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Abstract. We prove the following result: If G be a connected graph on n ≥ 6 vertices, then there exists a
set of vertices D with |D| ≤ n

3 and such that V(G) \ N[D] is an independent set, where N[D] is the closed
neighborhood of D. Furthermore, the bound is sharp. This seems to be the first result in the direction of
partial domination with constrained structure on the graph induced by the non-dominated vertices, which
we further elaborate in this paper.

1. Introduction

Many variants of the basic topic of domination can be formulated as follows. Let G be a graph and D a
set of vertices of G such that D ∪ N(D) = V(G), where N(D) is the set of neighbors of vertices in D that do
not belong to D. Given two graph properties P and Q, we say that D is a (P,Q)-dominating set if the graph
induced by D has property P and the graph induced by N(D) has property Q.

Among the best known properties P are: connected domination, where the graph induced by D is
connected (see [8, 11, 21]), k-connected domination, where the graph induced by D is k-connected (see
[22, 29]), total domination where the graph induced by D has no isolates (see [19, 20]), paired domination,
where the graph induced by D has a perfect matching (see [12]), and many more.

Among the best known properties Q are: k-domination, where |N(u) ∩ D| ≥ k for every u ∈ N(D) (see
[14, 18]), locating domination, where N(u) ∩ D , N(v) ∩ D for any u, v ∈ N(D) (see [28]), fair domination,
introduced in [7], where |N(u) ∩D| = |N(v) ∩D| for any u, v ∈ N(D), and many more.

There are also variants of domination which set a condition on both D and N(D), like the k-tuple
domination, where |N[u] ∩ D| ≥ k for every u ∈ V(G) (see [10, 16, 27]), or the identifying codes, where
∅ , N(u) ∩D , N(v) ∩D , ∅ for any u, v ∈ V(G) (see [15]). See also the survey [9] for more information on
multiple domination parameters.

Here we are going to present, for the first time to our knowledge, the following extension of this model
to the case that D ∪N(D) , V(G), that is, we do not necessarily assume that D is a dominating set.

The reason for doing so is because there may be situations in which we do not necessarily need to
dominate all the vertices in a graph. Let us illustrate this by the following example. Suppose G represents a
communication network, and a security agency wants to detect every conversation between two members,
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i.e. two adjacent vertices, in the network. We can imagine some centers forming the vertices of D which
can listen to all nodes in N[D] and, as long as V \ N[D] is an independent set, they can still listen to all
conversations having located microphones in all vertices of D.

Let G be a graph, D ⊆ V(G) a set, N(D) the neighborhood of D and R(D) = V(G) \ N[D] the remainder
with respect to D. When R(D) = ∅, D is a dominating set.

So, in addition to the properties P and Q imposed on D and N(D), we would like to impose a property
R on R(D), where R can be the property of R(D) being a k-independent set or inducing a forest, a planar
graph, a Kk-free graph, or a k-colorable graph, to mention some examples.

Problems involving partitions of this type D ∪ N(D) ∪ R(D) = V(G) with D having property P, N(D)
having property Q and R(D) having property R are called constrained partial domination problems.

In this paper, we shall consider simple constrained partial domination problems with no restriction on
properties P or Q but with R(D) having certain property R as mentioned above: being a k-independent set,
or inducing a forest, a planar graph, a Kk-free graph or a k-colorable graph, etc.

1.1. Notation

For notation and Graph Theory terminology we in general follow [31]. Specifically, let G = (V,E) be a
simple graph with vertex set V = V(G) of order n(G) = |V| and edge set E = E(G) of size m(G) = |E|. For
a subset S ⊆ V, the open neighborhood of S is the set NG(S) = {u ∈ V \ S |uv ∈ E, v ∈ S}, while the closed
neighborhood of S is the set NG[S] = NG(S) ∪ S. When S = {v}, we write NG(v) and NG[v] for the open and
closed neighborhoods of v, respectively. The degree of a vertex v is degG(v) = |NG(v)|. When the graph is
clear from the context, we may write N(S),N[S],N(v),N[v],deg(v). The minimum degree δ(G) of a graph G
is the minimum among all vertex degrees of G. Likewise, the maximum degree ∆(G) of G is the maximum
among all vertex degrees of G. We call a vertex v isolate or say it is isolated in G if degG(v) = 0. Moreover, a
vertex v is called leaf if degG(v) = 1.

The complement G of a graph G = (V,E) is the graph consisting of the vertex set V and all edges between
vertices of V that do not belong to E. Given a subset S ⊆ V, the graph G[S] denotes the subgraph of G
induced by S and, for an integer t ≥ 1, tG denotes the graph consisting of t vertex disjoint copies of G.
Given a graph H, we say that G is H-free if G does not contain H as a subgraph (observe that H has not to
be necessarily induced).

The complete graph on n vertices is denoted by Kn and we write Kp,q for the complete bipartite graph with
partition sets of p and q vertices. Further, the cycle and the path on n vertices are written as Cn and Pn,
respectively. We define the cartesian product of two graphs G1 and G2 as the graph G1� ∗ G2 with vertex set
V(G1) × V(G2) and such that two vertices (u1,u2) and (v1, v2) are adjacent if and only if either u1 = v1 and
u2v2 ∈ E(G2) or u2 = v2 and u1v1 ∈ E(G1). For t, s ≥ 1, the graph G = Ps�Pt is called grid graph.

We call a subset S ⊆ V dominating in G = (V,E) if |N(v)∩S| ≥ 1 for all v ∈ V \S. The minimum cardinality
of a dominating set of G is denoted by γ(G). On the other hand, S is called independent if G[S] is the empty
graph and with α(G) we denote the maximum cardinality of an independent set of G. For k ≥ 0, S is a
k-independent set if ∆(G[S]) ≤ k and αk(G) denotes the maximum cardinality of a k-independent set of G.
Observe that 0-independent is the same as independent.

1.2. The Isolation Number of a Graph

We will now introduce a more formal definition and language for the main protagonist of this paper:
the isolation number of a graph.

Let G = (V,E) be a graph and F a family of graphs. We call a set of vertices S ⊆ V F -isolating if the
graph induced by the set R(S) = V \N[S] contains no member of F as a subgraph.

Example 1.1. Consider the following families F of graphs.

(1) If F = {K1}, then an F -isolating set coincides with the usual definition of a dominating set.
(2) If F = {K2}, then the vertices not dominated by the F -isolating set form an independent set.
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(3) If F = {K1,k+1} for an integer k ≥ 0, then the set of vertices not dominated by the F -isolating set induces a
graph of maximum degree at most k or, in other words, these vertices form a k-independent set (see [6, 9] for
more information and recent results).

(4) If F = {Ck | k ≥ 3}, then the vertices not dominated by the F -isolating set induce a forest.
(5) If F is the family of all trees on k vertices, then the non-dominated vertices form a subgraph whose components

have all order at most k − 1.

The minimum cardinality of an F -isolating set of a graph G will be denoted ι(G,F ) and called the
F -isolation number of G. When F = {H}, we will set ι(G,F ) = ιH(G). In case F = {K1,k+1}, we shall use the
notation ιk(G), and when k = 0 we will write for short ι(G) instead of ι0(G). Finally, ιk(G) will be called the
k-isolation number and ι(G) just isolation number.

1.3. Structure of the Paper
The paper is organized as follows:
In Section 2 we give some basic properties and examples concerning ι(G,F ), relating F -isolating sets

to dominating sets, as well as some concrete constructions that will be useful in later sections. Later on we
will mainly deal with ι(G) and sometimes ιk(G).

In Section 3, we consider upper bounds on ι(G) and ιk(G) in terms of order, maximum degree and
minimum degree with special emphasis on G being a connected graph, and prove some sharpness results
as well.

In Section 4, we consider lower bounds on ι(G) and ιk(G) in terms of average degree, maximum degree
and minimum degree and prove some sharpness results.

In Section 5, we consider some classes of graphs such as trees, maximal outerplanar graphs, claw-free
graphs and grid graphs, and compute some sharp results for ι(G) for graphs in these families.

In Section 6, we deal with Nordhaus-Gaddum type results for ι(G)+ ι(G) and prove sharp upper bounds.
In the closing section 7, we introduce some open problems for further research.

2. Basic Examples and Facts

Example 2.1. Consider the following examples.

(1) For k ≤ n − 1, ιk(Kn) = 0 and ιk(Kn) = 1.
(2) ι(Cn) = dn/4e, ι1(Cn) = d n

5 e, ι(Pn) = d(n − 1)/4e and ι1(Pn) = d n−2
5 e.

(3) If P is the Petersen-graph, ι(P) = 3, ι1(P) = 2 and ι2(P) = 1.
(4) ι is a non-monotone parameter with respect to edge-deletion:

ι(K5) = 1 < ι(C5) = 2 > ι(P5) = 1.

Lemma 2.2. Let G be a graph on n vertices and F and F ′ be two families of graphs. The following assertions hold.

(i) If F ′ ⊆ F , then ι(G,F ′) ≤ ι(G,F ).
(ii) If F1,F2 ∈ F such that F1 ⊆ F2 and F ′ = F \ {F2}, then ι(G,F ) = ι(G,F ′).

(iii) If for all F′ ∈ F ′ there is an F ∈ F such that F ⊆ F′, then ι(G,F ′) ≤ ι(G,F ).

Proof. (i) Let F ′ ⊆ F and let S be a minimum F -isolating set of G. Then, clearly, S is an F ′-isolating set of
G and thus ι(G,F ′) ≤ ι(G,F ).
(ii) By item (i), the inequality ι(G,F ′) ≤ ι(G,F ) is clear. So let S be a minimum F ′-isolating set of G. Then
G −N[S] is F ′-free and thus, in particular, F1-free. Since F1 is a subgraph of F2, G −N[S] has to be F2-free,
too. Hence, G −N[S] is F -free and we obtain ι(G,F ) ≤ |S| = ι(G,F ′). Now the both inequalities imply the
result.
(iii) Let S be a minimum F -isolating set of G. Then G−N[S] is F -free. Since for all F′ ∈ F ′ there is an F ∈ F
such that F ⊆ F′, G−N[S] is also F ′-free. Hence, S is an F ′-isolating set of G and thus ι(G,F ′) ≤ ι(G,F ).
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In the sequel of this paper and in view of Lemma 2.2 (ii), we will consider only families of graphs
without inclusions among its members.

