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aUniversity of Belgrade, Technical Faculty in Bor, Vojske Jugoslavije 12, 19210 Bor, Serbia
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Abstract. We present the definition and some properties for the Moore-Penrose inverse in possibly
degenerate indefinite inner product spaces. The extensions of appropriate results, given for matrices in
Euclidean and nondegenerate indefinite inner product spaces are established. All this is done by using the
concept of linear relations.

1. Introduction

Let Cn be the space equipped with an indefinite inner product induced by a Hermitian matrix H ∈ Cn×n

via
[x, y] = 〈Hx, y〉,

where 〈., .〉 denotes the standard Euclidean scalar product on Cn. If the Hermitian matrix H is invertible,
then the indefinite inner product is nondegenerate. In that case, for every matrix A ∈ Cn×n there is the
unique matrix A[∗]H satisfying

[A[∗]H x, y] = [x,Ay], for all x, y ∈ Cn.

Spaces with a degenerate inner product (when Gram matrix H is singular) are not so familiar. In
that kind of spaces the H-adjoint of the matrix A ∈ Cn×n need not exist. Examples can be found in ([3, 8]).
In ([2]) it was shown that the orthogonal complement of a subspace is not necessarily the direct complement.

In ([4]) the definition and the basic properties for the Moore-Penrose inverse were given. It was shown
that in a nondegenerate indefinite inner product space a matrix need not have a Moore-Penrose inverse.
By ([4], Theorem 1.) the Moore-Penrose inverse for matrix A exists if and only if rank(A) = rank(AA[∗]) =
rank(A[∗]A). When it exists, it is unique. Also, if the Moore-Penrose inverse exists, then R(A) and N(A[∗]) are
orthogonal complementary subspaces of Cn.

Our aim in this paper is to propose a more general definition of the Moore-Penrose inverse. As in ([3, 7,
8]), we will consider H-adjoint A[∗] not as a matrix, but as a linear relation inCn, i.e. a subspace ofC2n. Also, a

matrix A ∈ Cn×n can be interpreted as a linear relation via its graph Γ(A), where: Γ(A) :=
{(

x
Ax

)
: x ∈ Cn

}
⊆
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C2n. The H-adjoint of A is the linear relation A[∗] =

{(
y
z

)
∈ C2n : [y, ω] = [z, x] for all

(
x
ω

)
∈ A

}
.We just

mention that we can always find a basis of Cn such that the matrices H and A have the forms:

H =

[
H1 0
0 0

]
and A =

[
A1 A2
A3 A4

]
.

Here H1 is an invertible Hermitian matrix and the inner product induced by it is nondegenerate. From
([8], Proposition 2.6) we have

A[∗]H =




y1
y2

A1
[∗]H1 y1
z2

 : A2
∗H1y1 = 0

 .
Here we will suppress the subscripts H and H1 whenever it is clear from the context what is meant.

About inner product spaces see ([1, 2, 5, 6]).

We give some important notions for linear relations.

Definition 1.1. For linear relations A,B ⊆ C2n we define:

domA =

{
x :

(
x
y

)
∈ A

}
- the domain of A,

mulA =

{
y :

(
0
y

)
∈ A

}
- the multivalued part of A,

A−1 =

{(
y
x

)
:
(

x
y

)
∈ A

}
- the inverse of A,

A + B =

{(
x

y + z

)
:
(

x
y

)
∈ A,

(
x
z

)
∈ B

}
- the sum of A and B,

AB =

{(
x
z

)
: there exists some y ∈ Cn with

(
y
z

)
∈ A,

(
x
y

)
∈ B

}
- the product of A and B.

If domA = Cn, we say that A has full domain. In all the cases x, y, z are understood to be from Cn.

Theorem 1.2. Let A,B ⊆ C2n be linear relations. Then

1. A ⊆ B implies B[∗]
⊆ A[∗];

2. A[∗] + B[∗]
⊆ (A + B)[∗];

3. mulA[∗] = (domA)[⊥]; if A is a matrix, then mulA[∗] = kerH;

4. (A[∗])[∗] = A + (kerH × kerH).

