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Abstract. A bicentric polygon is a polygon which has both an inscribed circle and a circumscribed one.
For given two circles, the necessary and sufficient condition for existence of bicentric triangle for these two
circles is known as Chapple’s formula or Euler’s theorem.

As one of natural extensions of this formula, we characterize the inscribed ellipses of a triangle which
is inscribed in the unit circle. We also discuss the condition for the “circumscribed” ellipse of a triangle
which is circumscribed about the unit circle.

For the proof of these results, we use some geometrical properties of Blaschke products on the unit disk.

1. Introduction

A bicentric polygon is a polygon which has both an inscribed circle and a circumscribed one. Any
triangle is bicentric because every triangle has a unique pair of inscribed circle and circumscribed one.
Then, for a triangle, what relation exists between the inscribed circle and the circumscribed one? For this
simple and natural question, Chapple gave a following answer (see [1]):

The distance d between the circumcenter and incenter of a triangle is given by

d2 = R(R − 2r), (1)

where R and r are the circumradius and inradius, respectively.

The converse also holds. Moreover Poncelet’s porism ([3]) guarantees that there are infinitely many bicentric
triangles, if the circumradius and inradius satisfy the Chapple’s formula (1).

As one of natural extensions of this formula, the following theorem is known (see [4] and [5]).

Theorem 1.1. For an ellipse E, the following two conditions are equivalent.

• There exists a triangle which E is inscribed in and ∂D is circumscribed about.

• For some a, b ∈ D, E is defined by the equation

|z − a| + |z − b| = |1 − ab|.
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This theorem gives the characterization of “inscribed ellipses” of a triangle which is inscribed in the
unit circle, and is proved by using some geometrical properties of Blaschke products which was given by
Daepp et al. [2].

In this paper, we introduce another geometrical property of Blaschke products, and show the following
theorem.

Theorem 1.2. Let B(z) = z ·
z − a

1 − az
·

z − b

1 − bz
. For each λ ∈ ∂D, let Tλ be the triangle consisting of three lines tangent

to ∂D at the three distinct preimages of λ ∈ ∂D by B. If (|a + b| − 1)2 > |ab|2, the triangle Tλ is circumscribed about
the unit circle and is inscribed in an ellipse depending only on a, b.

This theorem gives a property of “the circumscribed ellipses obtained from Blaschke products” of a
triangle which is circumscribed about the unit circle.

This paper organized as follows: In Section 1.1 and 1.2, we summarize properties of conics on C and
Blaschke products. In Section 2, we discuss about “inscribed ellipses” and give a rough proof of Theorem
1.1. To show Theorem 1.2, we state a new problem about “circumscribed ellipses” and solve it in Section 3.
For more general result, see [6].

1.1. Conics on C

A generalized conic is one of a circle, an ellipse, a hyperbola, a parabola, two intersecting lines, two
parallel lines, a single double line, a single point, and the empty set.

Lemma 1.3. In the complex plane, the equation of “a generalized conic” is given by

uz2 + pzz + uz
2
+ vz + vz + q = 0, (2)

where u, v ∈ C, p, q ∈ R.

In the case of u = 0, (2) is the equation of a generalized circle (either a circle or a line).

Classification of generalized conics (2) is obtained immediately from the classification theorem of conics
on the real xy-plane.

Lemma 1.4. A generalized conic on the complex plane

uz2 + pzz + uz
2
+ vz + vz + q = 0, (u, v ∈ C, p, q ∈ R) (3)

can be classified as follows.

1. The case that p2 − 4uu < 0;

(a) if −uv
2
+ pvv + 4uuq − uv2 − p2q , 0, the equation represents a hyperbola,

(b) if −uv
2
+ pvv + 4uuq − uv2 − p2q = 0, the equation represents two intersecting lines.

2. The case that p2 − 4uu > 0;

(a) if p(−uv
2
+ pvv + 4uuq − uv2 − p2q) > 0, the equation represents an ellipse,

(b) if p(−uv
2
+ pvv + 4uuq − uv2 − p2q) < 0, the equation represents the empty set.

(c) if −uv
2
+ pvv + 4uuq − uv2 − p2q = 0, the equation represents a single point.

3. The case that p2 − 4uu = 0;

(a) if uv
2
− pvv + uv2

, 0, the equation represents a parabola,

(b) if uv
2
− pvv + uv2 = 0;

i. if −vv + 2pq = 0, the equation represents a single double line,
ii. if −vv + 2pq < 0, the equation represents two parallel lines,

iii. if −vv + 2pq > 0, the equation represents the empty set.
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A conic on the complex plane can be also represented by a equation, using its geometrical characteriza-
tion.

Ellipse: The locus of points such that the sum of the distances to two foci a and b is constant.

|z − a| + |z − b| = r (r > 0).

Hyperbola: The locus of points such that the absolute value of the difference of the distances to two foci a
and b is constant.

|z − a| − |z − b| = ±r (r > 0).

Parabola: The locus of points such that the distance to the focus b equals the distance to the directrix
az + az + r = 0.

|az + az + r|

4|a|
= |z − b| (r ∈ R).

Each of the above equations is simple. From them, it is easy to obtain geometrical properties of such a
locus as the focus or the directrix.

We will use these two types of the equations, the equation (2) and the above ones, according to the case.

1.2. Blaschke Products

A Blaschke product of degree d is a rational function defined by

B(z) = eiθ
d∏

k=1

z − ak

1 − akz
(ak ∈ D, θ ∈ R).

In the case that θ = 0 and B(0) = 0, i.e.