Lemma 2.3. Let G be a graph on n vertices and F a family of graphs. The following assertions hold.

(i) ι(G,F ) ≤ γ(G).
(ii) ι(G,F ) = min{ι(G[A],F ) + γ(G[B]) | A ∪ B is a partition of V}.

(iii) ι(G,F ) = min{γ(G \H) | H is an induced F -free subgraph of G}.

Proof. (i) Since every dominating set is also an F -isolating set, clearly ι(G,F ) ≤ γ(G).
(ii) Let V = A ∪ B be a partition of V. Let I be a minimum F -isolating set of G[A] and D a minimum
dominating set of G[B]. Then I∪D is an F -isolating set of G and hence ι(G,F ) ≤ |I|+ |D| = ι(G[A]) +γ(G[B]).
Conversely, let S be a minimum F -isolating set of G and let A = V \N[S] and B = N[S]. Then G[A] is F -free
and hence ι(G[A],F ) = 0. Moreover, |S| ≥ γ(G[B]). Thus, ι(G,F ) = |S| ≥ ι(G[A],F ) + γ(G[B]).
(iii) Let H be an induced F -free graph of G. Then, by item (ii), ι(G,F ) ≤ ι(H,F ) + γ(G \H) = γ(G \H). On
the other side, let S be a minimum F -isolating set of G and let H = G − N[S]. Then H is F -free. Again by
item(ii), it follows that |S| = ι(G,F ) ≤ ι(H),F ) + γ(G \H).

Lemma 2.4. Let G be a graph on n vertices. The following assertions hold.

(i) For a graph H, ιH(G) ≤ γ(H)
⌊

n
n(H)

⌋
and this is sharp if γ(H) = 1.

(ii) For a family of graphs F , ι(G,F ) ≤ sup
F∈F

γ(F)
n(F)

n.

Proof. (i) We will prove by induction on n that ιH(G) ≤ γ(H)b n
n(H) c. If 1 ≤ n ≤ n(H), then G is either H-free or

H is a spanning subgraph of G, i.e. n = n(H). In the first case we have ιH(G) = 0 and the statement follows
trivially. In the second, using Lemma 2.3 (i), we have ιH(G) ≤ γ(G) ≤ γ(H) = γ(H)b n

n(H) c and we are done.
Hence, assume that G has order n ≥ n(H) + 1 and suppose the statement holds for any graph with less than
n vertices. If G is H-free, then clearly ιH(G) = 0 and we are done. Otherwise let us consider a copy H∗ of
H in G and let G′ = G \ H∗. Then, by the induction hypothesis, ιH(G′) ≤ γ(H)b n(G′)

n(H) c. Let S be a minimum
H-isolating set of G′ and let D be a minimum dominating set of H∗. Since G − (NG[S ∪D]) is a subgraph of
G′ −NG′ [S] and the latter is H-free, S ∪D is an H-isolating set of G. Hence,

ιH(G) ≤ |S ∪D| = |S| + γ(H∗) = |S| + γ(H) ≤ γ(H)
⌊

n(G′)
n(H)

⌋
+ γ(H) = γ(H)

⌊
n

n(H)

⌋
.

For the sharpness, consider the graph G = tH, where H a nontrivial graph with γ(H) = 1. Then n = n(G) =
t · n(H) and, clearly, ιH(G) = t = b n

n(H) c = γ(H)b n
n(H) c.

(ii) Let q(F ) = sup
F∈F

γ(F)
n(F)

. We will prove the statement by induction on n. If G is F -free, then we have

ι(G,F ) = 0 ≤ q(F )n. If F ⊆ G and n(F) = n for some F ∈ F , then let D be a minimum dominating set of F.
Clearly, D is a dominating set of G and thus, using Lemma 2.3 (i), ι(G,F ) ≤ γ(G) ≤ γ(F) ≤ q(F )n(F) = q(F )n.
This covers the cases where n ≤ min{n(F) | F ∈ F }. Suppose that n > min{n(F) | F ∈ F } and that we have
proved the statement for all graphs of order less than n. We can assume that G is not F -free for otherwise it
is done. Also the case F ⊆ G and n(F) = n(G) for an F ∈ F works as above. Hence, we can assume that there
is a graph F ∈ F contained in G such that the graph G′ obtained after deleting the vertices of F in G is not
empty. Let S be a minimum F -isolating set of G′ and D a minimum dominating set of F. By the induction
hypothesis, |S| = ι(G′,F ) ≤ q(F )n(G′). Moreover, |D| = γ(F) ≤ q(F )n(F). Since S ∪D is an F -isolating set of
G, it follows that

ι(G,F ) ≤ |S| + |D| ≤ q(F )n(G′) + q(F )n(F) = q(F )n.
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Corollary 2.5. Let G be a graph on n vertices. Then the following statements hold.

(i) Let k ≥ 0 be an integer such that ∆(F) ≥ k + 1 for all F ∈ F . Then ι(G,F ) ≤ ιk(G).
(ii) If F is a family of non-empty graphs, then ι(G,F ) ≤ ι(G).

(iii) ιk(G) ≤ 1
k+2 n and this is sharp;

Proof. (i) Since ∆(F) ≥ k + 1, the graph K1,k+1 ⊆ F for all F ∈ F and thus ι(G,F ) ≤ ιk(G) follows from 2.2 (iii).
(ii) This is item (i) for k = 0.
(iii) This follows directly by Lemma 2.4 (i) using H = K1,k+1.

Given a graph G with vertex set V = {v1, v2, . . . , vn}, we define a bipartite graph B(G) the following way.
Let V1 = {v1

1, v
1
2, . . . , v

1
n} and V2 = {v2

1, v
2
2, . . . , v

2
n} be the two partite sets of B(G) and, for i, j ∈ {1, 2, . . . ,n},

let v1
i be adjacent to v2

j if and only if either i = j or vi is adjacent to v j in G. Note that |B(G)| = 2n and
δ(B(G)) = δ(G) + 1.

The following (technical) theorem will be used several times in the sequel.

Theorem 2.6. Let G be a graph of order n. Let F be a family of graphs with r = min{n(F) | F ∈ F }. Then

(i) γ(G) ≤ ι(G�Kr,F ) ≤ min{n, (r − 1)γ(G) + ι(G,F ), rι(G,F ) + α(G,F )} ≤ min{n, rγ(G)}
(ii) γ(G) ≤ ι(B(G)) ≤ γ(B(G)) ≤ 2γ(G).

Proof. (i) Let V(G) = {x1, x2, . . . , xn} and let H = G�Kr be given by the vertex set V(H) = V1∪V2∪ . . .∪Vr with
Vi = {xi

1, x
i
2, . . . , x

i
n} where H[Vi] � G for i = 1, 2, . . . , r and such that xi

k is adjacent to xi
k for any 1 ≤ i < j ≤ r

and 1 ≤ k ≤ n. For the first inequality, let S be a minimum F -isolating set of H. Let Q be the set of
vertices which are not dominated by S in H and let Qi = Vi ∩ Q and Si = Vi ∩ S, 1 ≤ i ≤ r. We will show
that the set D =

⋃r
i=1{x

1
k | xi

k ∈ Si} is a dominating set of H[V1] � G. Fix an integer k ∈ {1, 2, . . . , r}. If

x1
k ∈ V1 \ Q1 then either x1

k ∈ S1 or x1
k is dominated by a vertex in S1 or x1

k is dominated by a vertex x j
k ∈ S j

for some j ∈ {2, 3, . . . , r}. The first and third cases imply that x1
k ∈ D while from the second case follows

that x1
k is dominated by a vertex in D. Hence suppose that x1

k ∈ Q1. Note that, for any ` ∈ {1, 2, . . . ,n},
H[{xi

` | 1 ≤ i ≤ r}] � Kr is not F -free. Thus, since H[Q] is F -free, there has to be a j ∈ {2, 3, . . . , r} such that
x j

k < Q j. Hence, either x j
k ∈ S j, or there is a vertex x j

k′ ∈ S j that dominates x j
k, or x j

k is dominated by a vertex

x j′

k ∈ S j′ for some j′ ∈ {1, 2, . . . , r}, j , j′. This implies that either x1
k ∈ D or x1

k′ dominates x1
k . Hence, D is a

dominating set of H[V1] � G and thus γ(G) ≤ |D| ≤
∑r

i=1 |Si| = |S| = ι(H,F ).
For the second inequality, note first that V1 is a dominating set of H and hence also an F -isolating set
of H. Thus ι(H,F ) ≤ n. Now let D and S be, respectively, a minimum dominating set and a minimum
F -isolating set of G and define Di = {xi

k | xk ∈ D} and Si = {xi
k | xk ∈ S}, for 1 ≤ i ≤ r. Then both∪r−1

i=1 Di∪Sr and
∪

r−1
i=1 Si∪(Vr\Sr) areF -isolating sets of H. Now the properties |Di| = γ(G), |Si| = ι(G,F ) and |Vr\Sr| ≤ α(G,F )

yield the desired inequality.
The last inequality is due to Lemma 2.3 (i).
(ii) For the first inequality, let S be a minimum isolating set of B(G). Let D = {vk | vi

k ∈ S for some i}. Let
Q = V(B(G)) \NB(G)[S] be the set of isolated vertices in B(G). Let vl be a vertex in V(G) \D. Then vi

l < S for
i = 1, 2. Since v1

l is adjacent to v2
l , one of both vertices, say v1

l , is not in Q. This implies that v1
l ∈ NB(G)(S).

Hence, there is a neighbor of v1
l in S and thus there is a vertex in D which is adjacent to vl in G. It follows

that D is a dominating set of G, which gives us γ(G) ≤ |D| ≤ |S| = ι(B(G)).
The second inequality follows from Lemma 2.3 (i). For the last inequality, let D be a minimum dominating
set of G. Then D′ = {v1

l , v
2
l | vl ∈ D} is a dominating set of B(G) and thus 2γ(G) = 2|D| = |D′| ≥ γ(B(G)).

