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Second Hankel Determinant Problem for k-bi-starlike Functions

Halit Orhan?, Evrim Toklu®?, Ekrem Kadioglu?

?Department of Mathematics, Faculty of Science, Ataturk University, 25240 Erzurum-Turkey
b Agr1 Ibrahim Cegen University, Vocational School, 04100 Agri-Turkey

Abstract. In this paper we introduce and study some properties of k-bi-starlike functions defined by
making use of the Saldgean derivative operator. Upper bounds on the second Hankel determinant for
k-bi-starlike functions are investigated. Relevant connections of the results presented here with various
well-known results are briefly indicated.

1. Introduction

As usual, we denote by A the class of functions f(z) normalized by

f@)=z+ Z a,z" (1)
n=2

which are analytic in the open unit disk U = {z: z € C and |z] < 1}.
We also denote by S the subclass of A consisting of functions which are univalent in U. Let f~(z) be the
inverse function of f(z), defined by

FfE) =2 (et and £ @) = ool < n() () 2 5
where
FH(w) = w - apw® + (211% - a3)w’ - (5{13 — Bayaz + ag)w* + ...

A function f € A is said to be bi-univalent in U if both f (z) and f~!(z) are univalent in U. We denote by
o the class of all functions f(z) which are bi-univalent in U.

Brannan et al. [2] introduced certain subclasses of the bi-univalent function class ¢ similar to the familiar
subclasses 5*() and K(B) of starlike and convex function of order g (0 < < 1), respectively (see [9]). For
a brief history of functions in the class o, see the work of Srivastava et al. [19]. In fact, judging by the
remarkable flood of papers on the subject ([1], [5], [8], [11], [15]-[18], [20], [21], [23]), the pioneering work
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by Srivastava et al. [19] appears to have revived the study of analytic and bi-univalent functions in recent
years. By definition, we have

z2f'(2)
f@)

S*(ﬁ):{feS:%( )>[3;0sﬁ<1,zeu}

and

Zf/l(z)
f@
The classes S;(8) and K,(f) of bi-starlike functions of order f and bi-convex functions of order p,

corresponding to the function classes 5*(f) and K(fB), were also considered analogously.
The ¢ Hankel determinant for n > 0 and g > 1 was stated by Noonan et al. ([10]) as

K(ﬁ):{feS:‘R(1+ )>ﬁ;0§[3<1,zeu}.

ay Ap+1 o Anig-1
An+1 Ans2 oo an+q
Hy(n) = ) . . (a1 =1).
an+q—l an+q an+2q—2

We note that Hy(1) = a3 — a% is well-known as Fekete-Szego functional (see [4] ). For our discussion in
the present paper, we examine the Hankel determinant in the case 4 = 2 and n = 2, H»(2) = aya4 — a3. We
will try to find upper bound for the functional H»(2) = axa, — a3 for the functions f belonging to the class
Sok(B) of k-bi-starlike functions.

For a function f(z) € A, we define

D’f(z) = f(2);
D'f(z) = Df(z) =zf(2);

DFf(z) D(D"'f(2)) (k€ Np = N U {0} where N = {1,2,3,...}).

The differential operator D* was considered by Saldgean [13].
With the help of this differential operator, Sdldgean [13] also defined the class of k-starlike functions of
order § (0 < f < 1) defined by

Dk+1 f(Z)
D¥f(z)

Kanas et al. [7] obtained more general results for k—uniformly convex functions by using parameter
k. Certain well-known subclasses of S are indeed special cases of Si(B) for suitable choices of parameters k
and . We remark that for k = 0, So(8) = S(B) and for k = 1, S1(B) = K(B) are classes of starlike functions of
order § and convex functions of order 3, respectively.

Sk(ﬁ)={feA:‘R( )>ﬁ,zell}.

