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Abstract. The main object of this paper is to introduce a new extension of the generalized Hurwitz-Lerch
Zeta functions of two variables. We then systematically investigate such its several interesting properties
and related formulas as (for example) various integral representations, which provide certain new and
known extensions of earlier corresponding results, a summation formula and Mellin-Barnes type contour
integral representations. We also consider some important special cases.

1. Introduction, Definitions and Preliminaries

The Hurwitz-Lerch Zeta function ®(z, s, a) is defined by (see, e.g., [14, p. 121] and [15, p. 194]):
D(z,5,a) :=ii (aeC\Z"seCWhen lz| < 1; R(s) > 1 when |z|=1). (1)
797 L (7’l+ll)s 07 ’

Various properties and the special cases of the Hurwitz-Lerch Zeta function ®(z, s,4), one may refer to [4,
Chapter I] (see also [14, 15]). Certain generalizations of the Hurwitz-Lerch Zeta function ®(z, s, 2) have been
investigated by many authors (see, e.g., [1,2,7, 8, 16, 18, 20]). Recently, Srivastava [13, p. 1487, Eq. (1.14)]
studied and investigated more generalized form of Hurwitz-Lerch Zeta function:

(p1,,pp,01, ,0q) . i L “ s—1 —at—% * (/\1/ Pl)/' t /(/\p/ Pp); —t
PR A g S B0 A) 1= F(S)fo Fren el [ (1,00, (g, 00); = df @

(min{R(s), R@)} >0, R(b) 2 0; 1 2 0).

Various special cases of (2) can be found in [13]. Motivated mainly by various extensions of the Hurwitz-
Lerch Zeta function, we introduce a new extension of the generalized Hurwitz-Lerch Zeta function of
two variables. We then systematically investigate such its several interesting properties as (for example)
various integral representations which provide new and known extensions of the corresponding results
earlier given by various authors. We also derive a summation formula and Mellin-Barnes type contour
integral representations. We also consider some important special cases of the main results.
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2. Extended Hurwitz-Lerch Zeta Function of Two Variables

Here, we introduce a new extension of the generalized Hurwitz-Lerch Zeta functions of two variables
defined in the following form:

Do g, (2,1,5,0) = 2 (@ mn BB 2"t 5

- P)msnmin! - (m+n+a)

(a, B, B €Ca yeC\Z;;s z te Cwhen |zl <1and | <1; and

R(s+y-a-p-p)>0whenl|z=1and |f| = 1).
Remark 1. Among many other things, the following special or limiting cases of the extended Hurwitz-Lerch
Zeta function @, 54,,(2,t,5,4) in (3) are considered in our present investigation.

Case 1. The special case a = y in (3) reduces to the generalized Hurwitz-Lerch Zeta function of Pathan and
Daman [11]:

m(A
M(ztsa)—z(u)()k

mlk!  (m+k+a)
m,k=0

Zm tk

4)

(y,/\eC;aeC\Zg;sethenlzl<1and [t} <1;R(s —u—A)>0when|z| =1and |t|:1).

Case 2. The following limiting case of the extended Hurwitz-Lerch Zeta function ®, g (2, t,s,4) in (3) will
be used:

i (@) m+n(B)m ZMmn

V) msnmin! (m +n + a)s

(D:Y/ﬁ;)/ (Z, t,s, ﬂ) = ﬁl’grolo {(Da,ﬁ,ﬁ’;y (Z/ t/ﬁ// S, Ll)} = (5)

m,n=0

(a,ﬁeC; a,y€C\Zy;s,z,t e Cwhen |zl <1and |t| <1; and R(s +y —a — ) > 0 when |z = 1 and |t|=1).

Case 3. The following limiting case of the extended Hurwitz-Lerch Zeta function ®, 44, (2, t,s,a) in (3) will
also be used:

BB 2"t

V)manmin! (m +n + a)s

ﬁﬁ, (ztsa)—hm{ wppiy (20, t/asa) Z(

m,n=0

(6)

(ﬁ,ﬁ’ €Ca,yeC\Z;;s,z,teCwhenlzl<land || <1; and R(s+y—-p—-p) >0 when|z| =1 and [t| = 1).

