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Abstract. In this paper, we present some connections between graph theory and hyperstructure theory.
In this regard, we construct a hypergroupoid by defining a hyperoperation on the set of degrees of vertices
of a hypergraph and we call it a degree hypergroupoid. We will see that the constructed hypergroupoid is
always an Hv-group. We will investigate some conditions on a degree hypergroupoid to have a hypergroup.
Further, we study the degree hypergroupoid associated with Cartesian product of hypergraphs. Finally,
the fundamental relation and complete parts of a degree hypergroupoid are studied.

1. Introduction and preliminaries

The notion of hypergraph has been introduced around 1960 as a generalization of graph and one of the
initial concerns was to extend some classical results of graph theory. In [2], there is a very good presentation
of graph and hypergraph theory.

A hypergraph is a generalization of a graph in which an edge can connect any number of vertices.
Formally, a hypergraph is a pair Γ = (X,E), where X is a finite set of vertices and E = {E1, . . . ,Em} is a set of
hyperedges which are non-empty subsets of X. Figure 1 is an example of a hypergraph with 7 vertices and
4 hyperedges.

A hypergraph Γ′ = (X′,E′) is a subhypergraph of Γ = (X,E) if X′ ⊆ X and E′ ⊆ E. We note that every
graph can be considered as a hypergraph. We denote the set of vertices of a graph G by V(G). A simple
graph is an undirected graph that has no loops (edges connected at both ends to the same vertex) and no
more than one edge between any two different vertices. A complete graph is a simple graph with n vertices
and an edge between every two vertices. We use the symbol Kn for a complete graph with n vertices. A star
graph with n edges is a graph Sn = (X,E) in which X = {x} ∪ {x1, . . . , xn} and E = {xix | 1 ≤ i ≤ n}. x is called
the center vertex of Sn.

Let Γ = (X,E) be a hypergraph and x, y ∈ X. A hyperedge sequence (E1, . . . ,Ek) is called a path of length k
from x to y if the following conditions are satisfied:

(1) x ∈ E1 and y ∈ Ek,

(2) Ei , E j for i , j,

(3) Ei ∩ Ei+1 , ∅ for 1 ≤ i ≤ k − 1.

2010 Mathematics Subject Classification. Primary 20N20; Secondary 05C65
Keywords. Hypergraph, Hypergroupoid, Hypergroup, Fundamental relation
Received: 02 September 2013; Accepted: 11 November 2013
Communicated by Francesco Belardo
Email addresses: m.farshi@yahoo.com (Mehdi Farshi), davvaz@yazd.ac.ir (Bijan Davvaz), saeed_mirvakili@pnu.ac.ir (Saeed

Mirvakili)



M. Farshi et al. / Filomat 28:1 (2014), 119–129 120

x1 x2 x3

x4

x5

x6

E1 E2

E3

E4

x7

Figure 1: A hypergraph with 7 vertices and 4 hyperedges

We contract out there is a path of length zero between x and x.
In a hypergraph Γ, two vertices x and y are called connected if Γ contains a path from x to y. If two vertices

are connected by a path of length 1, i.e. by a single hyperedge, the vertices are called adjacent. We use the
notation x−−y to denote the adjacency of vertices x and y. A hypergraph is said to be connected if every pair
of vertices in the hypergraph is connected. A connected component of a hypergraph is any maximal set of
vertices which are pairwise connected by a path.

The length of shortest path between vertices x and y is denoted by dist(x, y) and the diameter of Γ is
defined as follows:

diam(Γ) =
{

max{dist(x, y) | x, y ∈ X} if Γ is connected,
∞ otherwise.

The hyperstructure theory was born in 1934, when Marty introduced the notion of a hypergroup [18].
Since then, many papers and several books have been written on this topic (see for instance [5–9, 20]).
Algebraic hyperstructures are a suitable generalization of classical algebraic structures. In a classical
algebraic structure, the composition of two elements is an element, while in an algebraic hyperstructure,
the composition of two elements is a set. More exactly, let H be a non-empty set and P∗(H) be the set of
all non-empty subsets of H. A hyperoperation on H is a map ∗ : H × H −→ P∗(H) and the structure (H, ∗) is
called a hypergroupoid. A hypergroupoid (H, ∗) is called commutative if for all x, y ∈ H we have x ∗ y = y ∗ x.
A hypergroupoid (H, ∗) is called a quasihypergroup if for all x in H we have x ∗H = H ∗ x = H, which means
that

∪
u∈H

x ∗ u =
∪

v∈H
v ∗ x = H. A quasihypergroup (H, ∗) is called

(1) a hypergroup if ∗ is associative, i.e., for all x, y, z of H we have (x ∗ y) ∗ z = x ∗ (y ∗ z),

(2) an Hv-group if for all x, y, z of H we have (x ∗ y) ∗ z ∩ x ∗ (y ∗ z) , ∅.
A hypergroup (H, ∗) is called a total hypergroup if x ∗ y = H, for all x, y of H. A non-empty subset K of a
hypergroup (H, ∗) is called a subhypergroup if for all x of K we have x ∗ K = K ∗ x = K.

