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Abstract. Let A,B be standard operator algebras on complex Banach spaces X and Y of dimensions at
least 3, respectively. In this paper we give the general form of a surjective (not assumed to be linear or
unital) map Φ : A −→ B such that Φ2 : M2(C)⊗A →M2(C)⊗B defined by Φ2((si j)2×2) = (Φ(si j))2×2 preserves
nonzero idempotency of Jordan product of two operators in both directions. We also consider another
specific kinds of products of operators, including usual product, Jordan semi-triple product and Jordan
triple product. In either of these cases it turns out that Φ is a scalar multiple of either an isomorphism or a
conjugate isomorphism.

1. Introduction

The study of (linear or nonlinear) maps leaving invariant certain functions, subsets or relations, is
one of the most active research topics in Matrix theory, operator algebras and operator spaces and has
attracted the attention of many authors for the past years. One of such problems concerns with the set of
idempotents in operator algebras. Completely preserving idempotents between standard operator algebras
on real or complex Banach spaces have been considered in [3] and it was shown that such map is either an
isomorphism or a conjugate isomorphism.

For a complex Banach space X with dim X ≥ 3, in [2] Fang gave a description of a surjective linear
map φ on B(X) which preserves nonzero idempotency of Jordan products of operators in one direction.
He showed that if X is infinite dimensional, then either there exist a bounded invertible (conjugate) linear
operator A : X → X and a constant λ ∈ {1,−1} such that

φ(T) = λATA−1 (T ∈ B(X)), (1)

or (when X is reflexive) there exist a bounded invertible (conjugate) linear operator A : X∗ → X and a
constant λ ∈ {1,−1} such that

φ(T) = λAT∗A−1 (T ∈ B(X)). (2)

On the other hand in an earlier paper [7], Wang, Fang and Ji obtained the concrete form of a linear map φ
on B(X) which preserves the nonzero idempotency of either product ST or semi-triple Jordan product STS
of two operators in one direction. They proved that when X is infinite dimensional, in the case of usual
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product, φ has the form (1) and in the case of semi-triple Jordan product, φ is either of the form (1) or (2)
for a constant λ ∈ Cwith λ3 = 1.

It may be interesting to find conditions under which the above mentioned results are valid for not
necessarily linear maps. As the authors know, the results of [1] and [6] are the only known results of this
type. In [1] Fang, Ji and Pang, described the concrete form of unital surjective maps on B(X) that preserve
nonzero idempotency of products of two operators in both directions. In a more general treatment in [6]
Petek, among others, characterized unital maps onB(X) which preserve nonzero idempotency of sequential
product (or ?-product) of operators A1,A2, ...,An ∈ B(X) defined by

A1 ? A2 ? ... ? An = Ai1 Ai2 ...Aim ,

where i1, i2, ..., im ∈ {1, 2, ...,n} are fixed, in both direction. Since the usual product and the semi-triple Jordan
product (which is called Jordan triple product in [6]) are sequential, Petek’s results provides the description
of unital maps on B(X) preserving nonzero idempotency of product and semi-triple Jordan product of two
operators in both directions.

It is not well known that if the assumption of being unital, is sufficient to describe the maps satisfying
similar properties for the other kinds of products, which are not sequential such as Jordan product. However,
considering a similar approach as in [3], in this paper we consider another substitution for the linearity
assumption which works for specific kinds of products, including Jordan product without assuming that the
map is unital. More precisely, we give a description of a surjective map (not assumed to be linear or unital)
Φ : A −→ B between standard operator algebrasA andB such that Φ2 : M2(C)⊗A →M2(C)⊗B defined by
Φ2((si j)2×2) = (Φ(si j))2×2 preserves nonzero idempotency of each of usual products, Jordan products, Jordan
semi-triple products and Jordan triple products of operators in both directions.

2. Preliminaries and the Statement of Main Results

Let X be a complex Banach space with dual space X∗. For each x ∈ X and f ∈ X∗, x ⊗ f is the rank-one
operator defined by (x ⊗ f )y = f (y)x on X. We denote the Banach space of all bounded linear operators
from X to a complex Banach spaceY by B(X,Y) and we set B(X) = B(X,X). For n ∈N, Mn(C) is the space
of n × n matrices with complex entries.

