − β)−1(e + α)d(u, x2n+3)�
c
2
, (e − β)−1(β + γ)d(u, x2n+2)�

c
2
,

hence for all n > N,
d(u, 1u)� c,

that is,
u = 1u.

By (3.20) again,

d(u, f u) = d( f1u, 1 f v) ≤ αd( f v, f1u) + βd(1u, 1 f v) + γd( f v, 1u) = αd(u, f u),

i.e.,
(e − α)d(u, f u) ≤ 0.

Hence f u = u = 1u, i.e., u is a common fixed point of f and 1.
If u∗ is another fixed point of f and 1, then by (3.20),

d(u,u∗) = d( f1u, 1 f u∗) ≤ α d( f u∗, f1u) + β d(1u, 1 f u∗) + γ d( f u∗, 1u) ≤ (α + β + γ) d(u.u∗),

hence
[e − (α + β + γ)]d(u.u∗) ≤ 0.

Since r(α + β + γ) ≤ 2 max{r(α), r(β)} + r(γ) < 1, [e − (α + β + γ)] is invertible and [e − (α + β + γ)]−1
≥ 0,

hence d(u,u∗) = 0. Therefore u is the unique common fixed point of f and 1. Similarly, we can obtain the
same result for the another case.

Using Theorem 3.9, we obtain the following conclusion
Corollary 3.2 Let (X, d) be a comlpete cone metric space over a Banach algebra A and P is a solid cone in
A, f , 1 : X→ X two mappings. Suppose that there exist {α, β, γ} ⊂ P with 2 max{r(α), r(β)} + r(γ) < 1 which
commute. If (3.20) holds and f or 1 is onto, then f and 1 have a unique common fixed point.

Using Theorem 3.9, we obtain unique common fixed point theorems for two mappings satisfying weak
Chatterjea-mixed type and Chatterjea-mixed type contractive conditions respectively.
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Theorem 3.10 Let (X, d) be a cone metric space over a Banach algebra A and P is a solid cone in A,
f , 1 : X→ X two mappings. Suppose that there exists γ ∈ P with r(γ) < 1

3 . If for each x, y ∈ X, x , y,

d( f1x, 1 f y) ≤ γ [d( f y, f1x) + d(1x, 1 f y) + d( f y, 1x)].

and f X or 1X is complete. Then f and 1 have a unique common fixed point.
Proof Let α = β = γ in Theorem 3.9, then the conclusion from Theorem 3.9.
Theorem 3.11 Let (X, d) be a cone metric space over a Banach algebra A and P is a solid cone in A,
f , 1 : X→ X two mappings. Suppose that there exists α ∈ P with r(α) < 1

2 . If for each x, y ∈ X, x , y,

d( f1x, 1 f y) ≤ α [d( f y, f1x) + d(1x, 1 f y)].

and f X or 1X is complete, then f and 1 have a unique common fixed point.
Proof Let α = β, γ = 0 in Theorem 3.9, then the conclusion from Theorem 3.9.

Modifying the proof of Theorem 3.6, we obtain the continuous and non-surjective version of Corollary
3.2.
Theorem 3.12 Let (X, d) be a complete cone metric space over a Banach algebra A and P is a solid cone in
A, f , 1 : X→ X two continuous mappings. If there exist {α, β, γ} ⊂ P with 2 max{r(α), r(β)} + r(γ) < 1 which
commute such that (3.20) holds. Then f and 1 have a unique common fixed point.

Using Theorem 3.12, we obtain the following unique fixed point theorem.
Theorem 3.13 (X, d) be a complete cone metric space over a Banach algebra A and P is a solid cone in A,
f : X→ X a continuous mapping. If there exist α ∈ P with r(α) < 1

2 such that for each x, y ∈ X, x , y,

d( f 2x, f 2y) ≤ α [d( f y, f 2x) + d( f x, f 2y)].

Then f has a unique fixed point.
Proof Let f = 1, α = β, γ = 0 in Theorem 3.12,
Remark 3.3 The contractive condition in Theorem 3.13 is weaker than Chatterjea contractive condition(see
Theorem 1.5 and Theorem 2.2). Hence Theorem 3.13 is a new version and a generalization of Theorem 1.5
and Theorem 2.2.
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