Let (H, ∗) and (K, ⋄) be two hypergroupoids. A map φ : H −→ K is called

(1) an inclusion homomorphism if for all x, y ∈ H we have φ(x ∗ y) ⊆ φ(x) ⋄ φ(y),

(2) a homomorphism if for all x, y ∈ H we have φ(x ∗ y) = φ(x) ⋄ φ(y).

If there exists a one to one (inclusion) homomorphism of H onto K, then we say that H is (inclusion)

isomorphic to K and we write (H
i
� K) H � K.

The connections between hyperstructure theory and graph theory have been analyzed by many re-
searchers (see for instance [1, 3, 4, 10, 11, 14, 16, 17, 19]). In [4], Corsini considered a hypergraph Γ = (H, {Ei}i)
and constructed a hypergroupoid HΓ = (H, ◦) in which the hyperoperation ◦ on H has defined as follows:

∀x, y ∈ H2, x ◦ y = E(x) ∪ E(y),

where E(x) =
∪{Ei | x ∈ Ei}. Corsini proved that:
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Theorem 1.1. The hypergroupoid HΓ satisfies for each (x, y) ∈ H2 the following conditions:

(1) x ◦ y = x ◦ x ∪ y ◦ y,

(2) x ∈ x ◦ x,

(3) y ∈ x ◦ x⇐⇒ x ∈ y ◦ y.

Also, he proved that:

Theorem 1.2. Let (H, ◦) be a hypergroupoid satisfying (1), (2) and (3) of Theorem 1.1. Then, (H, ◦) is a hypergroup
if and only if the following condition is valid:

∀(a, c) ∈ H2, c ◦ c ◦ c − c ◦ c ⊆ a ◦ a ◦ a.

2. Degree hypergroupoids

Let Γ = (X, {Ei}i) be a hypergraph. For each x ∈ X we define the degree deg(x) of x to be the number of
hyperedges containing x. A hypergraph in which all vertices have the same degree is said to be regular. We
define the degree neighborhood of x as follows:

D(x) =
∪{Ei | ∃ y ∈ Ei such that deg(y) = deg(x)}.

It is easy to check that D(x) = D(y) if deg(x) = deg(y). The set of all degrees of vertices of Γwill be denoted
by DΓ. For each d ∈ DΓ we define deg−1(d) = {x ∈ X | deg(x) = d}. The hypergroupoid (DΓ, ◦Γ) where the
hyperoperation ◦Γ is defined by

∀d, d′ ∈ DΓ, d ◦Γ d′ = {deg(z) | z ∈ D(x) for some x ∈ deg−1(d) ∪ deg−1(d′)},

is called a degree hypergroupoid.
We note that if Γ is a hypergraph and Γ′ is a connected component of Γ, then for each d, d′ ∈ DΓ′ we have

d ◦Γ′ d′ ⊆ d ◦Γ d′.

Theorem 2.1. The degree hypergroupoid (DΓ, ◦Γ) has the following properties for each d, d′ ∈ DΓ:

(1) d ◦Γ d′ = d ◦Γ d ∪ d′ ◦Γ d′ (whence d ◦Γ d′ = d′ ◦Γ d),

(2) d ∈ d ◦Γ d,

(3) d ∈ d′ ◦Γ d′ ⇐⇒ d′ ∈ d ◦Γ d.

By the above theorem we conclude that {d, d′} ⊆ d ◦Γ d′ for all d, d′ ∈ DΓ and so for all d, d′, d′′ ∈ DΓ we have
{d, d′, d′′} ⊆ (d◦Γ d′)◦Γ d′′∩d◦Γ (d′ ◦Γ d′′). On the other hand, for all d ∈ DΓ we have d◦ΓDΓ = DΓ. These ones
imply that every degree hypergroupoid is an Hv-group. Also, by using Theorem 1b of [4], for all d ∈ DΓ we
have d ◦Γ d ◦Γ d =

∪
d′∈d◦Γd

d′ ◦Γ d′.