By a standard operator algebra on a Banach space X we mean a subalgebra of B(X) which contains the
identity and the ideal of all finite rank operators. For each n ∈ N, let I∗n(X) be the set of all nonzero
idempotents in Mn(C) ⊗ B(X). For the case where n = 1 we use I∗(X) for I∗1(X).

Let A and B be standard operator algebras on Banach spaces X and Y, respectively. Given a map
Φ : A→ B and n ∈N let Φn : Mn(C) ⊗A →Mn(C) ⊗ B be defined by Φn((si j)n×n) = (Φ(si j))n×n.

We recall that Jordan products, Jordan semi-triple products and Jordan triple products of operators are
products of the form ST + TS, STS and STU + UTS, respectively, for S,T,U ∈Mn(C)⊗A. We note that each
(Ti j) ∈ Mn(C) ⊗A, n ∈ N, can be considered as an operator in B(Xn), where Xn is equipped with the norm
‖(x1, ..., xn)‖ = ‖x1‖ + ... + ‖xn‖.

We should note that if S,T are linear operators on a complex vector spaceU such that Ker T ⊆ Ker S and
for all u ∈ U, Su and Tu are linearly dependent, then by [4, Lemma 1.1 and Remark 1.2] we have S ∈ CT.

Let ? denote one of the usual product, Jordan product, Jordan semi-triple product or Jordan triple
product. The following theorems are the main results of this paper.

Theorem 2.1. Let X,Y be infinite dimensional complex Banach spaces and A,B be standard operator algebras on
X andY, respectively. Let Φ : A→ B be a surjective map satisfying

S ? T ∈ I∗2(X)⇔ Φ2(S) ?Φ2(T) ∈ I∗2(Y)

for all S,T ∈ M2(C) ⊗ A. Then there exist an invertible bounded linear or conjugate linear operator A : X −→ Y
and a scalar λ such that

Φ(T) = λATA−1 (T ∈ A),

where in the case of product or Jordan product λ ∈ {1,−1} and in the case of Jordan semi-triple product or Jordan
triple product λ3 = 1.
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Theorem 2.2. Let Φ : Mn(C)→Mn(C), n ≥ 3, be a surjective map satisfying

S ? T ∈ I∗2(Cn)⇔ Φ2(S) ?Φ2(T) ∈ I∗2(Cn)

for all S,T ∈ M2(C) ⊗Mn(C). Then there exist an invertible matrix A ∈ Mn(C), an automorphism τ : C→ C and a
scalar λ ∈ C such that

Φ(T) = λATτA−1 (T ∈Mn(C)),

where Tτ = (τ(ti j)) for T = (ti j). Moreover, in the case of product or Jordan product λ ∈ {1,−1} and in the case of
Jordan semi-triple product or Jordan triple product λ3 = 1.

3. Proofs of Main Results

In this section we assume thatX andY are complex Banach spaces with dimensions at least 3,A and B
are standard operator algebras on X and Y, respectively and Φ : A → B is a surjective map, not assumed
to be linear or unital satisfying

S ? T ∈ I∗2(X)⇔ Φ2(S) ?Φ2(T) ∈ I∗2(Y) (S,T ∈M2(C) ⊗A)

where ? denotes one of the usual product, Jordan product, Jordan semi-triple product or Jordan triple
product.

Lemma 3.1. Φ(0) = 0.

Proof. We first assume that ? is the Jordan product. Assume by the way of contradiction that Φ(0) , 0 and
set

N =

(
Φ(0) Φ(0)
Φ(0) Φ(0)

)
.

We note that N2 , 0, since otherwise there exist y ∈ Y and f ∈ Y∗ with f (Φ(0)2(y)) = 0 and f (Φ(0)(y)) = 1
and hence(

Φ(0) Φ(0)
Φ(0) Φ(0)

) (
0 0

y ⊗ f 0

)
+

(
0 0

y ⊗ f 0

) (
Φ(0) Φ(0)
Φ(0) Φ(0)

)
=

(
Φ(0)(y) ⊗ f 0

Φ(0)(y) ⊗ f + y ⊗ fΦ(0) y ⊗ fΦ(0)

)
∈ I∗2(Y),

which implies, by the surjectivity of Φ, that 0 ∈ I∗2(X), a contradiction. Hence N2 , 0. We now show that
N2 = cN for some nonzero scalar c. If there exists y = (y1, y2) ∈ Y2 such that Ny and N2y are linearly
independent, then Φ(0)2(y1 + y2) and Φ(0)(y1 + y2) are linearly independent and we can choose f ∈ Y∗ with
f (Φ(0)2(y1 + y2)) = 0 and f (Φ(0)(y1 + y2)) = 1. Therefore,(

