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The Split Common Fixed Point Problem of two Infinite Families of
Demicontractive Mappings and the Split Common Null Point Problem
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Abstract. In this paper we introduce a new algorithm based on the viscosity iteration method for solving
the split common fixed point problem of two infinite families of k-demicontractive mappings. We shall also
study the split common null point problem, and the split equilibrium problem for this class of mappings.
As an application, we obtain strong convergence theorems for the split monotone variational inclusion
problem and the split variational inequality problem. Our results improve and extend the recent results of
Cui and Wang [9], Takahashi [21], Tang and Lui [22], Moudafi [15], Eslamian and Vahidi [17], and many
others.

1. Introduction

Let H1 and H2 be two real Hilbert spaces and let A : H1 → H2 be a bounded linear operator. Given
nonlinear operators T : H1 −→ H1 and U : H2 −→ H2, the split fixed point problem (SFPP) is to find a point

x ∈ Fix(T) such that Ax ∈ Fix(U) (1)

where Fix(T) and Fix(U) stand for, respectively, the fixed point sets of T and U. The (SFPP) has the following
extension:
Let Ti : H1 −→ H1, (1 ≤ i ≤ m) be nonlinear operators on H1, and let U j : H2 −→ H2,

(
1 ≤ j ≤ n

)
be nonlinear

operators on H2. Then the split common fixed point problem (SCFPP) is to find a point

x ∈
m⋂

i=1

Fix (Ti) such that Ax ∈
n⋂

j=1

Fix
(
U j

)
. (2)

In particular, if Ti = PCi and U j = PQ j , then the SCFPP (2) reduces to the multiple-sets split feasibility
problem (MSSFP): find

x ∈
m⋂

i=1

PCi such that Ax ∈
n⋂

j=1

PQ j .
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where {Ci}
m
i=1 and {Q j}

n
j=1 are nonempty closed convex sets in H1 and H2, respectively.

In [23] Censor and Segal introduced the iterative scheme

xn+1 = U
(
I − ρnA∗ (I − T) A

)
xn

which solves the problem (1) for directed operators. This algorithm was then extended to the case of
quasi-nonexpansive mappings [13], as well as to the case of demicontractive mappings [14]. Finally, Wang
et al. [24] solved the problem for infinitely many directed operators.

Moudafi [13] then introduced the following relaxed algorithm with weak convergence for the split fixed
point problem

un = xn + γβA∗ (T − I) Axn

xn+1 = (1 − αn) Un + αnU (un)

where αn ∈ (δ, 1 − δ) for a small enough δ > 0, β ∈ (0, 1) and γ ∈
(
0, 1

λβ

)
with λ being the spectral radius of the

operator A∗A. In [17], Eslamian and Vahidi studied an algorithm for solving the split common fixed point
problem for an infinite family of quasi-nonexpansive mappings. They established the following theorem.

Theorem 1.1. [17] Let H1 and H2 be two real Hilbert spaces, and A : H1 −→ H2 be a bounded linear operator. Let
Si : H1 −→ H1 and Ti : H2 −→ H2, (i ∈N), be two infinite families of quasi-nonexpansive mappings such that Si − I
and Ti − I are demiclosed at 0. Suppose that Ω = {x ∈ ∩∞i=1Fix (Si) : Ax ∈ ∩∞i=1Fix (Ti)} , ∅. Let f be a k-contraction
of H1 into itself, and {xn} be a sequence generated by x0 ∈ H1 and by

yn = xn +
∑
∞

i=1 βn,iγβA∗ (Ti − I) Axn,

un = αn,0yn +
∑
∞

i=1 αn,iSiyn,

xn+1 = νn f (un) + (1 − νn) un,

where β ∈ (0, 1), and γ ∈
(
0, 1

λβ

)
with λ being the spectral radius of the operator A∗A, and the sequences {αn,i}, {βn,i}

and {νn} satisfy the following conditions:
(i)

∑
∞

j=1 αn, j = 1, and lim infn αn,0αn,i > 0, for all i ∈N,
(ii)

∑
∞

j=1 βn, j = 1, and lim infn βn,i > 0, for all i ∈N,
(iii) limn→∞ νn = 0 and

∑
∞

n=1 νn = ∞.
Then, the sequence {xn} converges strongly to x∗ ∈ Ω which solves the variational inequality

〈x∗ − f (x∗) , x − x∗〉 ≥ 0, ∀x ∈ Ω.

Let T : H −→ 2H be a multivalued mapping with graph G (T) = {
(
x, y

)
: y ∈ Tx}, domain D (T) = {x ∈

H : Tx , ∅} and range R (T) = ∪{Tx : x ∈ D (T)}. The mapping T is said to be monotone if 〈x − y,u − v〉 ≥ 0
for all (x,u) ,

(
y, v

)
∈ G (T). We denote the set {x ∈ H : 0 ∈ Tx} by T−1 (0). A monotone operator T ⊂ H × H

is said to be maximal if its graph is not properly contained in the graph of any other monotone operator.
If T ⊂ H × H is maximal monotone, then the solution set T−1 (0) is closed and convex. An operator T on a
Hilbert space H is maximal if and only if R (I + rT) = H for r > 0 (see Barbu [1]). If T ⊂ H ×H is a maximal
monotone operator, then for each r > 0 and x ∈ H, there corresponds a unique element xr ∈ D (T) satisfying

x = xr + rTxr.

We define the resolvent of T by Jrx = xr. In other words, Jr = (I + rT)−1 for all r > 0. The resolvent Jr is
a single-valued mapping from H into D (T). It is easy to see that T−10 = F (Jr) for all r > 0, where F (Jr)
denotes the set of fixed points of Jr. We can also define, for each r > 0, the Yosida approximation of T by
Tr = (I − Jr) /r. We know that (Jrx,Trx) ∈ T for all r > 0 and x ∈ H.
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Byrne et al. [4] considered the following problem: For given set-valued mappings Ai : H1 → 2H1 ,
1 ≤ i ≤ m, and B j : H2 → 2H2 , 1 ≤ j ≤ n, and bounded linear operators T j : H1 → H2, the split common null
point problem is to find a point z ∈ H1 such that

z ∈

 m⋂
i=1

A−1
i 0

 ∩
 n⋂

j=1

T−1
j B−1

j 0


where A−1

i 0 and B−1
j 0 are null point sets of Ai and B j, respectively.