3. Upper Bounds

In this section, we are going to present some upper bounds on ι(G) and ιk(G) in terms of the order and
the maximum and minimum degree of G. We will make emphasis on weather the graph is connected or
not.
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3.1. Bounds in Terms of Order: Connected Graphs

The following theorem, which is mentioned in the abstract, is one of the main results of this paper and
a prototype of problems we pose in Section 7.

Theorem 3.1. Let G be a connected graph on n ≥ 3 vertices and different from C5. Then ι(G) ≤ n
3 and this bound is

sharp.

Proof. We will prove the statement by induction on n. Let G be a connected graph on n ≥ 3 vertices and
different from the cycle C5. If n = 3, evidently ι(G) = 1 = n

3 . So suppose n > 3 and assume the statement is
valid for all graphs different from C5 and with less than n vertices. Select a vertex r ∈ V(G) and let T be a
BFS-tree of G rooted in r. Denote by L the set of leaves of T. Let V0 = {r} and let Vi denote the set of vertices
of the i-th generation after r. Let ` be the last generation of vertices in T. So, V = V0 ∪ V1 ∪ V2 ∪ . . . ∪ V`

and, since n > 3, ` ≥ 1.
If ` = 1, then {r} is an isolating set of G and the statement holds trivially. Hence, we may assume that

` ≥ 2.
Suppose now that, for some k ≤ ` − 1, there is a vertex u ∈ Vk such that NT(u) ∩ Vk+1 ⊆ L and

|NT(u) ∩ Vk+1| ≥ 2. Let U = {u} ∪ (NT(u) ∩ Vk+1) and G∗ = G − U. If U = V(G), then clearly u is an isolating
set of G and ι(G) = 1 ≤ n

3 . Hence suppose V(G) \ U , ∅. Then G∗ is connected. If n(G∗) ≤ 2, then {u} is an
isolating set of G and ι(G) = 1 ≤ n

3 holds. If G∗ � C5, let G∗ = x1x2x3x4x5x1 being x1 the father of u in T. Then
{u, x3} is an isolating set of G and, as n ≥ 8, ι(G) ≤ 2 ≤ n

3 is fulfilled. If G∗ is different from C5 and n(G∗) ≥ 3,
then, by the induction hypothesis, there is an isolating set S∗ of G∗ with |S∗| ≤ n−|U|

3 . Note that S∗ ∪ {u} is an
isolating set of G. Hence, since |U| ≥ 3, we obtain ι(G) ≤ n−|U|

3 + 1 ≤ n
3 and we are done. So we can assume

in the following that, for any k ≤ ` − 1, all vertices u ∈ Vk \ L fulfill either
(i) u has only one child v and v ∈ L or
(ii) u has grandchildren.

Since ` ≥ 2, there exists a vertex u ∈ V`−2 such that it has grandchildren. Consider now the following
cases.
Case 1: u has only one child v in T. Since v ∈ V`−1, v has no grandchildren. Hence, by the assumption above,
v has only one child, say w, which is a leaf in T. Let G∗ = G− {u, v,w}. Then G∗ is nonempty and connected.
We distinguish the following subcases.
Subcase 1.1: n(G∗) ≤ 2. Then n ≤ 5 and it is straightforward to check that, with exception of G � C5, ι(G) ≤ n

3 .
Subcase 1.2: G∗ � C5. Then n = 8. Let G∗ = x1x2x3x4x5x1 being x1 the father of u in T. If x5 < NG(w), then
{u, x3} is an isolating set of G. Similarly, if x2 < NG(w), then {u, x4} is an isolating set of G. If, on the other side,
x2 and x5 are both neighbors of w in G, then, depending if x4 < NG(u) or x4 ∈ NG(u), either {w, x2} or {u, x2}

is an isolating set of G. Hence, in all cases we obtain an isolating set with 2 vertices and so ι(G) ≤ 2 ≤ n
3 .

Subcase 1.3: n(G∗) ≥ 3 and G∗ , C5. Then, by induction, there is an isolating set S∗ of G∗ with |S∗| ≤ n−3
3 . Since

S∗ ∪ {v} is an isolating set of G, we obtain easily ι(G) ≤ n−3
3 + 1 = n

3 .
Case 2: u has at least two children in T. Let A the set of children of u and B the set of grandchildren of u in T
and define U = {u} ∪ A ∪ B. Let B1 = {x ∈ B | NG(x) ∩ (V \ U) = ∅} and B2 = B \ B1. Finally, set U′ = U \ B2
and let I be the set of isolated vertices in G[B1]. Now we have two subcases.

Subcase 2.1: B1 \ I = ∅. Then {u} is an isolating set of G[U′]. Now let G∗ = G−U′. Clearly, G∗ is either empty
or connected. Namely, if B2 = ∅, then G∗ consists of the vertices from T − U′ which is a tree with a leaf in
the father of u. On the other side, if B2 , ∅, then by definition all its vertices are adjacent to some vertex
of the tree T −U, which is also a tree with a leaf in the father of u. Again, we consider here three different
subcases.
(i) n(G∗) ≤ 2. If n(G∗) = 0, then B2 = ∅ and {u} is a separating set of G. If n(G∗) = 1, then, as all the vertices
of B2 have a neighbor in V(G) −U, it forces again B2 = ∅. Hence, again, {u} is an isolating set of G. Thus, in
both cases we have ι(G) = 1 ≤ n

3 . If n(G∗) = 2 let V(G∗) = {x, y}, being x the father of u in T. If NG(y)∩B1 = ∅,
then B1 ∪ {y} is an independent set and, since u dominates A ∪ {x}, {u} is an isolating set of G and thus
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ι(G) = 1 ≤ n
3 . Finally, suppose that NG(y) ∩ B1 , ∅. Then, |B1| ≥ 1 and, with |A| ≥ 2 and n(G∗) ≥ 2, we have

n ≥ 6. As clearly {u, x} is an isolating set of G, it follows again ι(G) ≤ 2 ≤ n
3 .

(ii) G∗ � C5. Again, let G∗ = x1x2x3x4x5x1 being x1 the father of u in T. Since the vertices in B1 = I form an
independent set and have no neighbors in G∗, it is not difficult to see that {u, x3} is an isolating set of G (the
set A ∪ {x1, x2, x4} is dominated and te rest B1 ∪ {x5} is independent). Hence, as n ≥ 8, ι(G) ≤ 2 ≤ n

3 .
(iii) n(G∗) ≥ 3 and G∗ , C5. Let S∗ be a minimum isolating set of G∗. By the induction hypothesis, |S∗| ≤ n−|U′ |

3 .
Moreover, since NG(B1)∩V(G∗) = ∅ and B1 is an independent set in G, S∗∪{u} is an isolating set of G. Hence,
ι(G) ≤ |S∗ ∪ {u}| ≤ n−|U′ |

3 + 1 ≤ n
3 and we are done.

Subcase 2.2: B1 \ I , ∅. Then δ(G[B1 \ I]) ≥ 1 and |B1 \ I| ≥ 2. Let y, z ∈ B1 be two adjacent vertices in G and
let x ∈ A be the father of y in T. Define G∗ = G− {x, y, z}. Note that, by assumption and since x ∈ V`−1, x can
have only one child, which is y. This implies that G is connected and n(G∗) ≥ 2. For the last, we distinguish
the following three subcases.
(i) n(G∗) = 2. Since u has at least two children in T and n(G∗) = 2, |A| = 2, say, A = {x, v}. Then, clearly,
G∗ = uv. As z has to have a father in A different from x, it follows that G is either the 5-cycle C = uxyzvu or
the graph C + vx. Since by hypothesis G , C, it follows that G = C + vx. Thus, {x} is an isolating set and
ι(G) = 1 ≤ n

3 .
(ii) G∗ � C5. Then n = 8. Let G∗ = uu1u2u3u4u and assume, without loss of generality that u1 ∈ A is the father
of z in T. Recall that, in G, none of the vertices of V(G) \U is adjacent to the vertices in B1. In particular, u3
and y are not adjacent. Hence, it follows that {u,u1} is an isolating set of G, implying that ι(G) ≤ 2 ≤ n

3 .
(iii) n(G∗) ≥ 3 and G , C5. Then, by the induction hypothesis, there is an isolating set S∗ of G∗ with |S∗| ≤ n−3

3 .
Since S∗ ∪ {y} is an isolating set of G, we obtain again ι(G) ≤ |S∗| + 1 ≤ n−3

3 + 1 = n
3 and we are done.

For the sharpness, consider the following graphs.
(i) Let G1 be the graph consisting of an arbitrary connected graph H1 on n1 vertices, each of which is attached
to a K2 by means of an edge. Then δ(G1) = 1 and ι(G1) = n1 =

n(G1)
3 .

(ii) Let G2 be the graph consisting of an arbitrary connected graph H2 on n2 vertices, each of which is
attached to a K2 by means of two edges (these edges going each to a different vertex of the K2). Then
δ(G2) = 2 and ι(G2) = n2 =

n(G2)
3 .

Corollary 3.2. Let G be a graph on n vertices with no component on less than 3 vertices. Then the following holds.

(i) ι(G) ≤ 2n
5 and equality holds if and only if G is the union of vertex disjoint copies of C5.

(ii) Let G1,G2, . . . ,Gk be the components of G. If Gi , C5 for all 1 ≤ i ≤ k, then ι(G) ≤
∑

1≤i≤k

⌊
n(Gi)

3

⌋
≤

⌊n
3

⌋
.

3.2. Bounds in Terms of Order and Maximum Degree
Lemma 3.3. Let G be a graph of order n and with vertex set V. Consider a subset S ⊆ V. Then the following
statements hold.

(i) ι(G) ≤ n−|N(S)|+|S|
2 .

(ii) If δ(G −N[S]) ≥ 2, then ι(G) ≤ 2n−2|N(S)|+3|S|
5 .

(iii) If every component of G −N[S] has at least 3 vertices and no C5-component, then ι(G) ≤ n−|N(S)|+2|S|
3 .

Proof. (i) This follows because of ι(G) ≤ ι(G −N[S]) + |S| ≤ n−|N[S]|
2 + |S| = n−|N(S)|+|S|

2 .
(ii) If δ(G − N[S]) ≥ 2, then there is no component of order smaller than 3 and, hence, by Corollary 3.2(i),
we infer that ι(G) ≤ ι(G −N[S]) + |S| ≤ 2(n−|N[S])|

5 + |S| = 2n−2|N(S)|+3|S|
5 .