Case 4. Another limiting case of the extended Hurwitz-Lerch Zeta function ®, 44 ,,(z,t,s,a) in (3) is given
as follows:

b m mn

min{jal,|B’[}—

(7)

m,n=0

(ﬁ €CayeC\Zy;s,z,teCwhen|zl| <land |t <1; and R(s+y —p) >0 when |zl =1 and || = 1).
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3. Integral Representations of @, g4.,(z, t, s, )

Here we begin by recalling the Appell hypergeometric function F; of two variables (see, e.g., [17, p. 22]):
Fora, B,...,feCandy € C\ Z;,

File B8 751 = ) WM%% - JF

m,n=0

1 (8)

(max{%(x), Ry)} <1 and R(a)> 0).

The following confluent forms of the Appell hypergeometric function F; or Humbert functions are recalled
(see, e.g., [17, p. 25 et seq.]):

= (@n(Bhn 2y

Dila, By;x, ¥l = e Wen mil il (Il <1, Iyl < ), €)
ol il = Y, DT (<o, bl <o) (10)
m,n:O m+n . M
and
O3B,y = ) | (;f)”i %m,% (Ixl < oo, Iyl < oo). (11)

m,n=0

Theorem 1. The following integral representation for @, g g (2, t,5,a) in (3) holds true:
1 00
Dy ppy(zt,s,a) = —f e Fi(a, BBy, ze™, te™) dx (12)
' I'(s) Jo

(min{R(s), R(@)} >0 when 2l S1(z#1), H<1(t#1);R(s)>1 whenz=1,t=1).
Proof. Using the following Eulerian integral:

; — L * s—1 _—(m+n+a)t . .
(m +1n+ a)s T I"(S) L t e dt (mln{%‘(s)/ %(ﬂ)} > 0/ ml ne NO) (13)

in (3) and then interchanging the order of summation and integration, which is valid under the given
conditions, and which upon using (8), we are led to the desired integral representation (12). [J

Similarly as Theorem 1, if we use the Eulerian integral (13) in the relationships (5), (6) and (7), use (9),
(10) and (11), respectively, we obtain the following integral representations asserted by Corollary 1 below.

Corollary 2. Each of the following integral representations for

q);,ﬁ; (z,t,5,0a), @;lﬁ,;y(z, t,s,a) and @g,(z,t,s,a)

94

in (5), (6) and (7) holds true:

1 .
Cl);ﬁ;y(z, t,s,a) = e fo e Dy, B;y;ze 7, te ] dx, (14)
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Q. (2,1,5,0) )f DB, By ze T, teT ] dx (15)
and
g, (z,t,5,a) == %f e D3[B; v;ze™, te™ ] dx (16)
0

(min{R(s), R(@)} >0 when |2l 1z #1), 1 <1(t#1);R(s)>1 whenz=1,t=1).
Remark 2. It is interesting to see that the case ¥ = « in the integral representation (12) and using the
reduction formula for the Appell function F; (see, e.g., [19, p. 54]):
Fila, a0yl = (1 -7 1=y (17)

yields the known integral representation given by Pathan and Daman [11] (see also [3, p. 252, Eq.(7)]):

1 xs—le—ax
cDar.B'ﬁ,;Dt(Z/ t/ s, {1) = (1);5,,3/ (Z/ t/ 5, {1) = % fo (1 — Ze_x)ﬁ(l _ te_x)ﬁ/ dx (18)

(R@) > 0; R(s) > Owhen 2| < 1(z # 1), || S 1(t # 1);R(s) > 1 whenz =1, t = 1).