Let C be a nonempty closed convex subset of H, and let F be a bifunction of C×C intoR. The equilibrium
problem introduced by Blum and Oettli [3] for F : C × C −→ R is to find x ∈ C such that

F
(
x, y

)
≥ 0, ∀y ∈ C. (3)

The set of solutions of (3) is denoted by EP(F). Numerous problems in physics, optimization, and economics
reduce to finding a solution of (3) (see [8], [23]). The split equilibrium problem was introduced by Moudafi
in [15]; indeed he considered the following pair of equilibrium problems in different spaces. Let H1 and
H2 be two real Hilbert spaces, and F1 : C × C −→ R and F2 : Q × Q −→ R be nonlinear bifunctions, and
let A : H1 −→ H2 be a bounded linear operator. Consider the nonempty closed convex subsets C ⊆ H1 and
Q ⊆ H2; then the split equilibrium problem (SEP) is to find x∗ ∈ C such that

F1 (x∗, x) ≥ 0, ∀x ∈ C

and such that
y∗ = Ax∗ ∈ Q, F2

(
y∗, y

)
≥ 0, ∀y ∈ Q.

In this paper, we present a new algorithm based on the viscosity iterative method for solving the
split common fixed point problem for k-demicontractive mappings, as well as the split common null
point problem and the split equilibrium problem. We also consider some particular cases such as quasi-
nonexpansive operators and directed operators. As application, we obtain strong convergence theorems
for split monotone variational inclusion and split variational inequality problems. Our results improve and
extend some recent results due to Cui and Wang [9], Takahashi [21], Tang and Liu [22], Moudafi [15], as
well as Eslamian and Vahidi [17].

2. Preliminaries

In this section, we collect some basic facts which are needed for the proofs of the main results of this
paper.

Lemma 2.1. [20] Let C be a nonempty closed convex subset of a real Hilbert space H and x ∈ H. Then x0 = PCx if
and only if for all y ∈ C, 〈x0 − y, x − x0〉 ≥ 0.

Let T be a maximal monotone operator on a real Hilbert space H. It is known that the resolvent Jr of T
for r > 0 is firmly nonexpansive, i.e.,

‖Jrx − Jry‖2 ≤ 〈x − y, Jrx − Jry〉, ∀x, y ∈ H.

It is also known that the inequality

‖Jλx − Jµx‖ ≤
(
|λ − µ|

λ

)
‖x − Jλx‖

holds true for all λ, µ > 0 and x ∈ H (for details, see [18]). Moreover, we have the following lemma due to
Takahashi et al. [19].
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Lemma 2.2. [19] Let H be a real Hilbert space and let T be a maximal monotone operator on H. Then we have

s − t
s
〈Jsx − Jtx, Jsx − x〉 ≥ ‖Jsx − Jtx‖2

for all s, t > 0 and x ∈ H.

Lemma 2.3. [7] Let H be a real Hilbert space and let B1 (0) = {x ∈ E : ‖x‖ ≤ 1}. For any given sequence
{xn}

∞

n=1 ⊂ B1 (0) and for any given sequence {αn}
∞

n=1 of positive numbers with
∑
∞

n=1 αn = 1 and for any positive
integers i, j with i < j,

‖

∞∑
n=1

αnxn‖
2
≤

∞∑
n=1

αn‖xn‖
2
− αiα j‖xi − x j‖

2.

Lemma 2.4. [25] Let {γn} be a sequence in (0, 1) and {δn} be a sequence in R satisfying
(i)

∑
∞

n=1 γn = ∞,
(ii) lim supn→∞ γn ≤ 0 or

∑
∞

n=1 |γnδn| < ∞.
If {an} is a sequence of nonnegative real numbers such that

an+1 ≤
(
1 − γn

)
an + γnδn,

for each n ≥ 0, then limn→∞ an = 0.

Lemma 2.5. [11] Let {sn} be a sequence of real numbers that does not decrease at infinity, in the sense that there exists
a subsequence {sni } of {sn} such that sni ≤ sni+1 for all i ≥ 0. For every n ∈N, define an integer sequence {τ (n)} as

τ (n) = max{k ≤ n : sk < sk+1}.

Then τ (n)→∞ and max{sτ(n), sn} ≤ sτ(n)+1.

We call a bounded linear operator B on a real Hilbert space H strongly positive if there exists a constant
γ̄ > 0 such that

〈Bx, x〉 ≥ γ̄‖x‖2 ∀x ∈ H.

Lemma 2.6. [12] Assume that A is a strongly positive self-adjoint bounded linear operator on a Hilbert space H with
coefficient γ̄ > 0 and 0 < ρ ≤ ‖A‖−1. Then ‖I − ρA‖ ≤ 1 − ργ̄.

For solving the equilibrium problem, we assume that C is a nonempty closed convex subset of a real
Hilbert space H. Let us assume that f : C × C −→ R is a bifunction satisfying the following conditions:
(A1) F (x, x) = 0 for all x ∈ C,
(A2) F is monotone, i.e., F

(
x, y

)
+ F

(
y, x

)
≤ 0 for any x, y ∈ C,

(A3) F is upper-hemicontinuous, i.e., for each x, y, z ∈ C,

lim sup
t→0+

F
(
tz + (1 − t) x, y

)
≤ F

(
x, y

)
,

(A4) F (x, 0) is convex and lower semicontinuous for each x ∈ C.

Lemma 2.7. [3] Let C be nonempty closed convex subset of a smooth, strictly convex and reflexive Banach space E,
let F be a bifunction of C×C intoR satisfying (A1)− (A4), and let r > 0 and x ∈ E. Then, there exists z ∈ C such that

F
(
z, y

)
+

1
r
〈y − x, z − x〉 ≥ 0, ∀y ∈ C.
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Lemma 2.8. [8] Let C be a nonempty closed convex subset of a smooth, strictly convex and reflexive Banach space E,
let F be a bifunction of C × C into R satisfying (A1) − (A4), and let r > 0 and x ∈ E. Define a mapping Tr : E −→ C
as follows:

Trx = {z ∈ C : F (z, x) +
1
r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C}.

Then, the following hold:
(i) Tr is single-valued;
(ii) Tr is a firmly nonexpansive-type mapping, i.e., for any x, y ∈ E,

‖Trx − Try‖2 ≤ 〈Trx − Try, x − y〉.

(iii) F (Tr) = EP (F);
(iv) EP(F) is closed and convex.

Definition 2.9. Let T : C −→ C be a mapping, then I − T is said to be demiclosed at zero if for any sequence {xn} in
C, the conditions xn ⇀ x and limn→∞ ‖xn − Txn‖ = 0, imply x = Tx.

Definition 2.10. Let T : H −→ H be a mapping with Fix (T) , ∅. Then
(i) T : H −→ H is called directed if

〈z − Tx, x − Tx〉 ≤ 0, ∀z ∈ Fix (T) , ∀x ∈ H.

(ii) T : H −→ H is called quasi-nonexpansive if

‖Tx − z‖ ≤ ‖x − z‖, ∀z ∈ Fix (T) , ∀x ∈ H.