Corollary 2.2. Let Γ be a hypergraph and d j ∈ DΓ. If di ◦Γ di = DΓ, for every di ∈ DΓ − {d j}, then d j ◦Γ d j = DΓ.

Proposition 2.3. If Γ is a hypergraph with regular connected components, then for every d, d′ ∈ DΓ we have
d ◦Γ d′ = {d, d′} and so (DΓ, ◦Γ) is a hypergroup.

Corollary 2.4. Γ is a regular hypergraph if and only if DΓ is a singleton set.

Corollary 2.5. If Γ is a hypergraph and DΓ = {d1, d2} and d1 ◦Γ d1 , {d1}, then (DΓ, ◦Γ) is a total hypergroup.

Proposition 2.6. If Γ is a hypergraph and |DΓ| = 3, then (DΓ, ◦Γ) is a hypergroup.
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Proof. It suffices to show that ◦Γ is associative. Let d1, d2, d3 ∈ DΓ be arbitrary elements. If d1 = d2 = d3, then
commutativity of ◦Γ implies that (d1 ◦Γ d2)◦Γ d3 = d1 ◦Γ (d2 ◦Γ d3). We show that (d1 ◦Γ d1)◦Γ d2 = d1 ◦Γ (d1 ◦Γ d2)
where d1 , d2. If d1 ◦Γ d2 = DΓ, then the result is obvious. Suppose that d1 ◦Γ d2 = {d1, d2}. Surely d3 < d1 ◦Γ d1.
We have the following two cases.

Case 1: Let d1 ◦Γ d1 = {d1}. Then,

d1 ◦Γ (d1 ◦Γ d2) = d1 ◦Γ {d1, d2} = d1 ◦Γ d1 ∪ d2 ◦Γ d2 = d1 ◦Γ d2 = (d1 ◦Γ d1) ◦Γ d2.

Case 2: Let d1 ◦Γ d1 = {d1, d2}. Then

d1 ◦Γ (d1 ◦Γ d2)= d1 ◦Γ {d1, d2}= d1 ◦Γ d1 ∪ d2 ◦Γ d2= d1 ◦Γ d2= {d1, d2} ◦Γ d2= (d1 ◦Γ d1) ◦Γ d2.

If d1, d2, d3 are distinct elements of DΓ, then (d1 ◦Γ d2) ◦Γ d3 = d1 ◦Γ (d2 ◦Γ d3) = DΓ which completes the
proof.

Lemma 2.7. Let Γ = (X, {Ei}i) be a hypergraph such that D(x) ∩D(y) , ∅ for all x, y ∈ X. Then, for all d ∈ DΓ we
have d ◦Γ d ◦Γ d = DΓ.

Proof. Let d be an arbitrary element of DΓ. We show that r ∈ d ◦Γ d ◦Γ d for all r ∈ DΓ. Let r = deg(x) and
d = deg(y). By assumption there exists w ∈ D(x)∩D(y). Since w ∈ D(x), there exists an edge Ei containing a
vertex w′ of degree r such that w ∈ Ei. Similarly, there exists an edge E j containing a vertex w′′ of degree d
such that w ∈ E j. If deg(w) = k, then by definition of ◦Γ we have k ∈ d ◦Γ d and r ∈ k ◦Γ k. Since k ◦Γ k ⊆ k ◦Γ d
we have r ∈ k ◦Γ d ⊆ d ◦Γ d ◦Γ d.

Theorem 2.8. Let Γ = (X, {Ei}i) be a hypergraph such that D(x) ∩ D(y) , ∅ for all x, y ∈ X. Then, (DΓ, ◦Γ) is a
hypergroup.

Proof. Use Lemma 2.7 and Theorem 1.2.

Corollary 2.9. If Γ is a hypergraph with diam(Γ) ≤ 2, then (DΓ, ◦Γ) is a hypergroup.

Lemma 2.10. Let Γ be a connected hypergraph and DΓ = {d1, d2, d3}. Then,

(1) there exists i ∈ {1, 2, 3} such that di ◦Γ di = DΓ,

(2) for every i, j ∈ {1, 2, 3} with i , j we have di ◦Γ d j = DΓ.

Proof. (1) Since Γ is connected, we have d1 ◦Γ d1 − {d1} , ∅. Without loss of generality, assume d2 ∈ d1 ◦Γ d1.
If y is a vertex of degree d3, then connectivity of Γ implies that there exists a vertex x of degree d1 or d2 such
that y ∈ D(x). If deg(x) = d1 then we have d1 ◦Γ d1 = DΓ otherwise we have d2 ◦Γ d2 = DΓ.