Φ(0) Φ(0)
Φ(0) Φ(0)

) (
0 0

(y1 + y2) ⊗ f 0

)
+

(
0 0

(y1 + y2) ⊗ f 0

) (
Φ(0) Φ(0)
Φ(0) Φ(0)

)
=

(
Φ(0)(y1 + y2) ⊗ f 0

Φ(0)(y1 + y2) ⊗ f + (y1 + y2) ⊗ fΦ(0) (y1 + y2) ⊗ fΦ(0)

)
∈ I∗2(Y),

and so, by the surjectivity of Φ, we have 0 ∈ I∗2(X) which is impossible. Thus for every y ∈ Y2, Ny and N2y
are linearly dependent. Since Ker N ⊆ Ker N2, Lemma 1.1 in [4] implies that N2 = cN for some c ∈ C. Being
N2 , 0 we have c , 0 and consequently(

Φ(0) Φ(0)
Φ(0) Φ(0)

) (
1
2c I 0
0 1

2c I

)
+

(
1
2c I 0
0 1

2c I

) (
Φ(0) Φ(0)
Φ(0) Φ(0)

)
=

1
c

N ∈ I∗2(Y),
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which leads again to the contradiction 0 ∈ I∗2(X). Thus we have Φ(0) = 0.

Now let ? be the usual product and Φ(0) , 0. Then there exists y ∈ Y and f ∈ Y∗ such that f (Φ(0)y) = 1.
Since (

Φ(0) Φ(0)
Φ(0) Φ(0)

) (
0 0

y ⊗ f 0

)
=

(
Φ(0)y ⊗ f 0
Φ(0)y ⊗ f 0

)
∈ I∗2(Y),

the hypothesis implies that 0 ∈ I∗2(X) which is a contradiction.

Assume now that ? denotes Jordan semi-triple product and Φ(0) , 0. Choose arbitrary y ∈ Y with
Φ(0)y , 0. If y and Φ(0)y are linearly independent, then choosing f1 ∈ Y∗ with f1(y) = f1(Φ(0)y) = 1 we
have (

0 0
0 y ⊗ f1

) (
Φ(0) Φ(0)
Φ(0) Φ(0)

) (
0 0
0 y ⊗ f1

)
=

(
0 0
0 y ⊗ f1

)
∈ I∗2(Y)

which leads to 0 ∈ I∗2(X), a contradiction. Therefore, y and Φ(0)y are linearly dependent for all y ∈ Y. Since
Ker I ⊆ Ker Φ(0), Lemma 1.1 in [4] implies that Φ(0)y = cy, y ∈ Y, for some c ∈ C which is clearly nonzero.
Choosing λ ∈ Cwith λ2 = c and f2 ∈ Y∗ with f2(y) = 1

λ we have(
0 0
0 y ⊗ f2

) (
Φ(0) Φ(0)
Φ(0) Φ(0)

) (
0 0
0 y ⊗ f2

)
=

(
0 0
0 λy ⊗ f2

)
∈ I∗2(Y),

which again leads to the contradiction 0 ∈ I∗2(X). Thus Φ(0) = 0.

The case where ? denotes Jordan triple product has a similar argument.

Remark. Using the above lemma we can show that Φ preserves multiplicatively nonzero idempotents, that
is

A ? B ∈ I∗(X)⇔ Φ(A) ?Φ(B) ∈ I∗(Y)

for all A,B ∈ A. For example in the case where ? denotes the Jordan product, since Φ(0) = 0, for each
A,B ∈ Awe have AB + BA ∈ I∗(X) if and only if(

A 0
0 0

) (
B 0
0 0

)
+

(
B 0
0 0

) (
A 0
0 0

)
∈ I∗2(X)

and this is equivalent to(
Φ(A) 0

0 0

) (
Φ(B) 0

0 0

)
+

(
Φ(B) 0

0 0

) (
Φ(A) 0

0 0

)
∈ I∗2(Y)

or equivalently

Φ(A)Φ(B) + Φ(B)Φ(A) ∈ I∗(Y).

The same conclusion holds for the other kinds of products of operators.

Lemma 3.2. Φ is injective.