(iii) T : H −→ H is called k-demicontractive with k ≤ 1, if

‖Tx − z‖2 ≤ ‖x − z‖2 + k‖ (I − T) x‖2, ∀z ∈ Fix (T) , ∀x ∈ H

or equivalently

〈x − z,Tx − x〉 ≤
k − 1

2
‖x − Tx‖2, ∀z ∈ Fix (T) , ∀x ∈ H.

(iv) T : H −→ H is called averaged if there exists a nonexpansive operator N : H −→ H and a number λ ∈ (0, 1) such
that

T = (1 − λ) I + λN.

A typical example of a directed operator is the orthogonal projection PC from a Hilbert space H onto a
nonempty closed convex subset C ⊂ H defined by

PCx := ar1min
y∈C

‖x − y‖2, x ∈ H.

It is well known that the projection PC is characterized by

y = PCx if and only if 〈x − PCx, z − PCx〉 ≤ 0, ∀z ∈ C.

3. Main Results

This section is devoted to the main results of this paper. We start by proving a split common fixed point,
and common null point problem.
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Theorem 3.1. Let H1 and H2 be two real Hilbert spaces, and A : H1 −→ H2 be a bounded linear operator. Assume that
F1 : H1 −→ 2H1 and F2 : H2 −→ 2H2 are two maximal monotone operators such that F−1

1 0 , ∅ and F−1
2 0 , ∅. Let Jr be

the resolvent of F1 for r > 0 and Qµ be the resolvent of F2 for µ > 0. Let, for i ∈N, Ti : H2 −→ H2 be an infinite family
of k-demicotractive mappings and Si : H1 −→ H1 be an infinite family of l-demicotractive mappings such that Si−I and
Ti−I are demiclosed at 0. Assume further that Ω = {x ∈

(
F−1

1 0
)
∩

(⋂∞
i=1 Fix (Si)

)
: Ax ∈

(
F−1

2 0
)
∩

(⋂∞
i=1 Fix (Ti)

)
} , ∅.

Suppose that f is a b-contraction of H1 into itself and that B is a strongly positive bounded linear operator on H1 with
coefficient γ̄ ≥ 0 and 0 < γ < γ̄

k . Let {xn} be the sequence generated by x0 ∈ C and
yn = Jrn

(
xn + λA∗

((
αnQµn + βnI +

∑
∞

i=1 γn,iTi

(
Qµn

)
− I

)
Axn

))
,

wn = δn,0yn +
∑
∞

i=1 δn,iSiyn,
xn+1 = anγ f (wn) + (1 − anB) wn,

(4)

where λ ∈
(
0, 1
‖A‖2

)
and A∗ is the adjoint of A. Assume that the sequences {αn}, {βn}, {δn,i}, {γn,i}, {rn} and {an} satisfy

the following conditions:
(i) αn + βn +

∑
∞

i=1 γn,i = 1 and δn,0 +
∑
∞

i=1 δn,i = 1,
(ii) {an} ⊂ (0, 1), limn→∞ an = 0,

∑
∞

n=1 an = ∞,
(iii) 0 < a ≤ rn < ∞ and 0 < b ≤ µn < ∞ (a, b ∈ R),
(iv) k < αn < 1 and l < δn,0 < 1,
(v) lim infn→∞ αnβn > 0, lim infn→∞(αn − k)γn,i > 0 and lim infn→∞(δn,0 − l)δn,i > 0.
Then the sequence {xn} converges strongly to x∗ ∈ Ω which solves the variational inequality

〈
(
B − γ f

)
x∗, x − x∗〉 ≥ 0, ∀x ∈ Ω.

Proof. Since PΩ
(
I − B + γ f

)
is a contraction, by the Banach contraction principle there exists q ∈ Ω such that

q = PΩ
(
I − B + γ f

) (
q
)
; this is equivalent to saying that

〈
(
I − B + γ f

)
q − q, q − p〉 ≥ 0, ∀p ∈ Ω.

Since limn→∞ an = 0, we may assume that an ∈
(
0, ‖A‖−1

)
for all n ≥ 0. By Lemma 2.6, we have ‖I − anB‖ ≤

1 − anγ̄. Take p ∈ Ω and un = Qµn Axn. From Lemma 2.8, we know that for any n ≥ 0,

‖un − Ap‖ = ‖Qµn Axn −Qµn Ap‖ ≤ ‖Axn − Ap‖.

We show that {xn} is bounded. Take zn = αnun + βnAxn +
∑
∞

i=1 γn,iTi (un). Since for each i ∈ N, Ti is
demicontractive, from Lemma 2.3 we have

‖zn − Ap‖2 = ‖αnun + βnAxn +

∞∑
i=1

γn,iTi (un) − Ap‖2

≤ αn‖un − Ap‖2 + βn‖Axn − Ap‖2 +

∞∑
i=1

γn,i‖Ti (un) − Ap‖2

− αnβn‖Axn − un‖
2
− αnγn,i‖un − Tiun‖

2

≤ αn‖un − Ap‖2 + βn‖Axn − Ap‖2 +

∞∑
i=1

γn,i

(
‖un − Ap‖2 + k‖un − Ti (un) ‖2

)
− αnβn‖Axn − un‖

2
− αnγn,i‖un − Tiun‖

2

≤ ‖Axn − Ap‖2 − αnβn‖Axn − un‖
2
− (αn − k)

∞∑
i=1

γn,i‖un − Tiun‖
2

≤ ‖Axn − Ap‖2.



A. Abkar, E. Shahrosvand / Filomat 31:12 (2017), 3859–3874 3865

From Lemma 2.8, we also have

‖yn − p‖2 = ‖Jrn (xn + λA∗ (zn − Axn)) − p‖2

≤ ‖xn + λA∗ (zn − Axn) − p‖2

= ‖xn − p‖2 + λ2
‖A‖2‖zn − Axn‖

2 + 2〈xn − p, λA∗ (zn − Axn)〉

= ‖xn − p‖2 + λ2
‖A‖2‖zn − Axn‖

2 + 2λ〈Axn − Ap, zn − Axn〉

= ‖xn − p‖2 + λ2
‖A‖2‖zn − Axn‖

2 + 2λ
(
〈zn − Ap, zn − Axn〉 − ‖zn − Axn‖

2
)

≤ ‖xn − p‖2 + λ2
‖A‖2‖zn − Axn‖

2 + 2λ
(1

2

(
‖zn − Ap‖2

+‖zn − Axn‖
2
− ‖Axn − Ap‖2

)
− ‖zn − Axn‖

2
)

≤ ‖xn − p‖2 + λ2
‖A‖2‖zn − Axn‖

2 + 2λ
(1

2

(
‖Axn − Ap‖2 − αnβn‖Axn − un‖

2

− (αn − k)
∞∑

i=1

γn,i‖un − Tiun‖
2 + ‖zn − Axn‖

2
− ‖Axn − Ap‖2

 − ‖zn − Axn‖
2


≤ ‖xn − p‖2 + λ2

‖A‖2‖zn − Axn‖
2 + 2λ

(1
2

(
‖zn − Axn‖

2
− αnβn‖Axn − un‖

2
)

− (αn − k)
∞∑

i=1

γn,i‖un − Tiun‖
2

 − ‖zn − Axn‖
2


= ‖xn − p‖2 + λ

(
λ‖A‖2 − 1

)
‖zn − Axn‖

2
− λαnβn‖Axn − un‖

2

− λ (αn − k)
∞∑

i=1

γn,i‖un − Tiun‖
2.