Proof of (2) is straightforward.

Corollary 2.11. Let Γ be a connected hypergraph and DΓ = {d1, d2, d3}. Then, (DΓ, ◦Γ) is a total hypergroup or a
hypergroup with the following table:

◦Γ d1 d2 d3

d1 DΓ − {d2} DΓ DΓ
d2 DΓ DΓ − {d1} DΓ
d3 DΓ DΓ DΓ

Proposition 2.12. Let Γ = (X, {Ei}i) be a hypergraph and DΓ = {d1, d2}. Then, the following assertions are equivalent:

(1) d1 ◦Γ d1 = {d1},

(2) d2 ◦Γ d2 = {d2},

(3) Γ is not connected,
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(4) (DΓ, ◦Γ) is a hypergroup with the following table:

◦Γ d1 d2

d1 {d1} {d1, d2}
d2 {d1, d2} {d2}

Remark 2.13. By Proposition 2.6, the degree hypergroupoid (DΓ, ◦Γ) associated with the graph Γ of Figure 2 is a
hypergroup and D(x) ∩D(y) = ∅. This shows that the converse of Theorem 2.8 is not true.

x y

Figure 2: Γ

3. Degree graph of a hypergraph

For any hypergraph Γ, we construct its degree graph, denoted by GΓ, as follows: the vertex set of GΓ is
the set of degrees of vertices of Γ, that is DΓ, and vertices d, d′ ∈ DΓ are adjacent if and only if there exists
a hyperedge in Γ containing vertices x, y with deg(x) = d and deg(y) = d′. It is clear that a degree graph is
always a simple graph. For a vertex d in GΓ, NGΓ (d) is the neighborhood of d that is the set of all vertices
in GΓ which are adjacent to d (each vertex is adjacent to itself). It is easy to check that for every d ∈ DΓ we
have d ◦Γ d = NGΓ(d) and d ◦Γ d ◦Γ d =

∪
u∈NGΓ (d)

NGΓ (u). Therefore, if γ is a connected component of GΓ, then

for every d ∈ V(γ) we have d ◦Γ d ◦Γ d ⊆ V(γ).

Lemma 3.1. If Γ is a connected hypergraph, then GΓ is a connected graph.

As the following figure shows, the converse of Lemma 3.1 does not hold in general.

1 3

2

Figure 3: A disconnected hypergraph and it’s degree graph

A question that comes to mind after defining degree graph is the following: Given a graph G with
non-negative integer vertices, is there any hypergraph Γ such that G is the degree graph of Γ? The answer
is “yes” as can be seen in Theorem 3.3.

Lemma 3.2. Let d, d′ be two distinct non-negative integers and let G be a simple graph on two vertices d and d′.
Then, there exists a graph Γ such that GΓ = G.
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Proof. We may assume without loss of generality that d′ < d. If G has no edge, then Γ can be a graph
containing two connected components Kd and Kd′ . So, let the graph G be not null. We first prove the lemma
in the case that d and d′ are odd. Consider the star graph Sd with center vertex x and edges x1 x, . . . , xd x.
For i = 1, . . . , d, we add the edges xi x i+1, xi x i+2, . . . , xi x

i+ d′−1
2

to the edges of Sd, where i + r ≡ i + r (mod d)

and 1 ≤ i + r ≤ d, for each 1 ≤ r ≤ d′−1
2 . We denote the resulting graph by Gd′,d. Obviously, degree graph of

Gd′,d is G. Now, we prove the lemma in other cases. In the case that d′ is odd and d is even, if d′ = d− 1, then
it is sufficient to duplicate Kd and connect two vertices of degree d − 1, otherwise we construct our desired
graph by duplicating the graph Gd′,d−1 and adding an edge between the vertices of degree d − 1. In the
case that d′ is even and d is odd, we duplicate the graph Gd′−1,d and for i = 1, . . . , d, we add the edges xi x′i
where x′i is duplicated vertex of xi. Finally, whenever d′ and d are even first we duplicate the graph Gd′−1,d−1
and then we connect the vertices of degree d − 1 and for i = 1, . . . , d − 1, we add the edges xi x′i where x′i is
duplicated vertex of xi.

Theorem 3.3. If G is a simple graph such that its vertex set is a subset of non-negative integers, then there exists a
graph Γ such that GΓ = G.

Proof. Suppose that the edge set of G is {E1, . . . ,Em}. By Lemma 3.2, for each Ei, 1 ≤ i ≤ m, there exists a
graph Γi such that GΓi covers Ei. By putting Γi’s together we will have a graph whose degree graph is G.