Proof. We prove the lemma for the case where? is the Jordan semi-triple product, the other cases are proved
similarly. For this let A,B ∈ A such that Φ(A) = Φ(B). Then(

I 0
0 I

) (
A I

A − A2 I − A

) (
I 0
0 I

)
∈ I∗2(X).

Therefore, by the hypothesis,(
Φ(I) 0

0 Φ(I)

) (
Φ(A) Φ(I)

Φ(A − A2) Φ(I − A)

) (
Φ(I) 0

0 Φ(I)

)
∈ I∗2(Y).
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Since by the assumption Φ(A) = Φ(B), it follows that(
Φ(I) 0

0 Φ(I)

) (
Φ(B) Φ(I)

Φ(A − A2) Φ(I − A)

) (
Φ(I) 0

0 Φ(I)

)
∈ I∗2(Y)

which is equivalent to (
I 0
0 I

) (
B I

A − A2 I − A

) (
I 0
0 I

)
∈ I∗2(X).

Thus

M =
(

B I
A − A2 I − A

)
∈ I∗2(X),

that is, M2 = M which implies that A = B, as desired.

Lemma 3.3. If ? denotes the Jordan product, then Φ preserves zero Jordan products of operators in both directions,
that is for A,B ∈ A,

AB + BA = 0⇔ Φ(A)Φ(B) + Φ(B)Φ(A) = 0.

In particular, Φ is square zero preserving, that is A2 = 0 holds if and only if Φ(A)2 = 0.

Proof. Let A,B ∈ A such that AB + BA = 0. Choosing U,V ∈ Awith UV + VU ∈ I∗(X) we have(
UV + VU 0

0 0

)
∈ I∗2(X)

and since AB + BA = 0 we have(
U 0
0 A

) (
V 0
0 B

)
+

(
V 0
0 B

) (
U 0
0 A

)
=

(
UV + VU 0

0 0

)
∈ I∗2(X).

Now the hypothesis implies that(
Φ(U) 0

0 Φ(A)

) (
Φ(V) 0

0 Φ(B)

)
+

(
Φ(V) 0

0 Φ(B)

) (
Φ(U) 0

0 Φ(A)

)
=(

Φ(U)Φ(V) + Φ(V)Φ(U) 0
0 Φ(A)Φ(B) + Φ(B)Φ(A)

)
∈ I∗2(Y).

So there are two possible cases, either

Φ(A)Φ(B) + Φ(B)Φ(A) ∈ I∗(Y)

or
Φ(A)Φ(B) + Φ(B)Φ(A) = 0.

The first case concludes that 0 = AB + BA ∈ I∗(X), a contradiction. Therefore, Φ(A)Φ(B) + Φ(B)Φ(A) = 0, as
desired. The converse statement is similar. Clearly this implies that for A ∈ A, A2 = 0 iff Φ(A)2 = 0.

Remark. One can easily check that similar results, as in the above lemma, hold for the case where? denotes
one of usual product, Jordan semi-triple product or Jordan triple product. The last statement for Jordan
semi-triple product and Jordan triple product is as follows: A3 = 0 iff Φ(A)3 = 0 for A ∈ A.

Lemma 3.4. Φ(I) = λI for some scalar λ ∈ C. Moreover, in the cases that ? is the usual product or Jordan product
we have λ ∈ {1,−1} and in the other two cases λ3 = 1.
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Proof. Let ? be the Jordan product. To prove the lemma for this case we first show that Φ(I) is not a divisor
of zero with respect to the Jordan product and Φ(I)3 = Φ(I). We note that since(

0 I
0 0

) (
0 0
I 0

)
+

(
0 0
I 0

) (
0 I
0 0

)
=

(
I 0
0 I

)
∈ I∗2(X),

it follows from the hypothesis that(
0 Φ(I)
0 0

) (
0 0

Φ(I) 0

)
+

(
0 0

Φ(I) 0

) (
0 Φ(I)
0 0

)
∈ I∗2(Y),

and hence (
Φ(I)2 0

0 Φ(I)2

)
∈ I∗2(Y).

This clearly implies that Φ(I)2
∈ I∗(Y). Assume now that Φ(I)A + AΦ(I) = 0 for some nonzero A ∈ B.