Definition 1.1. A function f € ¢ is said to be in the class S;x(B), if the following conditions are satisfied:

Dk+1f(z)
%(W)>‘B,’Oﬁﬁ<l,zeu (2)
and
D) g 0<p<t weu 3
(Dkg(w))>ﬁ’ =p<lwe ©
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where g(w) = f~}(w).

We remark that for k = 0 the class S;0(8) = S;(B) is the class of bi-starlike functions of order . When
k=1, 5,1(8) = K;(B) is the class of bi-convex functions of order f. Our main interest focus on the class
Sok(B) of k-bi-starlike functions.

The purpose of this note is to find upper bound for the functional H»(2) = axa, — a3 for functions f
belonging to the class S, k().

Now we recall the following lemmas which will be required in our next investigation.

Lemma 1.2. [12] Ifp(z) = 1 + p1z + paz® + paz° + ... is an analytic function in U with positive real part, then
2 2
pi |P2|
—|l<2 - ==
2 < 2
Lemma 1.3. [6] If the function p € P, then

lpul <2, and |p2 — (n € N).

2p; = p% +x(4 - p%); 4p; = pf +2(4 - pf)plx -p1(4- pf)x2 +2(4 - pf)(l — |x|2)z

for some x, z with [x] < 1and |z| < 1.

2. Main Results
One of our main results is contained in
Theorem 2.1. Let f given by (1) be in the class S;x(B), 0 < f < 1. Then, fork =1,2,3

(1-p)y>[2% 3.2kM2
2% 3% 3%N

laray — agl <

and for k = 0 and for every k > 4(k € IN)

|a2ay — a3] < { 3(21“_1/32)%1_[21 + 26k,22k]\/1k+23.25k] , Bel0pl
A m -] e
where
M = {6F+23% 2% _¢p),

N = 16.3%(3.25 + 2% - 3%1)(1 - g)? - 6.35.2%(1 — ) + 3.25F — 8.2% 3%

and

3'2k+5 + 22k+5 _ 23k31—k _ 32'3k+1 _ (%)k \/9‘24k + 22k+732k 4 Dk+732k+1 _ 108 33k+1
ﬁl = 2(3'2k+4 4 D2k+4 _ 16.3k+1) ’

Proof. Let f € S;x(B). Then

Dk+1 f(Z) B
D@ B+ (1-Bp(z) (4)
D+l g(w) B
Dhow) B+ (1 -pB)y(w) (5)

where p,q € Pand g = f~. Thus, after some calculations, it follows from (4) and (5) that

1-B
2k

ap = p1, (6)
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1-p?>, 1-8
5= pr+ < 3k (P2 — q2) 7)
and
@1 =221 -pP , 51-p) (1-p)
ay = 3o P+ =g P12 = @)+~ (ps = 4a). 8)
Then, we can establish that
1-— 4 3k+1 _ 22k _ 32k
lazay —a§| = |- Sl 305k )P%
a-py 1-p7 1-p7
+ g P2 = 1) + ——api(ps —43) = g (2 — 1)) )
Making use of Lemma 1.3, we have
4-p?
pr-g2=—5—(x-y) (10)
and
P @G-php 4 -pDp 4-p7
Py =5+ —— ) - — R )+ [ = )z = (- P (an
Then, by using equations (10) and (11) in (9) we may set
(1-p*@2F+2% -3 (1-B?* , (1-p7
lazas — a3l < ( VE Ty Py + o - 21
A-p2 ,(4-p)) (QA-p7° ,(4- P )
+[ e P g P (bl + 1)
1-p? ,@d-p}) (1-p?* @ —P )
+[ 6.23 P 41 T e M = [ + 1P
1-p>(
16.9% (12)

Since p € P, so |p1| < 2. Letting |p1| = p, we may assume without restriction that p € [0,2]. Forn = |x| < 1

and u = |y| <1, we get

la2as — a3 < Ty + (n + WT2 + (7% + p*)Ts + (n + p)*Ta = G(, )

where
(L= I P
T, = Tap) = a —ﬁ)zzzi(zél—r’z) [ﬁ N (14 Skﬁ)] g
Ty = Typ)= —ﬁ)ZP;i 235)(;7 2) _
T, = Tip)= (11;9522'(4 —4P) o

|20

We now need to maximize the function G(1, 1) on the closed region [0, 1] x [0, 1].