(iii) Since every component of G −N[S] has at least 3 vertices and no C5-component, it follows by Theorem
3.1 ι(G) ≤ ι(G −N[S]) + |S| ≤ n−|N[S]|

3 + |S| = n−|N(S)|+2|S|
3 .

Theorem 3.4. Let G be a graph on n vertices and maximum degree ∆.

(i) Then ι(G) ≤ n−∆+1
2 and this is sharp for all values of ∆ with n

2 ≤ ∆ ≤ n − 3.
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(ii) If there is a vertex v of maximum degree ∆ and all components of G − N[v] contain at least 3 vertices and no
C5-component, then ι(G) ≤ n−∆+2

3 .
(iii) If G is a graph of maximum degree ∆, then ι1(G) ≤ n−∆+2

3 and this is sharp.

Proof. (i) Let x be a vertex of maximum degree ∆. Let G′ = G −NG[x] and let I the set of isolated vertices in
G′. Then there is a dominating set D of G′ − I with |D| ≤ n(G′)−|I|

2 ≤
n(G′)

2 = n−∆−1
2 . Since D∪ {x} is an isolating

set of G, we obtain ι(G) ≤ |D| + 1 ≤ n−∆+1
2 . The sharpness can be seen with the following construction. For

two positive integers p and q let x be the center of a star K1,2p+q, from which exactly 2p edges are subdivided.
Now join by pairs the leaves of the subdivided edges with an edge. The graph G obtained this way has
n(G) = n, ι(G) = p + 1 =

n−(2p+q)+1
2 and ∆ =

n+q−1
2 , where 1 ≤ q ≤ n − 5.

(ii) This follows directly from Lemma 3.3 (iii) with S = {v}.
(iii) Let v be a vertex of maximum degree ∆. Consider the graph G∗ = G −N[v]. Let A ⊆ V(G∗) be the set of
vertices of all components of at most 2 vertices in G∗. Let B be the set of vertices of all C5-components of
G∗. Let I be a minimum {K2}-isolating set of G[B]. Then clearly |I| = |B|

5 . Finally, let J be a minimum isolating
set of G∗ − (A ∪ B) (if V(G∗) \ (A ∪ B) = ∅, set J = ∅). Note that {v} ∪ I ∪ J is a {K2}-isolating set of G and, by
Theorem 3.1, |J| ≤ n(G∗)−|A|−|B|

3 . Hence, we obtain

ι1(G) ≤ 1 + |I| + |J| ≤ 1 +
|B|
5

+
n(G∗) − |A| − |B|

3

≤ 1 +
|B|
3

+
n(G∗) − |B|

3
= 1 +

|V(G) −N[v]|
3

=
n − ∆ + 2

3
.

Let r, s, t be non-negative integers with r + s + t ≥ 1. Then the graph Fr,s,t = rK3 ∪ sP3 ∪ tC6 has ι1(Fr,s,t) =

r + s + 2t =
n(Fr,s,t)

3 and thus the bound is sharp.

3.3. Bounds in Terms of Order and Minimum Degree
Denote by f (δ, k) = inf{α | ιk(G) ≤ α|G| for every graph G with minimum degree δ}. In case k = 0 we

shall use the notation f (δ).

Theorem 3.5. The following statements hold.

(i) For δ ≥ 1, 2
δ+3 ≤ f (δ) ≤ ln(δ+1)+ 1

2
δ+1 .

(ii) f (1) = 1
2 , f (2) = 2

5 and f (3) = 1
3 and this is sharp.

(iii) For δ ≥ k + 1,

(1 − o(1))
ln(δ + 1)

(k + 2)(δ + 1)
≤ f (δ, k) ≤

ln(δ + 1
2 ) + 1

δ + 1
.

Proof. (i) We first prove the lower bound. Here for, consider the following graph. Let n be divisible by an
integer r ≥ 4 and let H be a complete graph Kr of order r to which the edges of a Hamiltonian cycle are
deleted. Let G be the graph consisting of n

r copies of H. Then δ = δ(G) = r− 3 and each vertex dominates all
vertices on the copy of H it belongs with exception of two adjacent vertices, showing that ι(G) = 2 n

r = 2
δ+3 n.

For the upper bound, we follow the proof for the probabilistic upper bound for the domination number
due to Alon (see [2]) but, instead of including all non-dominated vertices, we only need to take at most the
half of those which are not isolated. So let G be a graph with minimum degree δ ≥ 1. Let p ∈ [0, 1]. Select
a set of vertices A independently at random such that P(v ∈ A) = p. Let I be the set of isolated vertices in
V \ A and let B = V \ (N[A] ∪ I). Since there are no isolated vertices in B, we know by Ore [25], that there
is a dominating set D of G[B] such that |D| ≤ |B|

2 . Then, clearly, A ∪ D is an isolating set of G. Note that
E[|D|] ≤ E[ |B|2 ] = 1

2 E[|B|]. Hence, since

P(v ∈ B) = P(v ∈ V \N[A]) = (1 − p)deg(v)+1
≤ (1 − p)δ+1,
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we obtain, using 1 − x ≤ e−x for x ≥ 0,

E[|A ∪D|] ≤ E[|A|] +
1
2

E[|B|] = pn +
1
2

(1 − p)δ+1n ≤
(
p +

1
2

e−p(δ+1)
)

n.

Since the function f (x) = e−x(δ+1) attains its minimum when x =
ln(δ+1)
δ+1 , we can take p =

ln(δ+1)
δ+1 in order to

obtain the minimum value in the above inequality chain. Hence, the expected cardinality for an isolating
set is at most

ln(δ + 1) + 1
2

δ + 1
n,

which gives the desired upper bound for ι(G).
(ii) The inequalities f (1) ≥ 1

2 , f (2) ≥ 2
5 and f (3) ≥ 1

3 follow from item (i). Let now G be a graph of order n.
If G has no isolated vertices, then γ(G) ≤ n

2 [25], and hence by Lemma 2.3 (i) ι(G) ≤ n
2 . If δ(G) ≥ 2, it is well

known that γ(G) ≤ 2
5 n unless G belongs to a family of 7 exceptional graphs (P4 and six graphs of order 7)

[24]. For P4 we have ι(P4) = 1 and for the other 6 exceptional graphs on 7 vertices we checked that there is
an isolating set on 2 = 2

7 n vertices. Hence, using Lemma 2.3 (i) for all other graphs G with minimum degree
δ ≥ 2, we obtain in all cases ι(G) ≤ 2

5 n. Finally, if G has minimum degree δ ≥ 3, then all components of G
have at least 4 vertices and none of them is a C5 and hence Theorem 3.1 yields ι(G) ≤ 1

3 n.
(iii) For the lower bound, consider a graph G of minimum degree δ(G) = δ − 1 ≥ 0 such that γ(G) =
(1 − o(1)) ln δ

δ n(G), whose existence was given by Alon and Wormald in [3]. Now let H = G�Kk+2. Then
n(H) = (k + 2)n(G) and δ(H) = δ(G) + k + 1 ≥ k + 1. By Theorem 2.6 (i), it follows

ιk(H) ≥ γ(G) = (1 − o(1))
ln δ
δ

n(G)

= (1 − o(1))
(δ + 1) ln δ
δ ln(δ + 1)

·
ln(δ + 1)

(k + 2)(δ + 1)
· (k + 2)n(G)

≥ (1 − o(1))
ln(δ + 1)

(k + 2)(δ + 1)
n(H),

and we are done. For the upper bound, let G be any graph on n vertices and with minimum degree δ ≥ k+1.
By Lemma 2.3 (i), we have ιk(G) ≤ γ(G). Hence, by the bound on domination due to Arnautov, Lovász
and Payan [4, 23, 26] (for which Alon gave the probabilistic proof cited above in the proof of item (iii)),
ιk(G) ≤ γ(G) ≤ ln(δ+1)+1

δ+1 n.

Note that the lower bounds in items (i) and (iii) of Theorem 3.5 are both in order as the first gives a
better (and explicit) lower bound for small values of δ.

Theorem 3.6. Let G be a bipartite graph on n vertices and minimum degree δ. Then ι(G) ≤ ln δ+1
2δ n and this is nearly

sharp.

Proof. Let G be bipartite with bipartition V1 ∪ V2. Let |Vi| = n1 and |V2| = n2 and assume that n1 ≤ n2.
Choose a subset A ⊆ V1 each vertex of it independently and at random with probability P(v ∈ A) = p. Let
B ⊆ V2 be the set of vertices in V2 having no neighbor in A. Then A∪ B is an isolating set of G and thus ι(G)
is at most as large as the expected size of |A ∪ B|. Note that

E[|A ∪ B|] = E[|A|] + E[|B|] = n1p +
∑
v∈V2

(1 − p)deg(v)
≤ n1p + n2(1 − p)δ.

Considering the function f (x) = n1x + n2(1− x)δ and its derivative f ′(x) = n1 − n2δ(1− x)δ−1, we can see that
f ′(x) = 0 when (1 − x)δ−1 = n1

n2δ
. Since n1 ≤ n2, we obtain (1 − x)δ−1

≤
1
δ and thus x ≥ 1 − ( 1

δ )
1
δ−1 . Hence, we

can choose p = 1 − ( 1
δ )

1
δ−1 . It follows that

ι(G) ≤ E[|A ∪ B|] ≤ n1p + n2(1 − p)δ = n1

1 −
(1
δ

) 1
δ−1

 + n2
1
δ
≤ n1

ln δ
δ

+ n2
1
δ
.
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Since n1 ≤ n2 and the worst case is when n1 = n2 = n
2 , we infer that ι(G) ≤ ln δ+1

2δ n.
For the sharpness, consider an Alon-Wormald [3] (δ − 1)-regular graph G on n vertices having γ(G) =
(1 − o(1)) ln δ

δ n. Further, take the bipartite graph B(G) described just before Theorem 2.6 and note that
|B(G)| = 2n, δ(B(G)) = δ. Now, with Theorem 2.6 (ii), we obtain

ι(B(G)) ≥ γ(G) ≥ (1 − o(1))
ln δ
δ

n = (1 − o(1))
ln δ
2δ

n(B(G)),

showing that the upper bound given above is nearly sharp.