Similarly, since for each i ∈N, Si is demicontractive, it follows from Lemma 2.3 that

‖wn − p‖2 = ‖δn,0yn +

∞∑
i=1

δn,iSiyn − p‖2

≤ δn,0‖yn − p‖2 +

∞∑
i=1

δn,i‖Siyn − p‖2 − δn,0δn,i‖yn − Siyn‖
2

≤ δn,0‖yn − p‖2 +

∞∑
i=1

δn,i

(
‖yn − p‖2 + l‖yn − Siyn‖

2
)
− δn,0δn,i‖yn − Siyn‖

2

= ‖yn − p‖2 −
(
δn,0 − l

) ∞∑
i=1

δn,i‖yn − Siyn‖
2

≤ ‖yn − p‖2 −
(
δn,0 − l

) ∞∑
i=1

δn,i‖yn − Siyn‖
2

≤ ‖xn − p‖2 + λ
(
λ‖A‖2 − 1

)
‖zn − Axn‖

2
− λαnβn‖Axn − un‖

2

− λ (αn − k)
∞∑

i=1

γn,i‖un − Tiun‖
2
−

(
δn,0 − l

) ∞∑
i=1

δn,i‖yn − Siyn‖
2.

Hence ‖wn − p‖ ≤ ‖xn − p‖. From Lemma 2.6, we have
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‖xn+1 − p‖ = ‖an
(
γ f (wn) − Bp

)
+ (I − anB)

(
wn − p

)
‖

≤ an‖
(
γ f (wn) − Bp‖ + ‖I − anB‖‖

(
wn − p

))
‖

≤ an
(
γ‖ f (wn) − f

(
p
)
‖ + ‖γ f

(
p
)
− Bp‖

)
+

(
I − anγ̄

)
‖
(
wn − p

)
‖

≤ anbγ‖wn − p‖ + an‖γ f
(
p
)
− Bp‖ +

(
I − anγ̄

)
|
(
xn − p

)
‖

≤
(
I − an

(
γ̄ − bγ

))
‖xn − p‖ + an‖γ f

(
p
)
− Bp‖.

Using mathematical induction, we obtain that

‖xn − p‖ ≤ max
{
‖x0 − p‖,

‖γ f
(
p
)
− Bp

γ̄ − γk

}
, n ≥ 0.

This argument shows that {xn} is bounded. Now, it is easy to see that {wn}, {yn}, {un} and { f (wn)} are bounded
too. Since xn+1 − wn = an

(
γ f (wn) − Bwn

)
and limn→∞ an = 0, we obtain

xn+1 − wn → 0, n→∞.

Next, we want to show that for each natural number i,

lim
n→∞
‖Tiun − un‖ = 0, lim

n→∞
‖Siyn − yn‖ = 0.

To this end, we note that

‖xn+1 − p‖2 = ‖anγ f (wn) + (1 − anB) wn − p‖2

≤ ‖I − anB‖‖wn − p‖2 + an‖γ f (wn) − Bp‖2

≤
(
1 − anγ̄

)
[‖xn − p‖2 + λ

(
λ‖A‖2 − 1

)
‖zn − Axn‖

2
− λαnβn‖Axn − un‖

2

− λ (αn − k)
∞∑

i=1

γn,i‖un − Tiun‖
2
−

(
δn,0 − l

) ∞∑
i=1

δn,i‖yn − Siyn‖] + anγ‖ f (wn) − Bp‖2.

This implies that(
1 − anγ̄

)
λ
(
λ‖A‖2 − 1

)
‖zn − Axn‖

2
≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + anγ‖ f (wn) − Bp‖2, (5)

and

(
1 − anγ̄

) (
δn,0 − l

) ∞∑
i=1

δn,i‖yn − Siyn‖ ≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + νnγ‖ f (un) − Bx∗‖2. (6)

We now consider two cases:
Case 1: Assume that {‖xn − p‖} is a monotone sequence. We may assume that {‖xn − p‖}n≥n0 is either
nondecreasing or nonincreasing. Since {‖xn − p‖} is bounded, it is convergent. Since limn→∞ an = 0 and
{ f (un)} and {xn} are bounded, in view of inequalities (5) and (6) we conclude that

lim
n→∞

(
1 − anγ̄

)
λ
(
λ‖A‖2 − 1

)
‖zn − Axn‖

2 = 0,

and
lim
n→∞

(
1 − anγ̄

) (
δn,0 − l

)
δn,i‖yn − Siyn‖ = 0.

By assumptions that lim infn δn,i
(
δn,0 − l

)
> 0, limn→∞ an = 0 and λ ∈

(
0, 1
‖A‖2

)
we have

lim
n→∞
‖zn − Axn‖ = 0, (7)
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and

lim
n→∞
‖yn − Siyn‖ = 0. (8)

Using a similar argument, we can prove that

lim
n→∞
‖un − Tiun‖ = 0, (9)

lim
n→∞
‖Axn − un‖ = 0. (10)

Note that, from (4), we have

‖yn − p‖2 = ‖Jrn (xn + λA∗ (zn − Axn)) − Jrn p‖2

≤ 〈yn − p, xn + λA∗ (zn − Axn) − p〉

=
1
2
{‖yn − p‖2 + ‖xn + λA∗ (zn − Axn) − p‖2 − ‖yn − p −

(
xn + λA∗ (zn − Axn) − p

)
‖

2
}

≤
1
2
{‖yn − p‖2 + ‖xn − p‖2 − ‖yn − xn‖

2
− λ2
‖A∗ (zn − Axn) ‖2

+ 2λ‖A∗‖‖
(
yn − xn

)
‖‖zn − Axn‖}.

On the other hand,

‖xn+1 − p‖2 ≤
(
1 − anγ̄

) ‖yn − p‖2 −
(
δn,0 − l

) ∞∑
i=1

δn,i‖yn − Siyn‖
2

 + anγ‖ f (wn) − Bp‖2.