In [4] the notion of the Moore-Penrose inverse of matrices in nondegenerate indefinite inner product
spaces is introduced. In this paper we give a generalization of the notion of the Moore-Penrose inverse A[†]

to degenerate indefinite inner product spaces. It is done via linear relations.
This paper is organized as follows. After giving basic notions and results concerning indefinite inner

product spaces and linear relations in Section 1, in Section 2 we give definition of the Moore-Penrose inverse
for the linear relations and investigate its properties for square matrices in degenerate case. Also, we show
that the Moore-Penrose inverse is not unique in general (Example 2.4). This section includes our main
result - the description of the Moore-Penrose inverses of A[∗]A and AA[∗] under the additional assumption
that A and A[†] are matrices. More precisely, the following is shown:
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• (A[†])[∗]
⊆ (A[∗])[†] (Theorem 2.6),

• A[∗]AA[†] = A[∗] and A[†]AA[∗]
⊆ A[∗] (Theorem 2.8),

• A[†](A[†])[∗] is the {1, 2, (3)}-inverse of A[∗]A (Theorem 2.11),

• (A[†])[∗]A[†] is the {1, 2, (4)}-inverse of AA[∗] (Theorem 2.12) ,

• necessary and sufficient conditions are given such that A[†](A[†])[∗] is the Moore-Penrose inverse of
A[∗]A and that (A[†])[∗]A[†] is the Moore-Penrose inverse of AA[∗] (Theorem 2.14 and 2.15).

2. Definition and Properties of the Moore-Penrose Inverse

In this section we give a new, more general definition for the Moore-Penrose inverse. That definition
includes linear relations and matrices. Most of the results in this paper are given for matrices. The case when
the Moore-Penrose inverse is not a matrix but a linear relation will be the object of some later researches.

In ([4]) it was shown that the Moore-Penrose inverse for a matrix A ∈ Cn×m is the unique matrix X ∈ Cm×n

that satisfies following equations:

AXA = A, XAX = X, AX = (AX)[∗] and XA = (XA)[∗].

If A and X are n × n complex matrices, then (AX)[∗] and (XA)[∗] are matrices if and only if H is invertible
([3]). That means that in the space with an indefinite inner product induced by Hermitian but not invertible
matrix H, the third and the fourth condition from the definition of the Moore-Penrose inverse are never
satisfied. These conditions are equal to (AX)∗H = HAX and (XA)∗H = HXA, respectively. By ([3], Propo-
sition 2.5) it is equivalent to AX and XA are H-symmetric. This motivates the following definition of the
Moore-Penrose inverse.

Definition 2.1. Let A ⊆ C2n be a linear relation. A linear relation X ⊆ C2n is the Moore-Penrose inverse of A if it
satisfies the following four equations:

AXA = A (1)

XAX = X (2)

AX ⊆ (AX)[∗] (3)

XA ⊆ (XA)[∗] (4)

The Moore-Penrose inverse of A is usually denoted by A[†].

We recall the notion of the weighted generalized Moore-Penrose inverse (where the weights are Hermi-
tian and possibly singular matrices) and then show its equality with the Moore-Penrose inverse in indefinite
inner product spaces.

Definition 2.2. Let A,M and N be matrices of order m × n, m × m and n × n, respectively, where M and N are
Hermitian. An n × m matrix X is said to be a generalized weighted Moore-Penrose inverse of A if the following
conditions are satisfied: AXA = A, XAX = X, (MAX)∗ = MAX and (NXA)∗ = NXA, where ∗ denotes conjugate
transpose.

Lemma 2.3. Let A ∈ Cn×n be a matrix and let H be Hermitian matrix of the same size. Then the Moore-Penrose
inverse and generalized weighted Moore-Penrose inverse of A (with respect to H) coincide.
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Proof. The (3) and (4) are direct corollary of ([3], Proposition 2.5.), i.e,

HAX = (HAX)∗ and HXA = (HXA)∗.

Unlike the nondegenerate case, in degenerate inner product spaces a Moore-Penrose inverse does not
have to be unique. The next example illustrates it.

Example 2.4. Let A =

[
1 0
1 0

]
and H =

[
1 0
0 0

]
.

By direct computation the matrix X that satisfies (1), (2), (3) and (4) has the form X =

[
1 0
c 0

]
, where c is an

arbitrary complex number.