In the following theorem, we will show that f (δ, k) is monotonically decreasing as δ grows. This implies
in particular that, for any graph G with minimum degree δ(G) ≥ δ, ιk(G) ≤ f (δ, k)n(G).

Theorem 3.7. For δ ≥ 1, f (δ, k) ≥ f (δ + 1, k).

Proof. Since f (δ + 1, k) = limn→∞ f (δ + 1, k,n), there is a sequence of graphs (Hi)i≥1 with δ(Hi) = δ + 1 such
that ni = n(Hi) tends to infinity as i grows and

lim
i→∞

ιk(Hi)
ni

= f (δ + 1, k).

Note that the infimum is either a minimum but then it is obtained by arbitrarily many copies of the graph
that realizes the minimum or there is a sequence as above with limi→∞

ιk(Hi)
ni

= f (δ + 1, k). So, in any case,
we can use such a sequence. Consider now the graphs Gi = Hi ∪ Kδ+1. Then δ(Gi) = δ, nι(Gi) = ni + δ + 1
and ιk(Gi) ≥ ιk(Hi) for i ≥ 1 and we obtain

f (δ, k) ≥ lim
i→∞

ιk(Gi)
n(Gi)

≥ lim
i→∞

ιk(Hi)
ni + δ + 1

= lim
i→∞

ιk(Hi)ni

ni(ni + δ + 1)
= f (δ + 1, k)

and we are done.

3.4. Bounds in Terms of Order and Minimum Degree: Connected Graphs

Theorem 3.8. Let F be a family of graphs and let δ ≥ 1. Let H be a connected graph with ι(H,F ) = q. Then, for
arbitrarily large n, if δ = 1 and δ(H) = 1 or if δ ≥ 2 and δ(H) ≥ δ, there is a connected graph G on n vertices such
that δ(G) = δ and

ι(G,F ) ≥
q

n(H) + 1
n.

Proof. Let H be a connected graph with δ(H) ≥ δ ≥ 2 or δ(H) = δ = 1 and let ι(H,F ) = q. Define a graph G
according to the following cases.
Case 1: δ = 1. Take t ≥ δ + 1 copies H1,H2, . . . ,Ht of H and a connected graph G∗ on t vertices v1, v2, . . . , vt.
For 1 ≤ i ≤ t, select one vertex ui from V(Hi) such that in V(Hi) \ {ui} there is still one vertex of degree 1 in
Hi and connect ui and vi by an edge. Then n(G) = n = t(n(H) + 1) and, clearly, δ(G) = 1.
Case 2: δ ≥ 2. Take t ≥ δ + 1 copies H1,H2, . . . ,Ht of H and a connected graph G∗ on t vertices v1, v2, . . . , vt
and minimum degree δ(G∗) = δ − 1 ≥ 1. For 1 ≤ i ≤ t, select one vertex ui from V(Hi) = Vi and connect ui
and vi by an edge. Then n(G) = n = t(n(H) + 1) and, clearly, δ(G) = δ.
Now, in both cases, let S be a minimum F -isolating set of G and let Si = S ∩ Vi, for 1 ≤ i ≤ t. Fix one
i ∈ {1, 2, . . . , t}. If vi < S, then Hi − NHi [Si] ⊆ G − NG[S] and thus Hi − NHi [Si] is F -free. Hence, Si is an F -
isolating set of Hi, which yields |Si| ≥ q. On the other side, ifvi ∈ S, then we have Hi−NHi [Si∪{ui}] ⊆ G−NG[S]
and thus Hi−NHi [Si∪{ui}] isF -free. This implies that Si∪{ui} is anF - isolating set of Hi and thus |Si∪{ui}| ≥ r,
from which we deduce |Si| ≥ q − 1. For both constructions, it follows that |(Vi ∪ {vi}) ∩ S| ≥ k for 1 ≤ i ≤ t,
yielding ι(G,F ) = |S| ≥ tq =

q
n(H)+1 n.
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The following two corollaries follow partially from Theorem 3.8. We shall need the following notation.
We define a parameter fc(δ, k) the following way. Let

fc(δ, k,n) = inf{α ∈ R : ι(G, k) ≤ α n(G),G connected graph n(G) ≥ n, δ(G) = δ}.

Observe that fc(δ, k,n) ≤ fc(δ, k,n + 1) ≤ 1. Hence, for fixed δ and k, fc(δ, k,n) is a monotone non-decreasing
sequence, which is bounded from above. So, we may define

fc(δ, k) = lim
n→∞

fc(δ, k,n).

Further, in case k = 0 we shall use the notation fc(δ) for fc(δ, 0).

Corollary 3.9. The following statements hold.

(i) fc(1) = fc(2) = 1
3 .

(ii) For δ ≥ 3, 2
δ+4 ≤ fc(δ) ≤ f (δ) ≤ ln(δ+1)+ 1

2
δ+1 .

(iii) For δ ≥ k + 1, (1 − o(1)) ln(δ+1)
(k+2)(δ+1) ≤ fc(δ, k) ≤ f (δ, k) ≤ ln(δ+ 1

2 )+1
δ+1 .

Proof. (i) Since the graphs yielding the sharpness in the bound of Theorem 3.1 are connected and arbitrarily
large, this is clear.
(ii) Consider the graph H = Kr − Cr, a complete graph on r ≥ 4 vertices without a Hamiltonian cycle. Then
n(H) = r = δ(H) + 3 and ι(G) = 2 and, thus, Theorem 3.8 gives 2

δ+4 ≤ fc(δ). Since, clearly, fc(G) ≤ f (G), the
last inequality follows from Theorem 3.5 (i).
(iii) This follows from the construction of the graph yielding the lower bound of Theorem 3.5 (iii), which is
already a connected arbitrarily large graph.

Corollary 3.10. The following statements hold.

(i) For F = {Ck | k ≥ 3}, there are arbitrarily large connected graphs G for which ι(G,F ) ≥ 1
4 n(G).

(ii) There are arbitrarily large connected graphs G for which ιKk (G) ≥ 1
k+1 n(G).

(iii) For Fk, the family of all trees of order k ≥ 2, there are arbitrarily large connected graphs G for which
ι(G,Fk) ≥ 1

k+1 n(G).

Proof. For (i), (ii) and (iii), apply Theorem 3.8 taking, respectively, H = C3,Kk and K1,k−1.

Now we are going to show that fc(δ, k) is monotonically decreasing as δ grows (where δ ≥ 2). This
implies in particular that, for any connected graph G with minimum degree δ(G) ≥ δ, ιk(G) ≤ fc(δ, k)n(G).

Theorem 3.11. For δ ≥ 2, fc(δ, k) ≥ fc(δ + 1, k).

Proof. Since fc(δ+1, k) = lim
n→∞

fc(δ+1, k,n), there is a sequence (Hi)i≥1 of connected graphs Hi with δ(Hi) = δ+1,
ni = n(Hi), qi = ιk(Hi) and lim

i→∞
ni tending to infinity such that

lim
i→∞

qi

ni
= fc(δ + 1, k).

By Theorem 3.8, there are connected graphs Gi with δ(Gi) = δ ≥ 2 with ιk(Gi)
n(Gi)
≥

qi

ni+1 . Then we have

fc(δ, k) ≥ lim
i→∞

ιk(Gi)
n(Gi)

≥ lim
i→∞

qi

ni + 1
= lim

i→∞

qini

ni(ni + 1)
= lim

i→∞

qi

ni
= fc(δ, k)

and we are done.



Y. Caro, A. Hansberg / Filomat 31:12 (2017), 3925–3944 3936

4. Lower Bounds

Let G be a graph. With G2 we denote the power-2 graph of G, that is, the graph that arises from G by
adding all edges between vertices within distance 2. Recall also that αk(G) is the k-independence number
of G.

Theorem 4.1. Let G be a graph with minimum degree δ and maximum degree ∆.
(i) If δ ≥ k + 1, then ιk(G) ≥ γ(G2).

(ii) If ∆ ≥ k + 1, ιk(G) ≥ n+1−αk(G)
∆+1 and this is sharp.

Proof. (i) Let S be a minimum k-isolating set of G. Then every vertex in N(S) has a neighbor in S. Also,
since δ ≥ k + 1 and G −N[S] is K1,k+1-free, every vertex in V(G) \N[S] has a neighbor in N(S). Hence, every
vertex in V(G) \ N[S] is within distance 2 from a vertex of S and thus S is a dominating set of G2, yielding
γ(G2) ≤ ιk(G).
(ii) Let S be a minimum k-isolating set of G. Since ∆ ≥ k + 1, S , ∅. Let x ∈ S. Then, Since G − N[S]
is K1,k+1-free and x has no neighbors in V(G) \ N[S], (V(G) \ N[S]) ∪ {x} is a k-independent set of G and,
therefore, αk(G) ≥ n − |N[S]| + 1. Since every vertex in S has at most ∆ neighbors in N(S), we obtain

αk(G) ≥ n − |N[S]| + 1 = n − |S| − |N(S)| + 1 ≥ n − |S| − ∆|S| + 1 = n − (∆ + 1)|S| + 1.

This implies ιk(G) = |S| ≥ n+1−αk(G)
∆+1 . For the sharpness, consider a graph G consisting of ∆ copies G1,G2, . . . ,G∆

of Kk+1 and a vertex x. Now select a vertex xi ∈ V(Gi) and include the edges xxi, 1 ≤ i ≤ ∆. Then {x} is
a minimum k-isolating set and V(G) \ {x1, x2, . . . , x∆} is a maximum k-independent set. Hence, ιk(G) = 1 =
∆(k+1)+2−(∆k+1)

∆+1 =
n(G)+1−αk(G)

∆+1 .

In the following theorem, we give a lower bound for the isolation number ι(G) of a graph G in terms of
its maximum degree and average degree. For subsets A,B ⊆ V(G), we will use the notation m(A,B) for the
number of edges with one vertex in A and one in B.

Theorem 4.2. Let G be a graph on n vertices with average degree d and maximum degree ∆. Then

ι(G) ≥
dn
2∆2 .