Theorem 3.4. Let (H, ∗) be a finite hypergroupoid satisfying (1), (2), (3) of Theorem 1.1. Then, there exists a graph
Γ such that (DΓ, ◦Γ) � (H, ∗).

Proof. Let H = {a1, . . . , an} and let G be a graph with V(G) = {1, . . . , n} and E(G) = {i j | i , j and ai ∈ a j ∗ a j}.
By Theorem 3.3, there exists a graph Γ such that GΓ = G. Clearly, f : DΓ −→ H defined by f (i) = ai is an
isomorphism.

Lemma 3.5. If diam(GΓ) ≤ 2, then for every d ∈ DΓ we have d ◦Γ d ◦Γ d = DΓ.

Proof. Clearly, for every d ∈ DΓ we have d ◦Γ d ◦Γ d ⊆ DΓ. Let d′ ∈ DΓ be an arbitrary element. If d, d′ are
adjacent vertices in GΓ, then we have d′ ∈ d ◦Γ d ⊆ d ◦Γ d ◦Γ d. Otherwise, by assumption there exists a
vertex d′′ ∈ V(GΓ) which is adjacent to d′ and d. Since d ◦Γ d ◦Γ d =

∪
z∈d◦Γd

z ◦Γ z and d′′ ∈ d ◦Γ d, we have

d′ ∈ d′′ ◦Γ d′′ ⊆ d ◦Γ d ◦Γ d.

Lemma 3.6. Let GΓ be connected. If 3 ≤ diam(GΓ), then (DΓ, ◦Γ) is not a hypergroup.

Proof. By assumption, there exists a path ({d1, d2}, {d2, d3}, {d3, d4}) in GΓ such that d1, d3 and d2, d4 and d1, d4
are not adjacent vertices. It is not difficult to see that d4 < (d1 ◦Γ d1) ◦ d2 whereas d4 ∈ d1 ◦Γ (d1 ◦Γ d2). This
shows that ◦Γ is not associative and so (DΓ, ◦Γ) is not a hypergroup.

Theorem 3.7. If GΓ is connected, then a necessary and sufficient condition for (DΓ, ◦Γ) to be a hypergroup is
diam(GΓ) ≤ 2.

Proof. If (DΓ, ◦Γ) is a hypergroup, then by Lemma 3.6 we have diam(GΓ) ≤ 2. Conversely, if diam(GΓ) ≤ 2,
then by Lemma 3.5 and Theorem 1.2, (DΓ, ◦Γ) is a hypergroup.

Corollary 3.8. If (DΓ, ◦Γ) is a hypergroup, then the diameter of every connected component of GΓ is less than or equal
to 2.

Corollary 3.9. If (DΓ, ◦Γ) is a hypergroup and γ is a connected component of GΓ, then (Dγ, ◦Γ) is a subhypergroup
of (DΓ, ◦Γ).

Theorem 3.10. If diam(GΓ) = ∞, then (DΓ, ◦Γ) is a hypergroup if and only if the diameter of every connected
component of GΓ is less than or equal to 1.
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Proof. Let (DΓ, ◦Γ) be a hypergroup. By Corollary 3.8, the diameter of every connected component of GΓ is
less than or equal to 2. Suppose that GΓ has a connected component GΓ1 of diameter 2. If d, d′ are non-adjacent
vertices in GΓ1 , then d′ ∈ d◦Γ d◦Γ d−d◦Γ d. Now, if d′′ ∈ V(GΓ)−V(GΓ1 ), then d◦Γ d◦Γ d−d◦Γ d * d′′ ◦Γ d′′ ◦Γ d′′.
This contradicts the Theorem 1.2. Conversely, assume that diameter of every connected component of GΓ is
less than or equal to 1. Then, for each d ∈ V(GΓ) we have d ◦Γ d ◦Γ d = d ◦Γ d and so by Theorem 1.2, (DΓ, ◦Γ)
is a hypergroup.

4. Direct product of degree hypergroupoids

Let Γ = (X,E) and Γ′ = (X′,E′) be two hypergraphs, where E = {E1, . . . ,Em} and E′ = {E′1, . . . ,E′n}.
We define their product to be the hypergraph Γ × Γ′ whose vertices set is X × X′ and whose hyperedges
are the sets Ei × E′j with 1 ≤ i ≤ m, 1 ≤ j ≤ n. It is easy to see that for every (x, y) ∈ X × X′ we have
deg((x, y)) = deg(x) deg(y).