Through this paper we will assume that matrices A, X and H are given in their characteristic forms:

A =

[
A1 A2
A3 A4

]
, X =

[
X1 X2
X3 X4

]
and H =

[
H1 0
0 0

]
, where H1 is invertible, as in [8].

Theorem 2.5. Let A ∈ Cn×n be a matrix. Then X ∈ Cn×n is a Moore-Penrose inverse of A if and only if the following
conditions hold:
(i) A1X2 + A2X4 = 0,
(ii) A1X1 + A2X3 is H1-selfadjoint,
(iii)X1A2 + X2A4 = 0,
(iv)X1A1 + X2A3 is H1-selfadjoint,
(v) A1X1A1 + A2X3A1 = A1,
(vi) A1X1A2 + A2X3A2 = A2,
(vii) A3X1A1 + A4X3A1 + A3X2A3 + A4X4A3 = A3,
(viii) A4X3A2 + A4X4A4 = A4,
(ix) X1A1X1 + X2A3X1 = X1,
(x) X1A1X2 + X2A3X2 = X2,
(xi) X3A1X1 + X4A3X1 + X3A2X3 + X4A4X3 = X3,
(xii) X4A3X2 + X4A4X4 = X4.

Proof. From the third condition for the Moore-Penrose inverse, by Lemma 2.3. we get:

HAX = (HAX)∗ ⇐⇒
[

H1 0
0 0

] [
A1 A2
A3 A4

] [
X1 X2
X3 X4

]
=

=

[
H1(A1X1 + A2X3) H1(A1X2 + A2X4)

0 0

]
=

[
(H1(A1X1 + A2X3))∗ 0
(H1(A1X2 + A2X4))∗ 0

]
, i.e,

(i) A1X2 + A2X4 = 0,
(ii) A1X1 + A2X3 is H1-selfadjoint.

Similarly, from the condition (4) we have:
(iii)X1A2 + X2A4 = 0,
(iv)X1A1 + X2A3 is H1-selfadjoint.

From these two results and the conditions (1) and (2) we have:[
A1X1A1 + A2X3A1 A1X1A2 + A2X3A2

A3X1A1 + A4X3A1 + A3X2A3 + A4X4A3 A4X3A2 + A4X4A4

]
=

[
A1 A2
A3 A4

]
, i.e,

(v) A1X1A1 + A2X3A1 = A1,
(vi) A1X1A2 + A2X3A2 = A2,
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(vii) A3X1A1 + A4X3A1 + A3X2A3 + A4X4A3 = A3,
(viii) A4X3A2 + A4X4A4 = A4.

Similarly,[
X1A1X1X2A3X1 X1A1X2 + X2A3X2

X3A1X1 + X4A3X1 + X3A2X3 + X4A4X3 X4A3X2 + X4A4X4

]
=

[
X1 X2
X3 X4

]
.

(ix) X1A1X1 + X2A3X1 = X1,
(x) X1A1X2 + X2A3X2 = X2,
(xi) X3A1X1 + X4A3X1 + X3A2X3 + X4A4X3 = X3,
(xii) X4A3X2 + X4A4X4 = X4.

In the rest of the section we give some basic properties of a Moore-Penrose inverse.

Theorem 2.6. If A[†]
∈ Cn×n is a Moore-Penrose inverse of A ∈ Cn×n, then (A[†])[∗]

⊆ (A[∗])[†].

Proof. Let us put X = A[†] =

[
X1 X2
X3 X4

]
. We have that

X[∗] =




y1
y2

X1
[∗]H1 y1
z2

 : X∗2H1y1 = 0


and

A[∗] =




y1
y2

A1
[∗]H1 y1
z2

 : A∗2H1y1 = 0

 .
We check the conditions from the definition of the Moore-Penrose inverse of A[∗]:

(1) A[∗]X[∗]A[∗] =




y1
y2

A1
[∗]X1

[∗]A1
[∗]y1

z2

 :
A∗2H1y1 = 0,

X∗2H1A1
[∗]y1 = 0,

A∗2H1X1
[∗]A1

[∗]y1 = 0

 .
Let A∗2H1y1 = 0 hold. Then

X2
∗H1A1

[∗]y1 = X2
∗A1

∗H1y1 = (A1X2)∗H1y1
(i)
= (−A2X4)∗H1y1 = −X4

∗A2
∗H1y1 = 0, from our assumption.