Moreover, equality holds if and only if, for an integer t ≥ 1, G is a bipartite graph with partition sets A and B,
|A| ≤ |B|, where A = {ai, j | 1 ≤ i ≤ t, 1 ≤ j ≤ ∆} and S = {si | 1 ≤ i ≤ t} ⊆ B, such that the following holds:
N(si) = {ai, j | 1 ≤ j ≤ ∆}, |N(a) ∩ B| = ∆ for all a ∈ A and |N(b) ∩ A| ≤ ∆ for all b ∈ B.

Proof. Let V = V(G) and let S be a minimum isolating set of G. We will bound the number of edges from
above. Clearly, m(S,N[S]) ≤ ∆|S|. Moreover, since the vertices of N(S) have all at least one neighbor in S,
we have m(N(S),V \ S) ≤ (∆ − 1)|N(S)| ≤ (∆ − 1)∆|S|. Hence,

m(G) ≤ ∆|S| + (∆ − 1)∆|S| = ∆2
|S| = ∆2ι(G).

Thus it follows ι(G) ≥ m(G)
∆2 = dn

2∆2 .
Now suppose that we have a graph G with average degree d and maximum degree ∆ such that

ι(G) = dn
2∆2 . Then, for any minimum isolating set S of G, we have equalities in all the above inequalities and

thus m(S,N[S]) = ∆|S| and m(N(S),V \ S) = (∆ − 1)|N(S)| = (∆ − 1)∆|S|. Hence, both N(S) and S ∪ (V \N[S])
are independent sets. Setting A = N(S) and B = S∪ (V \N[S]), S = {si | 1 ≤ i ≤ t}, N(si) = {ai, j | 1 ≤ j ≤ ∆}, and
A = {ai, j | 1 ≤ i ≤ t, 1 ≤ j ≤ ∆} it is clear that G is of the form described in the statement of the theorem. For the
converse, consider a bipartite graph G with partite sets A and B, |A| ≤ |B|, where A = {ai, j | 1 ≤ i ≤ t, 1 ≤ j ≤ ∆}
and S = {si | 1 ≤ i ≤ t} ⊆ B, such that the following holds: N(si) = {ai, j | 1 ≤ j ≤ ∆}, |N(a) ∩ B| = ∆ for all a ∈ A
and |N(b) ∩ A| ≤ ∆ for all b ∈ B. Clearly, S is an isolating set of G. Moreover, m(G) = ∆|A| = ∆2t. Hence, by
the above inequality, ∆2t = m(G) ≤ ∆2ι(G) ≤ ∆2

|S| = ∆2t. Thus, ι(G) =
m(G)
∆2 = dn

2∆2 .

Observe that, for an r-regular graph G of order n and attaining the bound of Theorem 4.2, we have
γ(G) = n

r+1 , while ι(G) = n
2r . Hence, we have here another example where the parameters ι(G) and γ(G)

differ considerably, namely here on a factor of 1
2 .
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5. Bounds for Certain Families of Graphs

In the following two theorems, we will deal with the k-isolation number of trees. Given a tree T, we will
call a vertex x ∈ V(T) a support vertex of T if x is neighbor of a leaf, i.e. a vertex of degree one. Moreover, an
inner vertex of T is a vertex that is not a leaf.

Theorem 5.1. Let T be a tree on n vertices and different from K1,k+1. Then ιk(T) ≤ n
k+3 and this is sharp.

Proof. Let T be a tree different from K1,k+1. We will prove the statement by induction on the number of
vertices of T. If n ≤ k + 2, then clearly T has no K1,k+1 as a subgraph and ιk(G) = 0 ≤ n

k+3 . Suppose now that
T is a tree on n ≥ k + 3 vertices and assume that, for any tree on less than n vertices and different from K1,k+1,
the above inequality holds. We now distinguish two cases.
Case 1. Suppose that T has a support vertex v of degree deg(v) , k + 1.
Let u be a leaf adjacent to v and define T′ = T − u. Then T′ is a tree on n − 1 vertices. If T′ = K1,k+1, then
T = K1,k+2 or T is isomorphic to a K1,k+1 with a subdivided edge. Since in both cases {v} is a k-isolating set
of T and n = k + 3, the inequality ιk(T) ≤ n(T)

k+3 holds trivially. Hence, we may assume that T′ , K1,k+1 and,
by the induction hypothesis, ιk(T′) ≤ n(T′)

k+3 . Now, due to the degree condition on v, observe that u cannot
belong to any subtree isomorphic to K1,k+1 and, thus, any k-isolating set of T′ is also a k-isolating set of T.
Hence, ιk(T) ≤ ιk(T′) ≤ n(T′)

k+3 < n
k+3 and we are done.

Case 2. Suppose that all support vertices of T have degree k + 1.
Observe first that the diameter of T cannot be less than 3: otherwise, T would be a star K1,r and since
the support vertices have all degree k + 1, r = k + 1 and thus T = K1,k+1, which is a contradiction to the
assumptions. Hence, diam(T) ≥ 3. Let P = x0x1 . . . xd be a diametral path of T. If d = diam(T) = 3, it is easy
to see that {x1} is a k-isolating set of T and so ιk(G) ≤ 1 ≤ n(T)

k+3 . Hence, we may assume that d = diam(T) ≥ 4.
Let T1 and T2 be the trees resulting after removing the edge x3x4 from T, where T1 is the tree containing x3
and T2 is the tree containing x4. Since all support vertices of T have degree k + 1, T1 has at least k + 3 vertices
and {x3} is a k-isolating set of T1. If, further, diam(T2) ≤ 2, then {x3} is a k-isolating set of T itself and clearly
ιk(T) ≤ 1 ≤ n

k+3 . On the other side, if diam(T2) ≥ 3, then T2 , K1,k+1 and, by the induction hypothesis, we
have ιk(T2) ≤ n(T2)

k+3 . Now let I be a minimum k-isolating set of T2. Then I∪ {x3} is a k-isolating set of T, which
implies

ιk(T) ≤ |I| + 1 = ιk(T2) + 1 ≤
n(T2)
k + 3

+ 1 ≤
n(T2)
k + 3

+
n(T1)
k + 3

=
n

k + 3
,

and we are done.
For the sharpness, consider a path P on t vertices v1, v2, . . . , vt and t copies of K1,k+1 such that each vertex vi
of P is joined by an edge to one of the leaves of the i-th copy of K1,k+1. Define the in this way constructed
tree by T. Clearly, the vertices of P are a k-isolating set of T and we cannot come out with less since for each
copy of K1,k+1 we need at least one vertex in the k-isolating set.

Theorem 5.2. Let T be a tree on n vertices in which all non-leaves have equal degree r ≥ k + 3. Then ιk(T) ≤ n−2
2(r−1)

and this is sharp.

Proof. Let I be the set of inner vertices and L the set of leaves of T. Since all inner vertices of T have degree
r ≥ k + 3, we have the following equality chain:

2(n − 1) = 2m(T) = r|I| + |L| = r|I| + n − |I| = n + (r − 1)|I|.

This implies that |I| = n−2
r−1 . Let now D be minimum dominating set of the tree T−L, resulting from removing

all leaves of T. Then D is a k-isolating set of T and we have, with Lemma 2.3 (iii) and Ore’s inequality,

ιk(T) ≤ γ(T − L) ≤
|I|
2

=
n − 2

2(r − 1)
.
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For the sharpness, construct a tree T the following way. Take a path P = x1x2 . . . xt on t ≥ 3 vertices and
attach to each of the inner vertices xi of P a leaf vi, where 2 ≤ i ≤ t − 1. Attach now, to each vertex vi, r − 1
leaves and, to each vertex xi, r − 2 leaves, for 2 ≤ i ≤ t − 1. Then, any k-isolating set of the resulting tree
T contains either xi or vi for each 2 ≤ i ≤ t − 1. Moreover, {x2, x3, . . . , xt−1} is a k-isolating set of T. Hence,
ιk(T) = t − 1 =

n(T)−2
2(r−1) .

For the theorem coming next, we shall need the following result from Campos and Wakabayashi [5].

Theorem 5.3 ([5]). Let G be a maximal outerplanar graph on n ≥ 4 vertices and t vertices of degree 2. Then,
γ(G) ≤ n+t

4 .

Next theorem shows that, for a maximal outerplanar graph, at most 1
4 of the vertices are needed for an

isolating set.

Theorem 5.4. Let G be a maximal outerplanar graph on n ≥ 4 vertices. Then ι(G) ≤ n
4 and this is sharp.

Proof. If n = 4, then G is the complete graph on 4 vertices minus an edge, which has one vertex dominating
all others and thus ι(G) = 1. If n = 5, then again, since G is a triangulation of the pentagon, there has to
be a vertex dominating all others. When n = 6, 7, we use the fact that a maximal outerplanar graph has
m = 2n− 3 edges. It is also well known that a maximal outerplanar graph has at least two vertices of degree
2. If n = 6, these two facts imply that there has to be a vertex of degree at least 4, otherwise we would have
18 = 2m =

∑
v∈V(G) deg(v) ≤ 2 · 2 + 4 · 3 = 16, a contradiction. Since a vertex of degree 4 in a 6-vertex graph

forms an isolating set, we have ι(G) = 1. Let now n = 7. Note that the only possible degree sequences
of 7 vertices satisfying

∑
v∈V(G) deg(v) = 2m = 2(2n − 3) = 22 and having at least 2 vertices of degree 2 are

5, 4, 4, 3, 2, 2, 2 and 4, 4, 4, 3, 3, 2, 2. Let C = v1v2v3v4v5v6v7v1 be the cycle surrounding the outerface of G and
suppose that v1 has degree 4. If v1 is not-adjacent to two non-consecutive vertices of the cycle different from
v2 and v7, then {v} is an isolating set. Hence suppose that v1 is not-adjacent to two consecutive vertices on
the cycle different from v2 and v7. Without loss of generality, due to symmetry reasons, we can assume
that either N(v) = {v2, v3, v4, v7} or N(v) = {v2, v3, v6, v7}. In the first case, since G is a triangulation of C, v4
has to be adjacent to v7. Then v4 is a vertex of degree at least 4 which dominates all but at most the two
non-adjacent vertices v2 and v6, and hence ι(G) = 1. In the second case, i.e. when v1 is adjacent to v3 and v6,
then v3v6 ∈ E(G). Then either v3v5 or v4v6 ∈ E(G), implying that either v3 or v6 has degree 5, which leads to
ι(G) = 1.