Since Φ is surjective A = Φ(A0) for some A0 ∈ A. Therefore, Φ(I)Φ(A0) + Φ(A0)Φ(I) = 0 and Lemma 3.3
implies that A0 = 0 which is impossible, since Φ(0) = 0. Hence Φ(I) is not a divisor of zero with respect
to the Jordan product. Now set T = Φ(I)3. Then by the above argument, Φ(I)4 = TΦ(I) = Φ(I)2, that is
(T −Φ(I))Φ(I) = Φ(I)(T −Φ(I)) = 0. This implies that T = Φ(I), by the first part, that is Φ(I)3 = Φ(I).

We now show that Φ(I) is a scalar operator. We note that since Φ(I)2 is an idempotent operator, if
Φ(I) = λI for some scalar λ, then we have necessarily λ ∈ {1,−1}. So assume by the way of contradiction
that A = Φ(I) is not a scalar operator. Then since A3 = A, applying Molnar’s comment [5] at the end
of p.297, A can be written as A = P − Q for some orthogonal idempotents P and Q in B(Y). Obviously,
P,Q ∈ B, since A2 = P + Q ∈ B. Now we claim that A2 , I. Assume on the contrary that A2 = I. Since A
is assumed to be a non-scalar operator and Ker I ⊆ A, it follows that there exists y0 ∈ Y such that y0 and
Ay0 are linearly independent. Hence there exists f ∈ Y∗ such that f (y0) = 0 and f (Ay0) = 1. Therefore,
(y0 ⊗ f )2 = 0 = (y0 ⊗ f A)(Ay0 ⊗ f ) and consequently(

A A
A A

) (
0 0

y0 ⊗ f 0

)
+

(
0 0

y0 ⊗ f 0

) (
A A
A A

)
∈ I∗2(Y).

Hence, choosing T0 ∈ Awith Φ(T0) = y0 ⊗ f we conclude that(
I I
I I

) (
0 0
T0 0

)
+

(
0 0
T0 0

) (
I I
I I

)
∈ I∗2(X).

This implies that T2
0 = T0 and since Φ(T0)2 = (y0⊗ f )2 = 0 it follows from Lemma 3.3 that T0 = T2

0 = 0, which
is impossible. This argument proves our claim, that is A2 , I. Hence I − P − Q , 0. Choosing a nonzero
y0 ∈ (I − P − Q)(Y), we can find 1 ∈ Y∗ with 1(y0) = 1 and 1 = 0 on P(Y) ∪ Q(Y). Clearly 1(Ay) = 0 for all
y ∈ Y, and since P(I − P−Q) = 0 = Q(I − P−Q) it follows that Ay0 = 0. Therefore, (y0 ⊗ 1)A + A(y0 ⊗ 1) = 0
which is a contradiction, since A = Φ(I) is not a divisor of zero with respect to the Jordan product. This
completes the proof for the case where ? denotes the Jordan product.

Now suppose that? is the usual product. By the remark after Lemma 3.1, Φ(I)2 is a nonzero idempotent
operator. So it suffices to show that Φ(I) is a scalar operator. Let A = Φ(I) and assume on the contrary that
A is a non-scalar operator. Then since KerI ⊆ KerA, there exists a vector y4 ∈ Y such that Ay4 and y4 are
linearly independent. Choosing f4 ∈ Y∗ with f4(Ay4) = 1 and f4(y4) = 0, we have Ay4 ⊗ f4 ∈ I∗(Y). By
the remark after Lemma 3.1, Φ−1(y4 ⊗ f4) = Φ−1(A)Φ−1(y4 ⊗ f4) ∈ I∗(X) which is impossible, since y4 ⊗ f4 is
square zero (see remark after Lemma 3.3).

Assume now that ? denotes the Jordan semi-triple product. Then clearly Φ(I)3 is a nonzero idempotent
operator. So, as before, it suffices to show that A = Φ(I) is a scalar operator. If there exists a vector y5 ∈ Y

such that A2y5 and y5 are linearly independent, then choosing f5 ∈ Y∗ with f5(y5) = 0 and f5(A2y5) = 1, we
have Ay5 ⊗ f5A ∈ I∗(Y). Therefore, Φ−1(y5 ⊗ f5) ∈ I∗(X) which is impossible, by the remark after Lemma 3.3,
since (y5 ⊗ f5)3 = 0. Thus for every y ∈ Y, A2y and y are linearly dependent. Since Ker I ⊆ Ker A2, it follows
that A2 is a scalar operator, that is A2 = λ0I for some λ0 ∈ C. Clearly λ0 , 0, since A3 , 0. On the other
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hand, since A3 = λ0A and A3 is an idempotent operator, we get λ0
3I = A6 = A3 = λ0A. Thus A = λ0

2I, as
desired.