Since T3 < 0 and T3 + 2T4 > O for p € [0, 2), we conclude that GiGup —

(Gpu)?* <0.
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Thus the function G can’t have a local maximum in the interior of the region. Now, we investigate the
maximum value of G on the boundary of the region.

Forn=0and 0 < u < 1 (similarly g = 0 and 0 < 1 < 1), we obtain G(0, u) = H(u) = (T3 + Ta)u* +
Tou+Ti.

Case 1: T3+ T4 > 0: In this case for 0 < y < 1 and any fixed p with 0 < p < 2, it’s clear that
H'(u) = 2(Ts + Ty)u + T2 > 0, that is, H(u) is increasing function. Hence, for fixed p € [0, 2), the maximum
of H(u) occurs at p =1, and maxH(u) = H1) = T1 + To + T3 + T4.

Case2: T3+ T4 < 0: Since T, +2(T3 + T4) > 0 for 0 < p < 1 and any fixed p with 0 < p < 2,it is clear that
T +2(T3 + Ty) < 2(T3 + T4)u + To < T and so H'(u) > 0. Hence for fixed p € [0, 2), the maximum of H(u)
occurs at u = 1.

Also for p = 2 we obtain

(1 _ ﬁ)Z (1 _ 5)2(3-2k + 22k _ 3k+1)
G, ) = 3.0% 22k—4

+4]. (13)

Taking into consideration the value (13), and the cases 1 and 2, for 0 < p < 1 and any fixed p with
0< p= Z,maxH(y) =H)=T1+ Ty + T3+ Ty.

Forn=1and 0 < p <1 (similarly p = 1and 0 < 17 < 1), we have G(1, u) = F(u) = (T3 + Ta)u® + (T2 +
2T+ T1 + T + T3 + Ty

Similarly to the above cases of T3 + Ty, we get that max F(u) = F(1) = Ty + 2T, + 2T3 + 4T,

Since H(1) < F(1) for p € [0,2], max G(n, 1) = G(1,1) on the boundary of the region. Thus, the maximum
value of G occurs at 7 = 1 and p = 1 in the closed region.

LetK:[0,2] » R

K(p) = maxG(n, p) = G(1,1) = T1 + 2T + 2T3 + 4T, (14)
Substituting the values of Ty, T, T3 and Ty in the function K defined by (14), yields

A-pP( N _, 2
K(p): 22k 48.23k32kp +32k2k+1p +ﬂ :

Assume that K(p) has a maximum value in an interior of p € [0, 2], by elementary calculations, we arrive
at

(1—ﬁY{ N

’ _ 3
K (P) T 0% 12'23k32kp + 2k32kp}'

Setting K’(p) = 0, we have the real critical points py, = 0 and pg, = %

It can be showed easily that M is a positive real number for every g € [0, 1) and for every k € IN. That is,
M>0.
Besides, by using Mathematica Program we can obtain that one of roots of equation N = 0is

3'2k+5 + 22k+5 _ 23k+131—k _ 32'3k+1
2(3.2k+4 4+ D2k+4 _ 16_3k+1)
2_3—2k \/24k+734k _ 27k+432k+1 _ 5'26k32k+3 + 25k+433k+2 + 23k+734k+1 _ 22k+735k+1

2(3.2k+4 + D2k+4 _ 16.3k+1)

As a result of some calculations we can deduce that N is a negative real number for every 8 € [0, 1) and
fork =1,2,3,4,5 (see Figure 1) but N is not always a negative real number for k > 6(k € IN) and for some
values of € [0,1) . Also, if below Figure 1 is scrutinized, we can conclude that N is a negative real number
forevery € [0,1)and fork=1,2,3,4,5.

pr =
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Figure 1: We can see that N is a negative real number for k=1,2,3,4,5.