Also, A2
∗H1X1

[∗]A1
[∗]y1 = A2

∗X1
∗A1

∗H1y1 = (A1X1A2)∗H1y1
(vi)
=

(A2 − A2X3A2)∗H1y1 = A∗2H1y1 − (A2X3A2)∗H1y1 = −A2
∗X3

∗A2
∗H1y1 = 0, and

A1
[∗]X1

[∗]A1
[∗]y1 = (A1X1A1)[∗]y1

(v)
= (A1 − A2X3A1)[∗]y1 =

A1
[∗]y1 − (A2X3A1)[∗]y1 = A1

[∗]y1 −H1
−1A1

∗X3
∗A2

∗H1y1 = A1
[∗]y1.

Thus, A[∗]X[∗]A[∗] =




y1
y2

A1
[∗]y1
z2

 : A∗2H1y1 = 0

 = A[∗].

(2) Similarly, X[∗]A[∗]X[∗] = X[∗].

(3) A[∗]X[∗] =




y1
y2

A1
[∗]X1

[∗]y1
z2

 :
X∗2H1y1 = 0,

A∗2H1X1
[∗]y1 = 0

 ==




y1
y2

(X1A1)[∗]y1
z2

 : X∗2H1y1 = 0

 because of
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A2
∗H1X1

[∗]y1 = A2
∗X1

∗H1y1 = (X1A2)∗H1y1
(iii)
= −A4

∗X2
∗H1y1 = 0.

On the other hand, we have

(
A[∗]X[∗]

)[∗]
=

{(
y
z

)
: [y, ω] = [z, x] for all

(
x
ω

)
∈ A[∗]X[∗]

}
.

It is easy to see that A[∗]X[∗]
⊆

(
A[∗]X[∗]

)[∗]
if and only if [y, ω] = [z, x] for all

(
x
ω

)
,
(

y
z

)
∈ A[∗]X[∗].

Let
(

x
ω

)
,
(

y
z

)
∈ A[∗]X[∗]. As x =

(
x1
x2

)
and y =

(
y1
y2

)
are from the domain of A[∗]X[∗],

we have that X∗2H1x1 = X∗2H1y1 = 0.

Also, ω =

(
ω1
ω2

)
=

(
(X1A1)[∗]x1
ω2

)
and z =

(
z1
z2

)
=

(
(X1A1)[∗]y1

z2

)
.

Now, we have,
[y, ω] = ω∗Hy = ω1

∗H1y1 = ((X1A1)[∗]x1)∗H1y1 = x∗1H1X1A1y1 and

[z, x] = x∗Hz = x∗1H1z1 = x∗1H1(X1A1)[∗]y1
(iv)
= x∗1H1(X1A1 + X2A3 − (X2A3)[∗])y1 = x∗1H1X1A1y1 + x∗1H1X2A3y1 −

x∗1A∗3X∗2H1y1 = x∗1H1X1A1y1, as X∗2H1x1 = X∗2H1y1 = 0, proving that [y, ω] = [z, x]. Thus, A[∗]X[∗]
⊆

(
A[∗]X[∗]

)[∗]

holds.

(4) In the same way it can be shown that X[∗]A[∗]
⊆

(
X[∗]A[∗]

)[∗]
.

Remark 2.7. We mention that in degenerate inner product spaces, in general we just have (AXA)[∗]
⊇ A[∗]X[∗]A[∗]

([3]). From the previous theorem we see that if X ∈ Cn×n is a Moore-Penrose inverse then equality holds.

In nondegenerate indefinite inner product spaces the well known property of the Moore-Penrose inverse
A[∗] = A[∗]AA[†] = A[†]AA[∗] holds. We will show that it is not true in general in the degenerate case. As

usual, in the proof of the theorem we will use X = A[†] =

[
X1 X2
X3 X4

]
.

Theorem 2.8. If A[†]
∈ Cn×n is a Moore-Penrose inverse of A ∈ Cn×n, then A[∗] = A[∗]AA[†] and A[†]AA[∗]

⊆ A[∗].