Finally consider the case where ? is the Jordan triple product. As(
0 I
0 0

) (
0 0
I 0

) (
I 0
0 I

)
+

(
I 0
0 I

) (
0 0
I 0

) (
0 I
0 0

)
∈ I∗2(X),

we have (
Φ(I)3 0

0 Φ(I)3

)
∈ I∗2(Y),

which implies that Φ(I)3 is a nonzero idempotent operator. So we need to show that A = Φ(I) is a scalar
operator. If there exists a vector y6 ∈ Y such that A2y6 and y6 are linearly independent, then choosing
f6 ∈ Y∗ with f6(y6) = 0 and f6(A2y6) = 1/2, we get Ay6 ⊗ f6A + Ay6 ⊗ f6A ∈ I∗(Y). Hence 2Φ−1(y6 ⊗ f6) ∈ I∗(X)
which is impossible by the remark after Lemma 3.3, since (y6 ⊗ f6)3 = 0. Thus for every y ∈ Y, A2y and y
are linearly dependent and, as before, we have A2 = λ1I for some nonzero λ1 ∈ C. In particular, we have
A3 = λ1A, and since A3 is an idempotent operator we get λ1

3I = A6 = A3 = λ1A. Therefore, A = λ1
2I, as

desired.

Lemma 3.5. Ifφ(I) = I, then Φ preserves nonzero 2-idempotents in both directions, that is for each (Ti j) ∈M2(C)⊗A

(Ti j) ∈ I∗2(X)⇔ (Φ(Ti j)) ∈ I∗2(Y).

Proof. We first show that in cases where ? denotes either the Jordan product or Jordan triple product we
have Φ( 1

2 I) = 1
2 I. If ? is the Jordan product, then since(

I 0
0 0

) ( 1
2 I I
0 0

)
+

( 1
2 I I
0 0

) (
I 0
0 0

)
∈ I∗2(X),

it follows that (
2Φ( 1

2 I) I
0 0

)
∈ I∗2(Y),

which easily implies that Φ( 1
2 I) = 1

2 I. Clearly the case where ? denotes the Jordan triple product follows
immediately from the preceding case, since by assumption Φ(I) = I.

Now let (Ti j) ∈M2(C) ⊗A be given. If ? denotes the Jordan product, then since Φ( 1
2 I) = 1

2 I and(
T11 T12
T21 T22

)
=

(
T11 T12
T21 T22

) (
1
2 I 0
0 1

2 I

)
+

(
1
2 I 0
0 1

2 I

) (
T11 T12
T21 T22

)
it follows that(

T11 T12
T21 T22

)
∈ I∗2(X)⇔

(
Φ(T11) Φ(T12)
Φ(T21) Φ(T22)

)
∈ I∗2(Y).

In the case where ? denotes the Jordan triple product, since Φ(I) = I it follows that Φ satisfies the same
condition for Jordan product and the result follows from the previous case.

The case where ? is the usual product is obvious. Indeed,(
T11 T12
T21 T22

)
∈ I∗2(X)⇔

(
T11 T12
T21 T22

) (
I 0
0 I

)
∈ I∗2(X)

⇔

(
Φ(T11) Φ(T12)
Φ(T21) Φ(T22)

) (
Φ(I) 0

0 Φ(I)

)
∈ I∗2(X)

⇔

(
Φ(T11) Φ(T12)
Φ(T21) Φ(T22)

)
∈ I∗2(Y).

Finally the case where ? is the Jordan semitriple product, is a consequence of the preceding case.
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We now state the proofs of the main theorems.

Proof. [Proof of Theorem 2.1] In either of cases, by Lemma 3.4, there exists a scalar λ ∈ C such that Φ(I) = λI,
where λ ∈ {1,−1} whenever ? denotes either the usual product or Jordan product and λ3 = 1 whenever
? is either the Jordan semi-triple product or Jordan triple product. Now by Lemma 3.5, λ−1Φ preserves
nonzero 2-idempotents in both directions, thus by [3, Theorem 2.1], there exists a bounded invertible linear
or conjugate linear operator A : X −→ Y such that λ−1Φ(T) = ATA−1, for every T ∈ A.

Proof. [Proof of Theorem 2.2] Proof in either of cases follows from Lemmas 3.4 and 3.5 and [3, Theorem
2.2].
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