We can do the following examine in consequence of above explanations:

Firstall, letk = 1,2, 3. In this case M > 0 and N < 0 for every € [0,1). Since po, < 2 (k = 1,2, 3) for every
B €[0,1) and so K" (po,) < 0, the maximum value of K(p) corresponds to p = py,, that is,
(1-p? [22k 3.2"M2]

max Kip) = Klpo,) = ——5—

3% AN

Consequently, since K(0) < K(2) < K(po,) we obtain max K(p) = K(po,).

Now, let k = 4,5. In this case, we can deduce that for some values of g € [0, 1) is po, > 2 (see Figure 2). If
Figure 2 is analyzed , we conclude that for k > 3 (k € IN) and for some value of § € [0, 1) is pg, > 2 or p, < 2.

Figure 2: We can observe that for k > 3 and some values of 8 are py, > 2 or pg, < 2.

Case 1: If B €[0,p]] then po, > 2, that is, py, is out of the interval (0, 2). Therefore, the maximum value
of K(p) occurs at p = pg, or p = py, which contradicts our assumption of having the maximum value at the
interior point of p € [0, 2]. Since K is an increasing function in the interval [0, 2], maximum point of K must
be on the boundary of p € [0, 2], thatis, p = 2. Thus, we have

_ a2
max K(p) = K(2) = M

2k 5k
max i [N +62%M+32 ] .

Case 2: When f§ € (8],1) we observe that po, < 2, that s, py, is interior of the interval [0, 2]. Since K" (po,) < 0,
the maximum value of K(p) occurs at p = po,. Thus, we have
(1-B)*[2%  3.2:M2

3% 3N |

max K(p) = K(po,) = YT
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Finally, we examined the cases of k > 6 (and k = 0) in below, in this case, we see that N is negative real
number for § € (1, 1) (see Figure 3).Thus, py, is a real number.

Figure 3: It can be showed both p and g for values of k > 6.

Therefore, there are two cases;

Case 1: For N > 0, thatis, g € [0, f1).Therefore, K'(p) > 0 for p € (0, 2). Since K is an increasing function
in the interval (0, 2), maximum point of K must be on the boundary of p € [0, 2], that is, p = 2. Thus, we
have

_ a2
max K(p) = K(2) = M

2k 5k
0<p<2 32k+1p5k [N +62"M+3.2 ] .

Case 2: When § € [f1,8]], we observe that po, > 2, that is, po, is out of the interval (0,2). Therefore,
the maximum value of K(p) occurs at po, = 0 or p = py, which contradicts our assumption of having the
maximum value at the interior point of p € [0, 2]. Since K is an increasing function in the interval [0,2],
maximum point of K must be on the boundary of p € [0,2], thatis, p = 2. Thus, we have

K(w) = K(2) = (1-p)?
52%’; (}9) = K@) = 32k+195k

[N +6.2%M + 3.25k] :

When g € (B}, 1), we observe that py, < 2, that is, py, is interior of the interval [0,2]. Since K”(po,) < 0,
the maximum value of K(p) occurs at p = pp,. Thus, we have

mmax K(p) = K(po,) =

(1-p)y>[2% 3.2kM2
2% 3% 3*N |

We thus have completed our proof of Theorem 2.1. [

Corollary 2.2. [3]Let f given by (1) be in the class S;(B) and 0 < B < 1. Then

4(1;[5) (4ﬁ2 _ 8ﬁ + 5), ﬁ c [O, 29—3\2/@)

laxas — a%l < 5, 1362-146-7 29- V137
(1 =B (fegrggrs) PE€(F= 1D

Corollary 2.3. [3]Let f given by (1) be in the class Ks(8) and 0 < p < 1. Then

(1—p) (5% + 88— 32
24 (352—3ﬁ—4)’

laray — a%l <
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