Proof. Using (i) we have

A[∗]AA[†] =




y1
y2

A1
[∗](A1X1 + A2X3)y1

z2

 : A∗2H1(A1X1 + A2X3)y1 = 0

 .
The conditions that we have can be simplified as follows ((ii),(vi),(v)):

A∗2H1(A1X1 + A2X3)y1 = 0⇐⇒ A∗2H1(A1X1 + A2X3)[∗]y1 = 0⇐⇒
A∗2(A1X1 + A2X3)∗H1y1 = 0⇐⇒ (A1X1A2 + A2X3A2)∗H1y1 = 0⇐⇒ A∗2H1y1 = 0.
Also, A1

[∗](A1X1 + A2X3)y1 = (A1X1A1 + A2X3A1)[∗]y1 = A[∗]
1 y1.

So, we have A[∗]AA[†] =




y1
y2

A1
[∗]y1
z2

 : A∗2H1y1 = 0

 = A[∗].

Let us check the second statement:
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A[†]AA[∗] =




y1
y2

(X1A1 + X2A3)A[∗]
1 y1

(X3A1 + X4A3)A[∗]
1 y1 + (X3A2 + X4A4)z2

 : A∗2H1y1 = 0

 .
Now, we have (X1A1 + X2A3)A[∗]

1 y1
(iv)
= (A1X1A1 + A1X2A3)[∗]y1

(v,i)
=

(A1 − A2X3A1 − A2X4A3)[∗]y1 = A[∗]
1 y1, for A∗2H1y1 = 0.

Thus, A[†]AA[∗] =




y1
y2

A[∗]
1 y1

(X3A1 + X4A3)A[∗]
1 y1 + (X3A2 + X4A4)z2

 : A∗2H1y1 = 0


⊆




y1
y2

A[∗]
1 y1
z2

 : A∗2H1y1 = 0

 = A[∗].

The opposite inclusion holds just in the case when X3A2 + X4A4 is invertible.

Example 2.9. To see that a similar statement that A[†]AA[∗] = A[∗] does not hold, consider the following example:

A =

[
1 0
1 0

]
and H =

[
1 0
0 0

]
. Then A[∗] =




y1
y2
y1
z2


 , and A[†]AA[∗] =




y1
y2
y1

cy1


 ,where z2 and c are arbitrary,

but fixed complex constants.

So, we have just A[†]AA[∗]
⊆ A[∗], while the opposite is not true, for example, in y =

(
0
0

)
.

Definition 2.10. A matrix X ∈ Cn×n is {1, 2, (3)}- inverse ({1, 2, (4)}−inverse) of A ∈ Cn×n if the following conditions
hold: AXA = A, XAX = X and AX ⊆ (AX)[∗], (AXA = A, XAX = X and XA ⊆ (XA)[∗]).

Theorem 2.11. If A[†]
∈ Cn×n is a Moore-Penrose inverse of A ∈ Cn×n, then A[†](A[†])[∗] is a {1,2,(3)}- inverse of

A[∗]A.

Proof. To simplify the notation, we denote A[†] by X. Let us check the conditions for the Moore-Penrose
inverse:

(1) A[∗]AXX[∗]A[∗]A = A[∗]X[∗]A[∗]A = A[∗]A.
(2) XX[∗]A[∗]AXX[∗] = XX[∗]A[∗]X[∗] = XX[∗].
(3) A[∗]AXX[∗] = A[∗]X[∗]

⊆ (A[∗]X[∗])[∗].

The first parts follow from Theorem 2.8 and the second ones from Theorem 2.7.

Theorem 2.12. If A[†]
∈ Cn×n is a Moore-Penrose inverse of A ∈ Cn×n, then (A[†])[∗]A[†] is a {1,2,(4)}- inverse of

AA[∗].

Proof. We check the conditions (1), (2) and (4) from the definition of the Moore-Penrose inverse. The equal-
ities that arise here are explained in detail below.