So, we have

(
1 − anγ̄

)
‖xn − yn‖

2
≤ ‖xn − p‖2 − ‖xn+1 − p‖2 −

(
1 − anγ̄

) (
δn,0 − l

) ∞∑
i=1

(
δn,i‖yn − Siyn‖

2
)

+ anγ‖ f (wn) − Bp‖2 − anγ̄‖xn − p‖ + 2λ
(
1 − anγ̄

)
‖Ayn − Axn‖‖zn − Axn‖.

Since ‖xn − p‖ is convergent, limn→∞ an = 0, {xn}, {yn} and { f (wn)} are bounded, it follows from (7) that

lim
n→∞
‖yn − xn‖ = 0. (11)

Next, we show that
lim sup

n→∞
〈Bq − f

(
q
)
, xn − q〉 ≥ 0.

To prove this inequality, we can choose a subsequence {xni} of {xn} such that

lim
i→∞
〈Bq − f

(
q
)
, xni − q〉 = lim sup

n→∞
〈Bq − f

(
q
)
, xn − q〉 ≥ 0.

Since {xni} is a bounded sequence in a reflexive Banach space, there exists a subsequence {xni j } of {xni}which
converges weakly to ν. Without less of generality, we may assume that xni ⇀ ν. Since limn→∞ ‖Axn−un‖ = 0,
we have un ⇀ Aν. We show that ν ∈ Ω. Let us verify that Aν ∈ F−1

2 0. Note that un = Qµn Axn and for
(h, h∗) ∈ G (F2), we have 〈h − un, h∗ − Axn−un

µn
〉 ≥ 0. Because of

(
un,

Axn−un
µn

)
∈ G (F2) and the fact that F2 is a

monotone operator, ‖Axn − un‖ → 0 and the condition (iii) we get

‖Axn − un‖

µn
→ 0.

Recall that un = Qµn Axn ⇀ Aν. Thus 〈h − Aν, h∗〉 ≥ 0. So, the maximality of A implies that Aν ∈ F−1
2 0. Now,

from yni ⇀ ν, the fact that limn→∞ ‖yn − Siyn‖ = 0, and the demiclosedness of I − Si at zero, we conclude
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that ν ∈
⋂
∞

i=1 F (Si). Note also that A is a bounded operator and xn ⇀ ν, therefore Axn ⇀ Aν. In view of the
inequality (9) and a similar argument as above we conclude that Aν ∈

⋂
∞

i=1 F (Ti).
Now to prove ν ∈ F−1

1 0, we take kn = xn + λA∗ (zn − Axn). From inequality (3.12), it is easy to see that

lim
n→∞
‖kn − xn‖ = 0. (12)

Combining (11) with (12), we conclude that

lim
n→∞
‖yn − kn‖ ≤ lim

n→∞

(
‖yn − xn‖ + ‖xn − kn‖

)
= 0.

Since yn = Jrn kn, a similar argument as above reveals that ν ∈ F−1
1 0. This implies that ν ∈ Ω. Since

q = PΩ
(
I − B + γ f

) (
q
)

and ν ∈ Ω, we have

lim
i→∞
〈Bq − f

(
q
)
, xni − q〉 = lim sup

n→∞
〈Bq − f

(
q
)
, xn − q〉 = 〈Bq − f

(
q
)
, ν − q〉 ≥ 0.

As xn+1 − q = νn
(
γ f (wn) − Bq

)
+ (1 − νnB)

(
wn − q

)
, we have

‖xn+1 − q‖2 = ‖anγ f (wn) + (1 − anB) wn − q‖2

≤ ‖ (I − anB)
(
wn − q

)
‖

2 + 2an〈γ f (wn) − Bq, xn+1 − q〉

≤
(
1 − anγ̄

)2
‖xn − q‖2 + 2an〈γ f (wn) − γ f

(
q
)
, xn+1 − q〉 + 2an〈γ f

(
q
)
− Bq, xn+1 − q〉

≤
(
1 − anγ̄

)2
‖xn − q‖2 + bγan

(
‖wn − q‖2 + ‖xn+1 − q‖2

)
+ 2an〈γ f

(
q
)
− Bq, xn+1 − q〉

=
((

1 − anγ̄
)2 + bγan

)
‖xn − q‖2 + bγan‖xn+1 − q‖2 + 2an〈γ f

(
q
)
− Bq, xn+1 − q〉.

This implies that

‖xn+1 − q‖2 ≤
(
1 −

2
(
γ̄ − bγ

)
an

1 − bγan

)
‖xn − q‖2 +

γ̄2a2
n

1 − banγ
‖xn − q‖2 +

2an

1 − banγ
〈γ f

(
q
)
− Bq, xn+1 − q〉

≤ 1 −
2
(
γ̄ − bγ

)
an

1 − bγan
‖xn − q‖2 +

2
(
γ̄ − bγ

)
an

1 − bγan
{

anL
2 (1 − b)

+
1

1 − b
〈γ f

(
q
)
− Bq, xn+1 − q〉}

=
(
1 − ηn

)
‖xn − q‖ + ηnδn,

where L = sup{‖xn−q‖ : n ≥ 0}, ηn =
2(γ̄−bγ)an

1−bγan
, and δn = anL

2(1−b) + 1
1−b 〈γ f

(
q
)
−Bq, xn+1−q〉. Now, it is easy to see

that ηn → 0,
∑
∞

n=1 ηn = ∞ and lim supn→∞ δn ≤ 0. Lemma 2.4 now implies that the sequence {xn} converges
strongly to q = PΩ

(
I − B + γ f

) (
q
)
.

Case 2: Assume that the sequence {xn − q} is not monotone. Then, we can define an integer sequence
{τ (n)} for all n ≥ n0 (for some n0 large enough) by

τ (n) = max{k ∈N; k ≤ n : ‖xk − q‖ < ‖xn+1 − q‖}.

Clearly, τ is a nondecreasing sequence such that τn →∞ as n→∞, and for all n ≥ n0,

‖xτ(n) − q‖ ≤ ‖xτ(n)+1 − q‖.

From (5) we obtain that
lim
n→∞
‖zτ(n) − Axτ(n)‖ = 0,

lim
n→∞
‖uτ(n) − Tiuτ(n)‖ = 0,

and
lim
n→∞
‖Axτ(n) − uτ(n)‖ = 0.
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By a similar argument and from inequality (6) we get that

lim
n→∞
‖yτ(n) − Siyτ(n)‖ = 0, (i ∈N) .