Let now G be a maximal outerplanar graph on n ≥ 8 vertices. Let N2 be the set of vertices of degree 2 in G
and let n2 = |N2|. Note that (for n ≥ 4) N2 is an independent set. Hence, n2 ≤

n
2 . Let G∗ = G−N2. Note that (for

n ≥ 5) the deletion of any vertex from N2 creates at most one new vertex of degree 2. Hence, G∗ has at most
n∗2 ≤ n2 vertices of degree 2. Further, G∗ is a maximal outerplanar graph on n∗ ≥ n

2 ≥ 4 vertices. By Theorem

5.3, it follows that γ(G∗) ≤ n∗+n∗2
4 . Hence, by Lemma 2.3 (iii), ι(G) ≤ γ(G \ G[N2]) = γ(G∗) ≤ n∗+n∗2

4 ≤
n∗+n2

4 = n
4

and we are done.
To see the sharpness, consider an arbitrary maximal outerplanar graph on 2p vertices such that

v1v2 . . . v2pv1 is the outercycle. Insert new vertices wi and edges viwi, for 1 ≤ i ≤ 2p, and also the edges
v2 j−1w2 j and w2 j−1w2 j, for 1 ≤ j ≤ p. Then we have constructed again a maximal outerplanar graph G on
n = 4p vertices, now with the outercycle going along the paths v2 j−1w2 j−1w2 jv2 j in consecutive order, for
1 ≤ j ≤ p. Note that, any isolating set of G has to contain at least one vertex from each of these paths,
otherwise the adjacent vertices w2 j−1 and w2 j would not be dominated. Hence, ι(G) ≥ n

4 . On the other hand,
{w2 j−1 | 1 ≤ j ≤ p} is an isolating set of G with p = n

4 vertices. Thus, we have ι(G) = n
4 .

In the following theorem, we consider claw-free graphs, i. e. graphs which do not contain a K1,3 as an
induced subgraph.

Theorem 5.5. Let G be a claw-free graph on n vertices with average degree d, maximum degree ∆ and minimum
degree δ. Then the following lower bounds on ι(G) hold:
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(i) ι(G) ≥ δ(n+1)+2
(δ+2)(∆+1) ,

(ii) ι(G) ≥ 2 d n
3∆2+2∆

.

Proof. (i) In [13], the authors prove the bound α(G) ≥ r−1
r−1+δn for graphs on n vertices and minimum degree δ

and without induced K1,r. Setting r = 3 in this result, and combining it with the bound on Theorem 4.1 (ii),
leads to

ι(G) ≥
n + 1 − α(G)

∆ + 1
≥

n + 1 − 2n
δ+2

∆ + 1
=

δ(n + 1) + 2
(δ + 2)(∆ + 1)

,

and we are done.
(ii) Let G be claw-free and let S be a minimum isolating set of G. Similarly as in Theorem 4.2, we will bound
the number of edges of G from above. Consider a vertex x ∈ S and let Nx = N(x) \ S, Gx = G[N[Nx] ∪ {x}]
and tx = |Nx|. Differently from the proof of Theorem 4.2, since G is claw-free, N(v) has to contain enough
edges such that any independent set of three vertices is avoided. This holds in particular also for Nx. The
minimum number of edges contained in a graph with independence number at most 2 is equal to the
number of edges of the complement of the Turán graph (the triangle-free ones). That is, in the worst case,
G[Nx] consists of two cliques of equal or almost equal order, depending on the parity of tx. Hence, G[Nx]
has at most

(
dtx/2e

2
)

+
(
btx/2c

2
)

edges. Hence, we have the following.

m(Gx) = tx + m(Gx − x)

= tx +
∑
v∈Nx

degGx−x(v) −m(G[Nx])

≤ tx + tx(∆ − 1) −m(G[Nx])
= tx∆ −m(G[Nx]).

If tx is odd, we have m(G[Nx]) ≥
((tx+1)/2

2
)

+
((tx−1)/2

2
)

=
(tx−1)2

4 and thus

m(Gx) ≤ tx∆ −
(tx − 1)2

4
≤ ∆2

−
(∆ − 1)2

4
=

3∆2 + 2∆ − 1
4

<
3∆2 + 2∆

4
.

If tx is even, we have m(G[Nx]) ≥ 2
(tx/2

2
)

=
tx(tx−2)

4 and thus

m(Gx) ≤ tx∆ −
tx(tx − 2)

4
≤ ∆2

−
∆(∆ − 2)

4
=

3∆2 + 2∆

4
.

We obtain now the following upper bound on the number of edges of G:

m(G) ≤
∑
x∈S

m(Gx) ≤ |S|
3∆2 + 2∆

4
,

which implies ι(G) = |S| ≥ 4m(G)
3∆2+2∆

= 2d
3∆2+2∆

n.

Observe that, for an r-regular claw-free graph G on n vertices, the bound of Theorem 5.5 gives ι(G) ≥ 2n
3r+2 ,

which is on around a factor of 4
3 better than the bound ι(G) ≥ n

2r of Theorem 4.2 for r-regular graphs.
In the following theorem, we shall consider grids and other similar graphs.

Theorem 5.6. Let t, s ≥ 3 be two integers. Then

st
8
≤ ι(Cs�Ct) ≤

st
8

+
3(s + t + 3)

8
,

st
8
−

t
16
≤ ι(Ps�Ct) ≤

st
8

+
3s + t + 3

8
,

st
8
−

s + t
16
≤ ι(Ps�Pt) ≤

st
8

+
s + t + 1

8
.

Further, the bound st
8 ≤ ι(Cs�Ct) is sharp for s, t ≡ 0 (mod 4).
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Proof. Let G = Cs�Ct. The lower bound follows directly from Theorem 4.2 using the fact that G is 4-regular.
For the sharpness, let s, t ≡ 0 (mod 4) and consider the isolating set consisting of all vertices on a row and
column congruent to 1 (mod 4) or in a row and column congruent to 3 (mod 4). For the upper bound,
we will construct an isolating set the following way. Let V(G) = {(i, j) | 1 ≤ i ≤ s, 1 ≤ j ≤ t} be the set of
vertices of G where, for Ai = {(i, j) | 1 ≤ j ≤ t} and B j = {(i, j) | 1 ≤ i ≤ s}, G[Ai] � Ct and G[B j] � Cs. Let
S1 = {(i, j) | i, j ≡ 1 (mod 4)} and S2 = {(i, j) | i, j ≡ 3 (mod 4)}}. Then S = S1 ∪ S2 is an isolating set of G with

ι(G) ≤ |S| ≤ 2
⌈ s

4

⌉ ⌈ t
4

⌉
≤

(s + 3)(t + 3)
8

=
st
8

+
3(s + t + 3)

8
.

Now let H = Ps�Ct. Then H has 2t vertices of degree 3 and t(s − 2) vertices of degree 4. Hence, d(G) =
6t+4t(s−2)

st =
2t(2s−1)

st and Theorem 4.2 yields ι(H) ≥ t(2s−1)
16 = st

8 −
t

16 . For the upper bound, define the vertices
as in the previous case such that G[Ai] � Ct and G[B j] � Ps and set S1 = {(i, j) | i, j ≡ 1 (mod 4)} and
S2 = {(i, j) | i, j ≡ 3 (mod 4)}}. Further, define

S∗ =


{(s, j) | j ≡ 1 (mod 4)}, if s ≡ 2 (mod 4)
{(s, j) | j ≡ 3 (mod 4)}, if s ≡ 0 (mod 4)
∅, if s ≡ 1, 3 (mod 4)

and S = S1 ∪ S2 ∪ S∗. Then S is an isolating set of H. Observe that S has d s
2 e rows of d n

4 e vertices each, and
thus we obtain

ι(G) ≤ |S| ≤
⌈ s

2

⌉ ⌈ t
4

⌉
≤

(t + 3)(s + 1)
8

=
st
8

+
3s + t + 3

8
.

Finally, let J = Ps�Pt. Observe that J has 2 vertices of degree 2, 2s+2t−8 vertices of degree 3 and (s−2)(t−2)
vertices of degree 4. This gives d(G) = 4st−2s−2t

st and thus we have with Theorem 4.2 ι(G) ≥ 2st−s−t
16 = st

8 −
s+t
16 .

For the upper bound, define the vertices as above such that G[Ai] � Pt and G[B j] � Ps and set S1 =
{(i, j) | i, j ≡ 1 (mod 4)} ∪ {(s, j) | j ≡ 1 (mod 4)} and S2 = {(i, j) | i, j ≡ 3 (mod 4)}} ∪ {(i, t) | i ≡ 3 (mod 4)}.
Further, define

S∗ =


{(s, j) | j ≡ 1 (mod 4)}, if s ≡ 0 (mod 4)
{(s, j) | j ≡ 3 (mod 4)}, if s ≡ 2 (mod 4)
∅, if s ≡ 1, 3 (mod 4),

T∗ =


{(i, t) | i ≡ 1 (mod 4)}, if t ≡ 0 (mod 4)
{(i, t) | j ≡ 3 (mod 4)}, if t ≡ 2 (mod 4)
∅, if t ≡ 1, 3 (mod 4),

and S = S1 ∪S2 ∪S∗ ∪T∗. Then S has d s
4 e rows of vertices (i, j) with i, j ≡ 1 (mod 4), each having d t

4 e vertices.
Similarly, S has d s−2

4 e rows of vertices (i, j) with i, j ≡ 3 (mod 4), each having d t−2
4 e vertices. Hence,

ι(G) ≤ |S| ≤
⌈ s

4

⌉ ⌈ t
4

⌉
+

⌈ s − 2
4

⌉ ⌈ t − 2
4

⌉
.

The last inequality is worst when s, t ≡ 3 (mod 4), and thus

ι(G) ≤ 2
(s + 1)(t + 1)

16
=

st
8

+
s + t + 1

8
.