(1) AA[∗](A[†])[∗]A[†]AA[∗] = AA[∗]X[∗]XAA[∗] =

AA[∗]




y1
y2

X[∗]
1 (X1A1 + X2A3)A[∗]

1 y1
z2

 :
A∗2H1y1 = 0

X∗2H1(X1A1 + X2A3)A[∗]
1 y1 = 0


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= AA[∗]




y1
y2

(A1X1)[∗]y1
z2

 : A∗2H1y1 = 0

 = A




y1
y2

A[∗]
1 (A1X1)[∗]y1

z2

 :
A∗2H1y1 = 0

A∗2H1(A1X1)[∗]y1 = 0

 =

A




y1
y2

(A1X1A1)[∗]y1
z2

 : A∗2H1y1 = 0

 = A




y1
y2

A[∗]
1 y1
z2

 : A∗2H1y1 = 0

 = AA[∗], where we used the equations

from the Theorem 2.5.
Let A∗2H1y1 = 0. Then:
X∗2H1(X1A1 + X2A3)A[∗]

1 y1 = X∗2H1(X1A1 + X2A3)[∗]A[∗]
1 y1 =

X∗2(X1A1 + X2A3)∗H1A[∗]
1 y1 = (X1A1X2 + X2A3X2)∗H1A[∗]

1 y1 =

X∗2H1A[∗]
1 y1 = X∗2A∗1H1y1 = (A1X2)∗H1y1 = −(A2X4)∗H1y1 = 0.

Also, X[∗]
1 (X1A1 + X2A3)A[∗]

1 y1 = X[∗]
1 (X1A1 + X2A3)[∗]A[∗]

1 y1 = (X1A1X1 + X2A3X1)[∗]A[∗]
1 y1 = X[∗]

1 A[∗]
1 y1,

and A∗2H1(A1X1)[∗]y1 = A∗2(A1X1)∗H1y1 = (A1X1A2)∗H1y1 = (A2 − A2X3A2)∗H1y1 = 0.

Finally, (A1X1A1)[∗]y1 = (A1 − A2X3A1)[∗]y1 = A[∗]
1 y1.

(2) For checking the second condition we have: X[∗]XAA[∗]X[∗]X =

X[∗]XA




y1
y2

A[∗]
1 X[∗]

1 (X1y1 + X2y2)
ω2

 :
X∗2H1(X1y1 + X2y2) = 0

A∗2H1X[∗]
1 (X1y1 + X2y2) = 0

 =

X[∗]XA




y1
y2

A[∗]
1 X[∗]

1 (X1y1 + X2y2)
ω2

 : X∗2H1(X1y1 + X2y2) = 0

 =

X[∗]X




y1
y2

A1A[∗]
1 X[∗]

1 (X1y1 + X2y2) + A2ω2

A3A[∗]
1 X[∗]

1 (X1y1 + X2y2) + A4ω2

 : X∗2H1(X1y1 + X2y2) = 0

 =

X[∗]




y1
y2

(X1A1 + X2A3)A[∗]
1 X[∗]

1 (X1y1 + X2y2)
∗

 : X∗2H1(X1y1 + X2y2) = 0

 =

X[∗]




y1
y2

(X1A1)[∗](X1y1 + X2y2)
∗

 : X∗2H1(X1y1 + X2y2) = 0

 =




y1
y2

X[∗]
1 (X1A1)[∗](X1y1 + X2y2)

z2

 :
X∗2H1(X1y1 + X2y2) = 0

X∗2H1(X1A1)[∗](X1y1 + X2y2) = 0

 =




y1
y2

X[∗]
1 (X1y1 + X2y2)

z2

 : X∗2H1(X1y1 + X2y2) = 0

 = X[∗]X.
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Similarly as in (1), let X∗2H1(X1y1 + X2y2) = 0.
Now, A∗2H1X[∗]

1 (X1y1 + X2y2) = (X1A2)∗H1(X1y1 + X2y2) = −A∗4X∗2H1(X1y1 + X2y2) = 0
and X∗2H1(X1A1)[∗](X1y1 + X2y2) = (X1A1X2)∗H1(X1y1 + X2y2) = (X2 − X2A3X2)∗H1(X1y1 + X2y2) = 0.

Also, we have
X1A1A[∗]

1 X[∗]
1 (X1y1 + X2y2) + X1A2ω2 + X2A3A[∗]

1 X[∗]
1 (X1y1 + X2y2) + X2A4ω2 =

(X1A1 + X2A3)A[∗]
1 X[∗]

1 (X1y1 + X2y2) + (X1A2 + X2A4)ω2 =

(X1A1 + X2A3)[∗]A[∗]
1 X[∗]

1 (X1y1 + X2y2) =

(X1A1(X1A1 + X2A3))[∗](X1y1 + X2y2) = (X1A1X1A1 + (X2 − X2A3X2)A3)[∗](X1y1 + X2y2) =
(X1A1X1A1)[∗](X1y1 + X2y2) = ((X1 − X2A3X1)A1)[∗](X1y1 + X2y2) = (X1A1)[∗](X1y1 + X2y2),

and

X[∗]
1 (X1A1)[∗](X1y1 + X2y2) = (X1A1X1)[∗](X1y1 + X2y2) = (X1 − X2A3X2)[∗](X1y1 + X2y2) = X[∗]

1 (X1y1 + X2y2).