Again, as in Case 1, we arrive at

‖xτ(n)+1 − q‖2 ≤
(
1 − ητ(n)

)
‖xτ(n) − q‖2 + ητ(n)δτ(n)

where ητ(n) → 0,
∑
∞

n=1 ητ(n) = ∞ and lim supn→∞ δτ(n) ≤ 0. Hence, by Lemma 2.4, we obtain limn→∞ ‖xτ(n) −

q‖ = 0, and limn→∞ ‖xτ(n)+1 − q‖ = 0. Now Lemma 2.5 implies that

0 ≤ ‖xn − q‖ ≤ max{‖xτ(n) − q‖, ‖xn − q‖} ≤ ‖xτ(n)+1 − q‖.

Therefore, {xn} converges strongly to q = PΩ
(
I − B + γ f

) (
q
)
.

To prove our second main theorem, we need to recall the following statement from [19].

Proposition 3.2. [19] Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let
f : C × C→ R satisfy the conditions (A1) − (A4). Let A f be a set-valued mapping on H defined by

A f (x) =


{z ∈ H : f

(
x, y

)
≥ 〈y − x, z〉 ∀y ∈ C}, x ∈ C,

∅ x ∈ H \ C.

Then EP
(

f
)

= A−1
f 0 and A f is a maximal monotone operator with dom

(
A f

)
⊂ C. Furthermore, for any x ∈ H and

r > 0, the resolvent Tr of f coincides with the resolvent of A f , i.e.,

Trx =
(
I + rA f

)−1
x.

Using Theorem 3.1, we obtain the following strong convergence theorem for finding solutions of equilibrium
problems in Hilbert spaces.

Theorem 3.3. Let H1 and H2 be two real Hilbert spaces, and let C ⊆ H1 and Q ⊆ H2 be nonempty closed subsets. Let
A : H1 −→ H2 be a bounded linear operator. Assume that f1 : C×C −→ R and f2 : Q×Q −→ R are two bifunctions
satisfying (A1)− (A4) and that f2 is upper semicontinuous. Let, for (i ∈N), Ti : H2 −→ H2 be an infinite family of k-
demicotractive mappings and Si : H1 −→ H1 be an infinite family of l-demicotractive mappings such that Si−I and Ti−I
are demiclosed at 0. Assume further that Ω = {x ∈ EP

(
f1
)
∩

(⋂∞
i=1 Fix (Si)

)
: Ax ∈ EP

(
f2
)
∩

(⋂∞
i=1 Fix (Ti)

)
} , ∅.

Suppose that 1 is a b-contraction on H1 and that B is a strongly positive bounded linear operator on H1 with coefficient
γ̄ ≥ 0 and 0 < γ < γ̄

k . Let {xn} be the sequence generated by x0 ∈ C and
yn = T f1

rn

(
xn + λA∗

((
αnT f2

rn
+ βnI +

∑
∞

i=1 γn,iTi

(
T f2

rn

)
− I

)
Axn

))
,

wn = δn,0yn +
∑
∞

i=1 δn,iSiyn,

xn+1 = anγ1 (wn) + (1 − anB) wn,

where λ ∈
(
0, 1
‖A‖2

)
and A∗ is the adjoint of A. Assume that the sequences {αn}, {βn}, {δn,i}, {γn,i}, {rn} and {an} satisfy

the following conditions:
(i) αn + βn +

∑
∞

i=1 γn,i = 1 and δn,0 +
∑
∞

i=1 δn,i = 1,
(ii) {an} ⊂ (0, 1), limn→∞ an = 0,

∑
∞

n=1 an = ∞,
(iii) {rn} ⊂ (0,∞) and lim infn→∞ rn > 0,
(iv) k < αn < 1 and l < δn,0 < 1,
(v) lim infn→∞ αnβn > 0, lim infn→∞ (αn − k)γn,i > 0 and lim infn→∞

(
δn,0 − l

)
δn,i > 0.

Then the sequence {xn} converges strongly to x∗ ∈ Ω which solves the variational inequality

〈
(
B − γ1

)
x∗, x − x∗〉 ≥ 0 ∀x ∈ Ω.
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Proof. For the bifunctions f1 : C×C→ R and f2 : Q×Q→ R, we define A f1 and A f2 as in the Proposition 3.2.

We take F1 = A f1 and F2 = A f2 in Theorem 3.1, it then follows from Proposition 3.2 that Jrn =
(
I + rnA f1

)−1

and Qµn =
(
I + µnA f2

)−1
for all rn > 0 and µn > 0. Thus the desired result follows from Theorem 3.1.

Example 3.4. Let H1 = H2 = R be equipped with the usual inner product and norm. Let C = [0,+∞) and
Q = (−∞, 0]. Let f1 : C × C −→ R and f2 : Q ×Q −→ R be defined by

f1
(
x, y

)
= 0, x, y ∈ C,

and
f2 (u, ν) = u (ν − u) , u, ν ∈ Q.

It is easy to see that the bifunctions f1 and f2 satisfy the conditions (A1)–(A4), moreover the bifunction f2 is upper-
semicontinuous. From Lemma 2.8, we conclude that T f1

rn
x = x. Indeed, for any x, y ∈ C and r > 0 we have

f1
(
x, y

)
+

1
r
〈x − z, y − x〉 ≥ 0,

from which it follows that
(x − z)

(
y − x

)
≥ 0, ∀y ∈ C.

This implies that for y ≥ x we have x ≥ z, and for y ≤ x we have x ≤ z. Therefore, z = x, and so

T f1
rn

x = x.

Similarly, we can prove that
T f2

rn
u = (rn + 1) u.

We now consider, for x ∈ R, the mappings 1 (x) = 1
8 x, A (x) = − 1

2 x, and Bx = 2x. For i ∈ N, define the mappings
Ti : H2 −→ H2 and Si : H1 −→ H1 by

Ti (x) =


x
2i

sin
1
x

x , 0,

0 x = 0,

and
Si (x) =

1
1 + i

x.

Then
⋂
∞

i=1 Fix (Ti) = {0},
⋂
∞

i=i Fix (Si) = {0},

|Tix − 0|2 =
x2

4i2
sin2 1

x
≤ x2

−

(
x −

x
2i

sin
1
x

)2

= |x − 0|2 − |x − Tx|2,

and
|Six − 0| = |

1
i + 1

x| ≤ |x|.