Lemma 4.1. Vertices d and d′ of GΓ×Γ′ are adjacent if and only if there exist r, r′ ∈ V(GΓ) and s, s′ ∈ V(GΓ′) such
that r−−r′, s−−s′, d = rs and d′ = r′s′.

Proof. Suppose that d, d′ ∈ V(GΓ×Γ′) are adjacent. By definition, there exists a hyperedge Ei × E′j containing
vertices (x, y) and (u, v) with d((x, y)) = d and d((u, v)) = d′. Now, it is sufficient to assume r = deg(x),
s = deg(y), r′ = deg(u) and s′ = deg(v). Conversely, since r, r′ are adjacent in GΓ there exists a hyperedge
Ei containing vertices x and y with deg(x) = r and deg(y) = r′. Similarly, since s, s′ are adjacent in GΓ′ there
exists a hyperedge E′j containing vertices u and v with deg(u) = s and deg(v) = s′. Therefore, by definition
the vertices d and d′ of GΓ×Γ′ are adjacent.

Lemma 4.2. If GΓ and GΓ′ are degree graphs of hypergraphs Γ and Γ′ respectively, then the diameter of GΓ×Γ′ is less
than or equal to Max{diam(GΓ), diam(GΓ′)}.

Proof. Assume that m = Max{diam(GΓ),diam(GΓ′)}. Whenever m = ∞ , there is nothing to prove. For the
case m < ∞, let d and d′ be arbitrary vertices of GΓ×Γ′ . By Lemma 4.1, there exist r, r′ ∈ V(GΓ) and s, s′ ∈ V(GΓ′ )
such that r−−r′, s−−s′, d = rs and d′ = r′s′. Since diam(GΓ) ≤ m, there exist vertices r1, . . . , rm−1 ∈ V(GΓ) (not
necessarily distinct) such that r−−r1−− . . .−−rm−1−−r′. Reasoning in the same way, since diam(GΓ′ ) ≤ m, there
exist vertices s1, . . . , sm−1 ∈ V(GΓ′) (not necessarily distinct) such that s−−s1−− . . . −−sm−1−−s′. Now, by using
Lemma 4.1, we have rs−−r1s1−− . . .−−rm−1sm−1−−r′s′. This means that there exists a path from d to d′ of length
less than or equal to m. Therefore, we have diam(GΓ×Γ′) ≤ m.

If GΓ and GΓ′ are connected, then by Lemma 4.2, GΓ×Γ′ is connected. But the converse does not hold in
general, as Example 4.4 shows.

Theorem 4.3. If (DΓ, ◦Γ) and (DΓ′ , ◦Γ′) are hypergroups with connected degree graphs, then (DΓ×Γ′ , ◦Γ×Γ′) is a
hypergroup.

Proof. By Theorem 3.7, we have diam(GΓ) ≤ 2 and diam(GΓ′) ≤ 2 and so by Lemma 4.2, we have
diam(GΓ×Γ′) ≤ 2. Therefore, by Theorem 3.7, (DΓ×Γ′ , ◦Γ×Γ′ ) is a hypergroup.

The following example shows that the above result need not be true if GΓ or GΓ′ are not connected.
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Example 4.4. By Theorem 3.3, there exist graphs Γ and Γ′ with the following degree graphs:

1

2

4 1

2

3

Figure 4: Degree graphs of GΓ and GΓ′ .

By Proposition 2.6, (DΓ, ◦Γ) and (DΓ′ , ◦Γ′ ) are hypergroups. By using Lemma 4.1, degree graph of Γ × Γ′ has the
following figure:

1
2

3

4
6

8

12

Figure 5: Degree graph of GΓ×Γ′ .

Since diam(GΓ×Γ′ ) = 3, by Theorem 3.7, (DΓ×Γ′ , ◦Γ×Γ′) is not a hypergroup.

The following example shows that the converse of Theorem 4.3 is not true.

Example 4.5. Consider the following figure:

2

3

6

4

12
9

18

8

24

2

3

61

2 3

4

Figure 6: Degree graphs of GΓ, GΓ′ and GΓ×Γ′ .

Since diam(GΓ×Γ′ ) = 2, by Theorem 3.7, (DΓ×Γ′ , ◦Γ×Γ′ ) is a hypergroup and since diam(GΓ) = 3, by Lemma 3.6,
(DΓ, ◦Γ) is not a hypergroup.