Observe that, according to [1, 17], for s ≥ t ≥ 16, the domination number of the grid graph Ps�Pt is equal
to st

5 +O(s + t), which is around a factor of 8
5 larger than the bounds for the isolation number of grid graphs

from Theorem 5.6.
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6. Nordhaus-Gaddum Bounds

In this section, we will deal with Nordhaus-Gaddum bounds for the isolation number. Observe that
ι(G) = 0 if and only if G = Kn. Since, for n ≥ 2, ι(Kn) = 1 it follows that ι(G) + ι(G) ≥ 1 for n ≥ 2 and this is
sharp. The following results give upper bounds on the sum ι(G) + ι(G).

Theorem 6.1. Let G be a graph with minimum degree δ. Then, if ι(G) ≥ 3, ι(G) + ι(G) ≤ δ + 1.

Proof. Observe first that if δ(G) ≤ 3, then ι(G) ≤ 2, since if there is a vertex y ∈ V with deg(y) ≤ 3, then,
in G, |V \ NG[y]| ≤ 3 and V \ NG[y] can be isolated by one more vertex. So we may assume, without loss
of generality, that δ(G) ≥ 4. The condition ι(G) ≥ 3 implies that no two vertices form an isolating set in G,
meaning that, for any two vertices x, y ∈ V, there is an edge uv ∈ E(G) with both end vertices u, v outside
NG[x] ∪ NG[y]. In particular, it follows that, in G, |NG(x) ∩ NG(y)| ≥ 2 for any two vertices x, y ∈ V and
thus diam(G) ≤ 2. Since ι(G) ≥ 3 we have also that G , Kn and, hence, we obtain that diam(G) = 2. Let
now u be a vertex of minimum degree δ in G. Then NG(u) is a dominating and an isolating set in G. Let
Y = V \ NG[u] and let X be a minimal isolating set of G such that X ⊆ NG(u) and X′ = NG(u) \ X. Note
that V = X ∪ X′ ∪ Y ∪ {u} is a disjoint union. Let x ∈ X. Then, by the minimality condition on X, there
are vertices y, z ∈ Y ∪ X′ ∪ {x} such that yz ∈ E(G) and (NG(y) ∪ NG(z)) ∩ X = {x}. Hence, in G, there are
vertices y, z ∈ Y ∪ X′ ∪ {x} such that yz < E(G) and X \ {x} = (NG(y) ∩NG(z)) ∩ X. Observe that X′ , ∅, since
otherwise {u, y} would be an isolating set in G, contradicting ι(G) ≥ 3. Let I ⊆ X′ be the set of all isolated
vertices in G[X′] and let D be a minimum isolating set in G[X′ \ I] (if X′ \ I = ∅, set D = ∅). Then |D| ≤ |X

′
\I|

2 .
We distinguish now the following cases.
Case 1: I = ∅. Then |X′| ≥ 2 and thus |X| ≤ δ − 2. In this case, D ∪ {u, y} is an isolating set of G and therefore
we have

ι(G) + ι(G) ≤ |X| + |D ∪ {u, y}|

≤ |X| +
|X′|
2

+ 2

= |X| +
δ − |X|

2
+ 2

=
|X| + δ

2
+ 2

≤
2δ − 2

2
+ 2 = δ + 1.

Case 2: |I| = 1, say I = {w}. Then |X| = δ − |X′| ≤ δ − 1. If NG(w)∩X = ∅, then X ⊆ NG(w) and, thus, D∪ {u,w}
is an isolating set in G. Hence,

ι(G) + ι(G) ≤ |X| + |D ∪ {u,w}|

≤ |X| +
|X′ \ I|

2
+ 2

= |X| +
δ − |X| − |I|

2
+ 2

=
δ + |X| − |I|

2
+ 2

≤
2δ − 2

2
+ 2 = δ + 1

and we are done. Therefore, we may assume, without loss of generality, that wx ∈ E(G). In this case,
D ∪ {u, y} is an isolating set in G. As above, we obtain again ι(G) + ι(G) ≤ δ + 1.
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Case 3: |I| ≥ 2. Then |X| ≤ δ − 2 and D ∪ {u, x, y} is an isolating set of G. Thus we have

ι(G) + ι(G) ≤ |X| + |D ∪ {u, x, y}|

≤ |X| +
|X′ \ I|

2
+ 3

≤ |X| +
δ − |X| − |I|

2
+ 3

=
δ + |X| − |I|

2
+ 3

≤
2δ − 4

2
+ 3 = δ + 1

and we are done.

Theorem 6.2. Let f (x) be a function defined for x ∈ [2,∞) such that ι(G) ≤ f (δ)n for all graphs G of order n and
minimum degree δ ≥ 2. Then, for any graph G of order n ≥ δ−1

f (δ) , we have

ι(G) + ι(G) ≤ n f (δ) + 2.

Moreover, if the upper bound f (δ)n is attained for a graph G of order n and minimum degree δ ≥ 2, then the above
inequality is sharp.

Proof. Let G be a graph of order n and minimum degree δ ≥ 2. By Theorem 6.1, if ι(G) ≥ 3, we have
ι(G) + ι(G) ≤ δ + 1. On the other side, if ι(G) ≤ 2, we obtain ι(G) + ι(G) ≤ f (δ)n + 2. Hence, ι(G) + ι(G) ≤
max{δ + 1, f (δ)n + 2}. If n ≥ δ−1

f (δ) , then f (δ)n + 2 ≥ δ + 1, implying thus ι(G) + ι(G) ≤ n f (δ) + 2. For the
sharpness, assume that ι(G) = f (δ)n(G) for a graph G of minimum degree δ ≥ 2. Let H be the graph
consisting of n

n(G) ≥ 2 copies of G, where n is an integer divisible by n(G). Then ι(H) = n
n(G) f (δ)n(G) = f (δ)n

and ι(G) = 2.

Remark 6.3. Observe that, if δ(G) ≤ 1, then ι(G) = 1. Hence, in this case, we have ι(G) + ι(G) = ι(G) + 1, showing
that the bound of Theorem 6.2 cannot be attained.

Corollary 6.4. Let G be a graph of oder n and minimum degree δ. Then we have the following bounds.

(i) If δ = 0, ι(G) + ι(G) ≤
⌊

n+1
2

⌋
and this is sharp.

(ii) If δ = 1, ι(G) + ι(G) ≤
⌊

n
2

⌋
+ 1 and this is sharp.

(iii) If δ = 2, ι(G) + ι(G) ≤ 2
5 n + 2 and this is sharp.

(iv) If δ = 3, ι(G) + ι(G) ≤ 1
3 n + 2 and this is sharp.

(v) If n ≥ (δ−1)(δ+1)
ln(δ+1)+ 1

2
, then ι(G) + ι(G) ≤ ln(δ+1)+ 1

2
δ+1 n + 2.

Proof. (i) Let G be a graph on n vertices and with minimum degree δ = 0. Let I be the set of isolated vertices
in G. Then, by Theorem 3.5(ii), ι(G) = ι(G − I) ≤

⌊
n−|I|

2

⌋
≤

⌊
n−1

2

⌋
. Since in G there is a vertex of degree

n − 1, ι(G) = 1 and, hence, ι(G) + ι(G) ≤
⌊

n−1
2

⌋
+ 1 =

⌊
n+1

2

⌋
. The sharpness follows by considering the graph

G = n−1
2 K2 ∪ K1, when n is odd, and G = n−2

2 K2 ∪ 2K1, when n is even.
(ii) Let G be a graph on n vertices and minimum degree δ = 1. Then, by Theorem 3.5 (ii), we have ι(G) ≤

⌊
n
2

⌋
and, since G has a vertex of degree n − 2, ι(G) = 1. Hence, ι(G) + ι(G) ≤

⌊
n
2

⌋
+ 1. For the sharpness, consider

the graph G = n
2 K2, when n is even, and G = n−3

2 K2 ∪ K1,2, when n is odd.

(iii) - (v) The bounds follow from Theorems 3.5 and 6.2 for n ≥ δ−1
f (δ) , with f (2) = 2

5 , f (3) = 1
3 and f (δ) =

ln(δ+1)+ 1
2

δ+1 .
For δ ∈ {2, 3} and small values of n, that is, δ + 1 ≤ n < δ−1

f (δ) , we only need to check when δ = 3 and n = 4 or
5. In this case, the only possibilities for G are either K4, K5 − e, or K5 − {e, f }, where e and f are the edges of
a matching in K5. Evidently, the bound holds in these cases, too.
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7. Open Problems

This paper, as it is introducing a new subject, offers obviously many possible directions, open prob-
lems, conjectures and generalizations. Rather than doing this, we choose to offer some few concrete open
problems where a progress to solve them seems doable, and which hopefully will shade more light on
which ideas and techniques will be useful in attacking such problems on partial domination with restricted
structure imposed on the non-dominated vertices.

Recalling Theorem 3.5, we show f (δ) ≥ 2
δ+3 and we prove that this is sharp for δ = 1, 2, 3.

Problem 7.1. Determine other values of f (δ). In particular, is f (4) = 2
7 ?

Recall that, by means of Theorem 3.8, we show in Corollary 3.9 that fc(1) = fc(2) = 1
3 and that fc(δ) ≥ 2

δ+4
for δ ≥ 3.

Problem 7.2. Determine other values of fc(δ). In particular, is fc(3) = 2
7 ?

For F = {Ck | k ≥ 3}, we know after Theorem 3.1 and Corollary 3.10 that 1
4 ≤ lim supn→∞{

ι(G,F )
n(G) | n(G) ≥

n} ≤ 1
3 . Also for F = {Kk+1} and F = Fk, the family of all trees of order k ≥ 2, we know, after the same

theorem and corollary, that 1
k+1 ≤ lim supn→∞{

ι(G,F )
n(G) | n(G) ≥ n} ≤ 1

3 . Hence, we state the following problem.

Problem 7.3. For F = {Ck | k ≥ 3}, F = {Kk+1} and F = Fk, determine

lim sup
n→∞

{
ι(G,F )

n(G)
| n(G) ≥ n

}
and sup

n→∞

{
ι(G,F )

n(G)
| n(G) ≥ n

}
.

Problem 7.4. Determine or give a lower and an upper bound for ι(G) or ι(G,F ) for further interesting families of
graphs.

Problem 7.5. Estimate 1(n, δ) = max{γ(G)− ι(G) | n(G) = n, δ(G) = δ}. Is it true that 1(n, δ) ≥ cn ln(δ+1)
δ+1 for some

constant c with 0 < c < 1?
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