So, each Ti is a −1-demicontractive mapping, and each Si is a 0-demicontractive mapping. Note that the mapping 1 is
contraction with constant k = 1

4 , A is a bounded linear operator on R with adjoint operator A∗ and ‖A‖ = ‖A∗‖ = 1
2 ,

and B is a strongly positive bounded linear self-adjoint operator with constant γ̄ = 1 on R. On the other hand, we



A. Abkar, E. Shahrosvand / Filomat 31:12 (2017), 3859–3874 3871

can take γ = 2 which satisfies 0 < γ < γ̄
k < γ + 1

k . We can now define, for n ∈N, αn = 1
3 , βn = 1

3 , γn,i = 1
4i , δn,0 = 1

2
and δn,i = 1

3i . It is easy to see that EP
(

f1
)

= [0,∞) and EP
(

f2
)

= {0}. Furthermore, we have

Ω = {x ∈ EP
(

f1
)
∩

 ∞⋂
i=1

Fix (Si)

 : Ax ∈ EP
(

f2
)
∩

 ∞⋂
i=1

Fix (Ti)

} = {0}.
Now, all the assumptions in Theorem 3.1 are satisfied. Let us consider the following numerical algorithm:

zn = T f2
rn

Axn,

yn = xn +
1
8

A∗
1

3
zn −

xn

6
+

∞∑
i=1

zn

2i4i sin
1
zn

+
1
2

xn

 ,
wn =

1
2

+

∞∑
i=1

1
(i + 1) 3i

 yn,

xn+1 =
1
4

anwn + (1 − 2an) wn,

where an = 4
n+8 . If rn = 1, then

yn = xn −
1
8

xn sin
1
xn

∞∑
i=1

1
i4i ,

wn =

1
2

+

∞∑
i=1

1
(i + 1) 3i

 yn,

%
xn+1 =

n + 1
n + 8

wn.

By Theorem 3.3, the sequence {xn} converges to a solution of the variational inequality stated in the theorem.

The following statements are now easy consequences of our main result.

Theorem 3.5. Let H1 and H2 be two real Hilbert spaces and C ⊆ H1 and Q ⊆ H2 be two nonempty closed subsets. Let
A : H1 −→ H2 be a bounded linear operator. Assume that F1 : C×C −→ R and F2 : Q×Q −→ R are two bifunctions
satisfying (A1) − (A4), and F2 is upper-semicontinuous. Let, for (i ∈N), Ti : H2 −→ H2 and Si : H1 −→ H1 be
two infinite families of quasi-nonexpansive mappings such that Si − I and Ti − I are demiclosed at 0. Assume that
Ω = {x ∈ EP(F1)∩

(⋂∞
i=1 Fix(Si)

)
: Ax ∈ EP(F2)∩

(⋂∞
i=1 Fix (Ti)

)
} , ∅. Suppose that f is a b-contraction on H1 and

that B is a strongly positive bounded linear operator on H1 with coefficient γ̄ ≥ 0, and 0 < γ < γ̄
k . Let {xn} be the

sequence generated by x0 ∈ C and
yn = TF1

rn

(
xn + λA∗

((
αnTF2

rn
+ βnI +

∑
∞

i=1 γn,iTi

(
TF2

rn

)
− I

)
Axn

))
,

wn = δn,0yn +
∑
∞

i=1 δn,iSiyn,

xn+1 = anγ f (wn) + (1 − anB) wn.

Assume that the sequences {αn}, {βn}, {δn,i}, {γn,i}, {rn}, and {an} satisfy the following conditions:
(i) αn + βn +

∑
∞

i=1 γn,i = 1 and δn,0 +
∑
∞

i=1 δn,i = 1,
(ii) {an} ⊂ (0, 1), limn→∞ an = 0,

∑
∞

n=1 an = ∞,
(iii) {rn} ⊂ (0,∞) and lim infn→∞ rn > 0,
(iv) k < αn < 1 and l < δn,0 < 1,
(v) lim infn→∞ αnβn > 0, lim infn→∞(αn − k)γn,i > 0 and lim infn→∞(δn,0 − l)δn,i > 0.
Then the sequence {xn} converges strongly to x∗ ∈ Ω which solves the variational inequality

〈
(
B − γ f

)
x∗, x − x∗〉 ≥ 0, ∀x ∈ Ω.
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Proof. Since every quasi-nonexpansive operator is clearly 0-demicontractive, the result follows.

Theorem 3.6. Let H1 and H2 be two real Hilbert spaces and C ⊆ H1 and Q ⊆ H2 be two nonempty closed subsets. Let
A : H1 −→ H2 be a bounded linear operator. Assume that F1 : C×C −→ R and F2 : Q×Q −→ R are two bifunctions
satisfying the conditions (A1) − (A4), and that F2 is upper-semicontinuous. Let, for (i ∈N), Ti : H2 −→ H2 and
Si : H1 −→ H1 be two infinite families of directed mappings such that Si − I and Ti − I are demiclosed at 0. Assume
that Ω = {x ∈ EP (F1) ∩

(⋂∞
i=1 Fix (Si)

)
: Ax ∈ EP (F2) ∩

(⋂∞
i=1 Fix (Ti)

)
} , ∅. Suppose f is a b-contraction on H1

and that B is a strongly positive bounded linear operator on H1 with coefficient γ̄ ≥ 0, and 0 < γ < γ̄
k . Let {xn} be the

sequence generated by x0 ∈ C and
yn = TF1

rn

(
xn + λA∗

((
αnTF2

rn
+ βnI +

∑
∞

i=1 γn,iTi

(
TF2

rn

)
− I

)
Axn

))
,

wn = δn,0yn +
∑
∞

i=1 δn,iSiyn,

xn+1 = anγ f (wn) + (1 − anB) wn,

where λ ∈
(
0, 1
‖A‖2

)
and A∗ is the adjoint of A. Assume the sequences {αn}, {βn}, {δn,i}, {γn,i}, {rn}, and {an} satisfy the

following conditions:
(i) αn + βn +

∑
∞

i=1 γn,i = 1 and δn,0 +
∑
∞

i=1 δn,i = 1,
(ii) {an} ⊂ (0, 1), limn→∞ an = 0,

∑
∞

n=1 an = ∞,
(iii) {rn} ⊂ (0,∞) and lim infn→∞ rn > 0,
(iv) k < αn < 1 and l < δn,0 < 1,
(v) lim infn→∞ αnβn > 0, lim infn→∞ (αn − k)γn,i > 0 and lim infn→∞

(
δn,0 − l

)
δn,i > 0.

Then the sequence {xn} converges strongly to x∗ ∈ Ω which solves the variational inequality

〈
(
B − γ f

)
x∗, x − x∗〉 ≥ 0, ∀x ∈ Ω.

Proof. A simple calculation shows that every directed operator is −1-demicontractive, thus the result fol-
lows.