As can be seen by the Example 4.5, the inequality of Lemma 4.2 may be hold strictly. In the next lemma,
we show that the equality can be hold under some conditions.
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Lemma 4.6. If Γ and Γ′ are hypergraphs with connected degree graphs such that |DΓ×Γ′ | = |DΓ||DΓ′ |, then diameter
of GΓ×Γ′ is equal to Max{diam(GΓ), diam(GΓ′ )}.
Proof. By Lemma 4.2, we have diam(GΓ×Γ′ ) ≤ Max{diam(GΓ),diam(GΓ′)}. We prove the reverse inequality.
Let r, r′ ∈ V(GΓ) and s, s′ ∈ V(GΓ′) be arbitrary elements. Put d = rs and d′ = r′s′. If diam(GΓ×Γ′ ) = m, then
there exist vertices d1, . . . , dm−1 ∈ V(GΓ×Γ′) (not necessarily distinct) such that d−−d1−− . . . −−dm−1−−d′. Since
|DΓ×Γ′ | = |DΓ||DΓ′ |, for each 1 ≤ i ≤ m − 1, there are unique elements ri ∈ V(GΓ) and si ∈ V(GΓ′ ), such that
di = risi. Also, d and d′ have no other decompositions. Now, by Lemma 4.1, we have r−−r1−− . . . −−rm−1−−r′

and s−−s1−− . . . −−sm−1−−s′. This shows that d(r, r′) ≤ m and d(s, s′) ≤ m.

The following corollary is an immediate consequence of Theorem 3.7 and Lemma 4.6.

Corollary 4.7. Let Γ and Γ′ be hypergraphs with connected degree graphs such that |DΓ×Γ′ |= |DΓ||DΓ′ |. Then, (DΓ, ◦Γ)
and (DΓ′ , ◦Γ′) are hypergroups if and only if (DΓ×Γ′ , ◦Γ×Γ′) is a hypergroup.

Let (H, ∗) and (K, ⋄) be hypergroupoids. We define the hyperoperation ⊗ on the Cartesian product H × K as
follows:

(x1, y1) ⊗ (x2, y2) = {(x, y) | x ∈ x1 ∗ x2 and y ∈ y1 ⋄ y2},
and so (H × K,⊗) is a hypergroupoid.

Theorem 4.8. Let Γ and Γ′ be hypergraphs such that |DΓ×Γ′ |= |DΓ||DΓ′ |. Then, DΓ×Γ′
i
� DΓ ×DΓ′ .

Proof. By assumption, for each d ∈ DΓ×Γ′ , there are unique elements r ∈ DΓ and s ∈ DΓ′ , such that d = rs.
Consider the map φ : DΓ×Γ′ −→ DΓ × DΓ′ defined by φ(rs) = (r, s). It is clear that φ is well-defined, one to
one and onto. We show that φ is an inclusion homomorphism. Let r1s1, r2s2 ∈ DΓ×Γ′ be arbitrary elements.
Then,

φ(r1s1 ◦Γ×Γ′ r2s2) = φ
(
{rs | rs −−r1s1 or rs −−r2s2}

)
= {(r, s) | (r −−r1 and s −−s1) or (r −−r2 and s −−s2)}
⊆ {(r, s) | (r −−r1 or r −−r2) and (s −−s1 or s −−s2)}
= {(r, s) | r ∈ r1 ◦Γ r2 and s ∈ s1 ◦Γ′ s2}
= (r1, s1) ⊗ (r2, s2)
= φ(r1s1) ⊗ φ(r2s2).

Corollary 4.9. Let Γ and Γ′ be hypergraphs such that |DΓ×Γ′ |= |DΓ||DΓ′ |. Then, DΓ×Γ′ � DΓ × DΓ′ if GΓ or GΓ′ is a
complete graph.

It is easy to verify that if Γ and Γ′ are hypergraphs such that |DΓ×Γ′ |= |DΓ||DΓ′ |, then GΓ×Γ′ is a complete graph
if and only if GΓ and GΓ′ are complete graphs. Hence, the following corollary is an immediate consequence
of Corollary 4.9.

Corollary 4.10. Let Γ and Γ′ be hypergraphs such that |DΓ×Γ′ | = |DΓ||DΓ′ |. Then, DΓ×Γ′ � DΓ × DΓ′ if GΓ×Γ′ is a
complete graph.

Theorem 4.11. If φ : DΓ×Γ′ −→ DΓ ×DΓ′ defined by φ(rs) = (r, s) is an isomorphism, then GΓ or GΓ′ is a complete
graph.