(3) We show that (A[†])[∗]A[†]AA[∗]
⊆ ((A[†])[∗]A[†]AA[∗])[∗], i.e. X[∗]XAA[∗]

⊆ (X[∗]XAA[∗])[∗] is satisfied. Here
we use the equalities from (1).

X[∗]XAA[∗] =




y1
y2

(A1X1)[∗]y1
z2

 : A∗2H1y1 = 0


We know that X[∗]XAA[∗]

⊆ (X[∗]XAA[∗])[∗] if and only if

((A1X1)[∗]x1)∗H1y1 = x∗1H1(A1X1)[∗]y1, for all y =

(
y1
y2

)
and x =

(
x1
x2

)
such that A∗2H1y1 = A∗2H1x1 = 0.

The left side is ((A1X1)[∗]x1)∗H1y1 = x∗1H1A1X1y1.
The right side is: x∗1H1(A1X1)[∗]y1 = x∗1H1(A1X1 + A2X3 − (A2X3)[∗])y1 =
x∗1H1A1X1y1 + x∗1H1A2X3y1 − x∗1X∗3A∗2H1y1 = x1H1A1X1y1, because of A∗2H1x1 = A∗2H1y1 = 0.

The left and the right side are equal, so we see that X[∗]XAA[∗]
⊆ (X[∗]XAA[∗])[∗] is satisfied.

We can show that in general case the fourth (third) condition is not satisfied.

Example 2.13. Let A =

[
1 1
1 2

]
and H =

[
1 0
0 0

]
. Then the Moore-Penrose inverse for A is given by X =[

2 −1
−1 1

]
.

We check if the fourth condition holds:

A[†](A[†])[∗]A[∗]A = XX[∗]A[∗]A =




y1
−y1
−z2
z2


, where y1 and z2 are arbitrary complex numbers. The definition

of H-symmetry implies that if A[†](A[†])[∗]A[∗]A ⊆ (A[†](A[†])[∗]A[∗]A)[∗] then (z2)∗y1 = (y1)∗z2. Obviously, it is not
satisfied for y1 = 1 and z2 = i.

Theorem 2.14. If X = A[†]
∈ Cn×n is a Moore-Penrose inverse of A ∈ Cn×n then A[†](A[†])[∗] is a Moore-Penrose

inverse of A[∗]A if and only if X2
∗H1y1 = 0 for all y =

(
y1
y2

)
which satisfies A2

∗H1(A1y1 + A2y2) = 0.
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Proof. From Theorem 2.11, we already have that A[†](A[†])[∗] is {1,2,(3)}- inverse of A[∗]A. Putting X = A[†],
we have

XX[∗]A[∗]A = XX[∗]




y1
y2

A1
[∗](A1y1 + A2y2)

z2

 : A∗2H1(A1y1 + A2y2) = 0

 =

X




y1
y2

X1
[∗]A1

[∗](A1y1 + A2y2)
z2

 :
A∗2H1(A1y1 + A2y2) = 0

X2
∗H1A1

[∗](A1y1 + A2y2) = 0

=

X




y1
y2

A1y1 + A2y2
z2

 : A∗2H1(A1y1 + A2y2) = 0

 =




y1
y2

X1(A1y1 + A2y2) + X2z2
X3(A1y1 + A2y2) + X4z2

 : A∗2H1(A1y1 + A2y2) = 0

 .
Here we use conditions from the Theorem 2.5: we have X2

∗H1A1
[∗](A1y1+A2y2) = X∗2A∗1H1(A1y1+A2y2) =

−X∗4A∗2H1(A1y1 + A2y2) = 0, from the first condition.