Theorem 3.7. [16]. Let H1 and H2 be two real Hilbert spaces. Let A : H1 −→ H2 be a bounded linear oper-
ator. Let, for (i ∈N), Ti : H2 −→ H2 be an infinite family of k-demicotractive mappings and Si : H1 −→ H1
be an infinite family of l-demicotractive mappings such that Si − I and Ti − I are demiclosed at 0. Assume that
Ω = {x ∈ EP (F1) ∩

(⋂∞
i=1 Fix (Si)

)
: Ax ∈ EP (F2) ∩

(⋂∞
i=1 Fix (Ti)

)
} , ∅. Let f be a b-contraction on H1, and let {xn}

be the sequence generated by x0 ∈ C and
yn = xn + λA∗

(∑∞
i=1 γn,iTi − I

)
Axn,

wn = δn,0yn +
∑
∞

i=1 δn,iSiyn,

xn+1 = anγ f (wn) + (1 − an) wn,

where λ ∈
(
0, 1
‖A‖2

)
and A∗ is the adjoint of A. Suppose the sequences {δn,i}, {γn,i} and {an} satisfy the following

conditions:
(i)

∑
∞

i=1 γn,i = 1 and δn,0 +
∑
∞

i=1 δn,i = 1,
(ii) {an} ⊂ (0, 1), limn→∞ an = 0,

∑
∞

n=1 an = ∞,
(iii) l < δn,0 < 1,
(iv) lim inf?n→∞γn,i > 0 and lim inf?n→∞

(
δn,0 − l

)
δn,i > 0.

Then {xn} converges strongly to x∗ ∈ Ω which solves the variational inequality

〈
(
I − γ f

)
x∗, x − x∗〉 ≥ 0, ∀x ∈ Ω.

Proof. Putting F1
(
x, y

)
= 0 for all x, y ∈ C, F2

(
x, y

)
= 0 for all x, y ∈ Q and rn = 1 in Theorem 3.1, we have

TF1
rn

= TF2
rn

= I. Now, by taking B = I and γ = 1 in Theorem 3.3, we obtain the desired result.
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4. The Split Monotone Variational Inclusion Problem

Following this line of ideas, Moudafi [15] introduced the Split Monotone Variational Inclusion Problem
(SMVIP). We first review the basic definitions of the literature and then will provide an application of our
theorem to approximate the solution of SMVIP.

Let H1 and H2 be two real Hilbert spaces. Let two mappings f : H1 → H1 and 1 : H2 → H2, a bounded
linear operator A : H1 → H2, and two set-valued mappings B1 : H1 → 2H1 and B2 : H2 → 2H2 be given. The
SMVIP is formulated as follows:

find a point x∗ ∈ C such that 0 ∈ f (x∗) + B1 (x∗)

and such that the point
y∗ = A (x∗) ∈ H2 solves 0 ∈ 1

(
y∗

)
+ B2

(
y∗

)
.

Note that if C and Q are nonempty closed convex subsets of H1 and H2, (resp.), and B1 = NC B2 = NQ where
NC and NQ are normal cones to C and Q, (resp.); then the split monotone variational inclusion problem
reduces to the split variational inequality problem (SVIP) which is formulated as follows:

find a point x∗ ∈ C such that〈 f (x∗), x − x∗〉 ≥ 0 for all x ∈ C

and such that the point

y∗ = Ax∗ ∈ Q solves 〈1
(
y∗

)
, y − y∗〉 ≥ 0 for all y ∈ Q.

SVIP is quite useful in the study of the split minimization between two spaces, because the image of a
solution point of one minimization problem, under a given bounded linear operator, is a solution point of
another minimization problem.

Let h : H → H be an operator and let C ⊂ H. The operator h is called inverse strongly monotone with
constant β > 0 if

〈h (x) − h
(
y
)
, x − y〉 ≥ β‖h (x) − h

(
y
)
‖

2, ∀x, y ∈ H.

Remark 4.1. If h : H → H is an α-inverse strongly monotone operator on H and if B : H → 2H is a maximal
monotone operator, Then JB

λ
(I − λh) is averaged for each λ ∈ (0, 2α).

Proposition 4.2. [2] Let T : H → H be a nonexpansive mapping. Then for all λ ∈ (0, 1] and
(
x, y

)
∈ H × H, the

averaged operator Tλ satisfies

‖Tλx − Tλy‖2 ≤ ‖x − y‖2 −
1 − λ
λ
‖ (I − Tλ) x − (I − Tλ) y‖2.

Theorem 4.3. Let H1 and H2 be two real Hilbert spaces, and T : H1 → H2 be a bounded linear operator. Let for
i ∈N, Ai : H1 → 2H1 and Bi : H2 → 2H2 be maximal monotone mappings such that ∩∞i=1A−1

i 0 , ∅ and ∩∞i=1B−1
i 0 , ∅

and that for each i, hi : H1 → H1 is an αi−inverse strongly monotone operator, and 1i : H2 → H2 is a βi−inverse
strongly monotone operator. Assume that ρ = in fi∈Nαiβi > 0 and that τ ∈

(
0, 2ρ

)
. Suppose that the SMVIx∗ ∈ ∩∞i=1A−1

i 0 0 ∈ f (x∗) + Ai (x∗) ∀i ∈N,
y∗ = Tx∗ ∈ ∩∞i=1Bi0 0 ∈ 1

(
y∗

)
+ Bi

(
y∗

)
∀i ∈N,

has a nonempty solution set Ω. Suppose further that f is a k-contraction on H, and {xn} is the sequence generated by
x0 ∈ H, and

yn = xn + λT∗
(∑
∞

i=1 γn,i JAi
r (I − τhi) − I

)
Txn,

wn = δn,0yn +
∑
∞

i=1 δn,i JBi
µ

(
I − τ1i

)
yn,

xn+1 = anγ f (wn) + (1 − an) wn,



A. Abkar, E. Shahrosvand / Filomat 31:12 (2017), 3859–3874 3874

where λ ∈
(
0, 1
‖T‖2

)
and T∗ is the adjoint of T. Suppose the sequences {δn,i}, {γn,i} and {an} satisfy the following

conditions:
(i)

∑
∞

i=1 γn,i = 1 and δn,0 +
∑
∞

i=1 δn,i = 1,
(ii) {an} ⊂ (0, 1), limn→∞ an = 0,

∑
∞

n=1 an = ∞,
(iii) l < δn,0 < 1,
(iv) lim infn→∞ γn,i > 0 and lim infn→∞

(
δn,0 − l

)
δn,i > 0.

Then {xn} converges strongly to x∗ ∈ Ω which solves the variational inequality

〈
(
I − f

)
x∗, x − x∗ ≥ 0, ∀x ∈ Ω.

Proof. Since JAi
r (I − τhi) and JBi

r
(
I − τ1i

)
are τ-averaged, from Proposition 4.2 we conclude that JAi

r (I − τhi)
and JBi

r
(
I − τ1i

)
are − 1−τ

τ -demicontractive mappings. Thus, the result follows from Theorem 3.7.
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