Further, if we put t = 0in (18), we again obtain the known integral representation due to Goyal and Laddha
[6, p. 100, Eq. (1.6)]:

sl—ux

Di(z,5,a) F(s) f = dx (‘R(a) >0; R(s) >0 when |z] £1(z # 1); R(s) > 1 when z = 1). (19)

The special case = 1 of the above result (19) is precisely the well-known integral representation in (1) (see,

e.g., [15, p. 194, Eq. 2.5(4)]):

D(z,5,a) = o) f £ —dt  (R@) >0; R(s) > 0Owhen 2] < 1(z # 1); R(s) > 1 when z = 1). (20)

Theorem 3. Each of the following integral representations for @, gg.,(2,t,5,a) in (3) holds true:

r(y) ” wa_l - zw tw
(I)a,ﬁ/ﬁ/;)/ (Z, t, S, a) = (

T(@)T(y - a) Jo a+my&ﬂ1+wq+w@@dw (21)

(R() > R(@) > 0)

and

F(V) ¥ le ™ zwe ™\ P twe\ P
Dy pp(z,t,s,a) = TOT@I0 - f f Tray 1- T 1- T dxdw (22)

(R() > R(@) > 0; min{R(s), R(@)} > 0).

Proof. Settinga = a +m +nand b = y + m + n in the Eulerian Beta function formula (see, e.g., [4, p. 9, Eq.
1.5 (2)]; see also [15, p. 8, Eq. (45)]):

_T@ree-a _ (~_y~!
Ba,b-a) = = = fo G dy  (R(b) > R@) >0), (23)
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we find that
(W)m+n I'(y) 00 pakmtn=1
()m+n - T@I(y —a) Jo 1 +w)y+mn
(R(y) > R(a) > 0; m, n € N,

which, by appealing to the definition (4), immediately yields the first assertion (21). Moreover, by (12) and
(24), we also obtain

Dy pp:7(2,t,5,0) = e )f 5—1 pax Z (O pin (B (B In (ze™)" (te™)" dx

()/)m+n m!  nl

dw (24)

m,n=0

I'(y) w7 B [zew " o te~*w
T(sF(a)Fy ozf f (1+w)7 mZ=(‘) m! (1+w) Z n! ( ) dx dw,

n=0

which leads us to the second assertion (22). [

Theorem 4. The following summation formula for ®,4.,(z,t,s,a) in (3) holds true:

()

K
k=0

Do ppiy(zt,s +ka) X = Dogp,(zt,s,a—x) (x| < lal; s # 1). (25)

Proof. Using (3) in right-hand side of the assertion (25), we have

_ - (a)m+n(ﬁ)m(ﬁ,)n ZMm

Pappalalyod =) = m;O ()m+n mnl(m +n +a — x)°

_ i (a)nz+n(ﬁ)m(ﬁ’)n Zmn (1 ~ x )—s

- =0 (V)men minl(m + n + a)s m+n+a

_ i (a)m+n(ﬁ)m(ﬁ')n ZMmn i _k xk

- =0 ()mn mn!(m +n + a) pa k' (m+n +a)

NV Ok} @ BB Znpn )

- ; k! {m;o ()m+n minl(m +n + a)5+k} v

which, upon using (3), leads to the desired formula in (25). O

4. Mellin-Barnes Contour Integral Representation for ®,54,,(z, t, s, a)

Here we present Mellin-Barnes contour integral representation of the function ®,4;,(z,t,5,4) given in
Theorem 5.

Theorem 5. The following contour integral representation for @y 54+,(2,t,5,a) in (3) holds true:

I'(y)
LT B)T(B)
f f [(=OT(-OT(a+ E+ QTP+ T (B + OT(E+C+a)f
(Zm Ty +E+OIME+C+a+ 1))
X (-2)*(-H°dédcC (26)

(larg(-2) I< 7, | arg(~t) |< m),
where it is assumed that the poles of the integrand in (26) are simple ; the contours of the integration are described so
that the poles of T'(—&) I'(=C) can be separated from those of I'(B + &) and T'(B’ + C) with indentations, if necessary.

q)l)l/ﬁ/ﬁ'})/ (Zl t/ S, a) =
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Proof. If we calculate the integral (26) as sum of the residues at the simple poles of I'(=¢) at the points
& =m (m € Np) and of the I'(—C) at the points C = n (n € INp), respectively, we immediately obtain the
following series expansion:

I'(y) i T(a+m+m[B+mIE +n) 2" -

T(a)T(B)T(B) T(y + m+ n)ym!n! (m+n+a)y’

m,n=0

which is just the @, g g, (2, t,5,4). This completes the proof. [
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