Also, X1
[∗]A1

[∗](A1y1 + A2y2) = (A1X1)[∗](A1y1 + A2y2) = (A1X1 + A2X3 − (A2X3)[∗])(A1y1 + A2y2) =
A1X1A1y1 + A2X3A1y1 + A1X1A2y2 + A2X3A2y2 =
(A1X1A1 + A2X3A1)y1 + (A1X1A2 + A2X3A2)y2 = A1y1 + A2y2.

The necessary and sufficient condition for being the {(4)}-inverse (i.e. XX[∗]A[∗]A ⊆ (XX[∗]A[∗]A)[∗] ) is:
(X1(A1x1 + A2x2) + X2ω2)∗H1y1 = x1

∗H1(X1(A1y1 + A2y2) + X2z2), when A2
∗H1(A1y1 + A2y2) = 0 and

A2
∗H1(A1x1 + A2x2) = 0 for every z2 and every ω2.

The last condition is equivalent to
x∗1(X1A1)∗H1y1 + x∗2(X1A2)∗H1y1 + ω2

∗X∗2H1y1 = x∗1H1X1A1y1 + x∗1H1X1A2y2 + x∗1H1X∗2z2 for all z2 and ω2 of
appropriate sizes.

It is not difficult to see that the last one is satisfied if and only if X2
∗H1y1 = X∗2H1x1 = 0 and

x∗1(X1A1)∗H1y1 + x∗2(X1A2)∗H1y1 = x∗1H1X1A1y1 + x∗1H1X1A2y2.

Moreover, from Theorem 2.5. and X2
∗H1y1 = X∗2H1x1 = 0 we have

x∗1(X1A1)∗H1y1 = x∗1H1(X1A1)[∗]y1 = x∗1H1X1A1y1, as in the proof of Theorem 2.12.

Now, x∗2(X1A2)∗H1y1 = −x∗2(X2A4)∗H1y1 = −x∗2A∗4X∗2H1y1 = 0 and x∗1H1X1A2y2 = −x∗1H1X2A4y2 = 0.

So, under the condition that X∗2H1y1 = 0 for all y =

(
y1
y2

)
, such that A∗2H1(A1y1 + A2y2) = 0 we have that

left and the right side of the previous equation are equal. Thus, we have that it is necessary and sufficient
condition for A[†](A[†])[∗] being a Moore-Penrose inverse of A[∗]A.

Theorem 2.15. If X = A[†]
∈ Cn×n is a Moore-Penrose inverse of A ∈ Cn×n then (A[†])[∗]A[†] is a Moore-Penrose

inverse of AA[∗] if and only if A2
∗H1y1 = 0 for all y =

(
y1
y2

)
which satisfies X2

∗H1(X1y1 + X2y2) = 0.

Proof. Similar to the previous result.

Corollary 2.16. If X = A[†]
∈ Cn×n is a Moore-Penrose inverse of A ∈ Cn×n and A2 = 0 and X2 = 0 (equivalently

to A[∗] and X[∗] have full domains), then (A[∗]A)[†] = A[†](A[†])[∗], and (AA[∗])[†] = (A[†])[∗]A[†].

Proof. Since A2 = X2 = 0 we have that A∗2H1(A1y1 + A2y2) = 0, X∗2H1(X1y1 + X2y2) = 0, A∗2H1y1 = 0
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and X∗2H1y1 = 0 for all y =

(
y1
y2

)
, so by Theorem 2.14. and Theorem 2.15, (A[∗]A)[†] = A[†](A[†])[∗], and

(AA[∗])[†] = (A[†])[∗]A[†] hold.

The next example shows that A[†] = (A[∗]A)[†]A[∗] and A[†] = A[∗](AA[∗])[†] does not hold.

Example 2.17. Let H =

[
1 0
0 0

]
and A = I2. Then A[†] = X = I2 =




y1
y2
y1
y2


.

Accordingly to Corollary 2.16, we have (A[∗]A)[†]A[∗] = A[†](A[†])[∗]A[∗] = XX[∗]A[∗] =




y1
y2
y1
z2


. Also, A[∗](AA[∗])[†] =

A[∗](A[†])[∗]A[†] = A[∗]X[∗]X =




y1
y2
y1
z2


. Hence, we have (A[∗]A)[†]A[∗] , A[†] and A[∗](AA[∗])[†] , A[†].
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