Proof. Suppose that GΓ′ is not complete and s1, s2 ∈ V(GΓ′) are non-adjacent vertices. Let r1, r2 be arbitrary
vertices of V(GΓ). It is sufficient to show that r1 −−r2. As in the proof of Theorem 4.8, we have

φ(r1s1 ◦Γ×Γ′ r2s2) = {(r, s) | (r −−r1 and s −−s1) or (r −−r2 and s −−s2)},
φ(r1s1) ⊗ φ(r2s2) = {(r, s) | (r −−r1 or r −−r2) and (s −−s1 or s −−s2)}.

Since φ(r1s1 ◦Γ×Γ′ r2s2) = φ(r1s1) ⊗ φ(r2s2) and (r1, s2) ∈ φ(r1s1) ⊗ φ(r2s2), we have (r1, s2) ∈ φ(r1s1 ◦Γ×Γ′ r2s2)
and so r1 −−r2.
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5. Some other properties of degree hypergroupoids

One of the main tools to study hyperstructures are fundamental relations. Fundamental relations have
been introduced on hypergroups by Koskas [15] and then studied mainly by Corsini [5] and Freni [12, 13]
concerning hypergroups, Vougiouklis [20] concerning Hv-groups and many others.

Let (H, ∗) be an Hv-group, n ≥ 2 a natural number and let UH(n) be the set of all hyperproducts of n
elements in H. We define the relation βn on H as follows:

xβny iff there exists P ∈ UH(n) such that {x, y} ⊆ P.

Let β =
n∪

i=1
βi, where β1 = {(a, a) | a ∈ H}. It is easy to see that β is reflexive and symmetric. We denote by β̂

the transitive closure of β and define it as follows:

xβ̂y if there exists a natural number k and elements
x = a1, a2, . . . , ak−1, ak = y in H such that
a1βa2, a2βa3, . . . , ak−1βak.

Obviously, β̂ is an equivalence relation and we have β = β̂ if β is transitive. Freni [12] proved that the
relation β defined on a hypergroup is transitive.

If (H, ∗) is an Hv-group and R is an equivalence relation on H, then the set of all equivalence classes
will be denoted by H/R, i.e., H/R = {R(x) | x ∈ H}. We denote by β∗ the fundamental relation on H. β∗ is the
smallest equivalence relation on H such that H/β∗ is a group with respect to the following operation:

β∗(a) ⊙ β∗(b) = β∗(c), for all c ∈ a ∗ b.

Theorem 5.1. Let (H, ∗) be an Hv-group. Then the fundamental relation β∗ is the transitive closure of the relation β.

Proof. See Theorem 2.1 of [20].

Theorem 5.2. If Γ is a hypergraph and (DΓ, ◦Γ) is the Hv-group associated with Γ, then |DΓ/β∗| = 1 and β∗ = β2 = D2
Γ
,

where β∗ is the fundamental relation on DΓ.

Proof. For every d, d′ ∈ DΓ we have {d, d′} ⊆ d ◦ d′ and so we have D2
Γ
⊆ β2 ⊆ β. On the other hand we

have β ⊆ β̂ ⊆ D2
Γ

and therefore we have D2
Γ
= β̂. Now, by using Theorem 5.1 we have |DΓ/β∗| = 1 and

β∗ = β2 = D2
Γ
.

By the above theorem, fundamental relation of every degree hypergroupoid DΓ is the full relation D2
Γ
. But,

the converse is not true as the following example shows.

Example 5.3. Let (H = {a, b}, ∗) be an Hv-group with the following table:

∗ a b
a a b
b b {a, b}

One easily checks that β2 = H2 and the fundamental relation on (H, ∗) is equal to β2, but (H, ∗) is not a degree
hypergroupoid.

Let (H, ∗) be an Hv-group and A be a non-empty subset of H. We say that A is a complete part of H if for any
natural number n and for all hyperproducts P ∈ HH(n), the following implication holds:

A ∩ P , ∅ =⇒ P ⊆ A.

Proposition 5.4. Let Γ be a hypergraph and (DΓ, ◦Γ) be the degree hypergroupoid associated with Γ. Then, complete
part of (DΓ, ◦Γ) is equal to DΓ.
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Proof. Suppose that A is a complete part of DΓ and b ∈ DΓ is an arbitrary element. Clearly, for every a ∈ A
we have A ∩ a ◦Γ b , ∅which implies that a ◦Γ b ⊆ A and so b ∈ A. This completes the proof.

Consider the Hv-group H of Example 5.3. It is easy to verify that H is the only complete part of H but H is
not a degree hypergroupoid. This shows that the converse of Proposition 5.4 is not true.

Acknowledgments. The authors are highly grateful to the referees for their valuable comments and
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