B(z) = z

d−1∏

k=1

z − ak

1 − akz
(ak ∈ D),

B is called canonical.
It is well known that a Blaschke product is a holomorphic function on D, continuous on D, and maps

D onto itself. Moreover, the derivative of a Blaschke product has no zeros on ∂D.
For a Blaschke product

B(z) = eiθ
d∏

k=1

z − ak

1 − akz

of degree d, set

f1(z) = e−
θ
d iz, and f2(z) =

z − (−1)da1 · · · adeiθ

1 − (−1)da1 · · · adeiθz
.

Then, the composition f2 ◦ B ◦ f1 is canonical. This particular construction plays an essential role in the
arguments in the following sections.

2. Inscribed ellipses

In this section we summarize results in [5] and give Theorem 1.1. The following result by Daepp, Gorkin,
and Mortini is a key tool in this section.
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Lemma 2.1 (Daepp, Gorkin, and Mortini [2], [7]). Let

B(z) = z ·
z − a

1 − az
·

z − b

1 − bz
(a, b ∈ D),

and z1, z2, z3 the 3 distinct preimages of λ ∈ ∂D by B. Then, the lines joining zk, zℓ (k, ℓ = 1, 2, 3, k , ℓ) are tangent
to the ellipse

E : |z − a| + |z − b| = |1 − ab|. (4)

Conversely, each point of E is the point of tangency of a line that passes through 2 distinct points ζ1, ζ2 on ∂D for
which

B(ζ1) = B(ζ2).

Every triangle has a unique inscribed circle. But, there are many ellipses inscribed in the triangle. The
following lemma asserts that, for each point a in a triangle, there is an inscribed ellipse having a as one of
the foci.

Lemma 2.2. For every mutually distinct points z1, z2, z3 on ∂D, let T be the closed set surrounded by △z1z2z3. For
every a ∈ int(T), there exists a unique pair of λ ∈ ∂D and b ∈ int(T) such that

B(z1) = B(z2) = B(z3) = λ

with

B(z) = z ·
z − a

1 − az
·

z − b

1 − bz
.

Here, for the reader’s convenience, we present an outline of a proof. (See [5] for the details.)

Outline proof of Lemma 2.2. Let T denote △z1z2z3. Set λ = z1z2z3 and

b =
1

1 − |a|2

(
z1 + z2 + z3 − aλ

( 1

z1
+

1

z2
+

1

z3

)
− a + a

2
λ
)
.

If b ∈ int(T), then we have B(z1) = B(z2) = B(z3) = λ for

B(z) = z ·
z − a

1 − az
·

z − b

1 − bz
,

by direct calculations.
We can check also that b ∈ int(T), and we have the assertion.

Here, we remark that the inscribed ellipses of a triangle which is inscribed in ∂D are characterized as
follows.

Lemma 2.3. For any triangle that is inscribed in ∂D, there exists an ellipse which is inscribed in the triangle if and
only if the ellipse is given by (4) with a, b ∈ D.

Proof. Let E be an ellipse defined by

|z − a| + |z − b| = r (a, b ∈ D).

We will show that if the ellipse E is inscribed in the triangle inscribed in ∂D then r = |1 − ab| holds.
The ellipse E is expressed by,

(
(z − a)(z − a) + (z − b)(z − b) − r2

)2
− 4(z − a)(z − a)(z − b)(z − b) = 0. (5)
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On the other hand, the equation of the line joining 2 points z1, z2 on the unit circle is given by

L : z + z1z2z = z1 + z2. (6)

Eliminating z from the above two equations (5) and (6), we have the quadratic equation Q(z) = 0 of z
variable. This equation Q = 0 has multiple root if and only if the line L tangents to the ellipse E. The
discriminant is given by

Discr(Q) = − 16r2((a − b)(a − b) − r2)z2
2z2

1

×
(
baz2

2z2
1 − (a + b)z1z2(z1 + z2) + (aa + bb − r2 + 2)z2z1 − (a + b)(z1 + z2) + z2

2 + z2
1 + ba

)
.

The last factor J(z1, z2) equals zero, since r, z1, z2 , 0 from the assumption.
Without loss of generality, we may assume that the 3 vertices of a triangle inscribed in the unit circle are

1, z1, z2. Since each sides of the triangle tangent to the ellipse E, the following system of equations hold

J(1, z1) = 0, J(z1, z2) = 0, J(z2, 1) = 0.

Eliminating z1 and z2 from these equations, we have

r2 = (1 − ab)(1 − ab). (7)

Conversely, from Lemma 2.1, an ellipse associated with a Blaschke product B(z) = z
z − a

1 − az

z − b

1 − bz
is

inscribed in the triangle which is inscribed in ∂D.

Now, we give a proof of Theorem 1.1.

Proof of Theorem 1.1. Suppose that there is a triangle which an ellipse E is inscribed in and ∂D is circum-
scribed about. From Lemmas 2.2 and 2.3, E is an ellipse defined by |z− a|+ |z− b| = |1− ab| for some a, b ∈ D.
The converse is clear from Lemma 2.1.

Figure 1: “inscribed ellipse” is appears as the envelope of family of lines joining the preimages.
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3. Circumscribed ellipses

For a canonical Blaschke product B(z) = z
z − a

1 − az
·

z − b

1 − bz
(a, b ∈ D) and the three preimages z1, z2, z3 of

a λ ∈ ∂D by B, let lk be a tangent line of the unit circle at a point zk (k = 1, 2, 3). Then, the equation of lk is
given by

lk : z + z2
kz − 2zk = 0 (k = 1, 2, 3).

Let Tλ be the triangle consisting of the three lines lk (k = 1, 2, 3).

Figure 2: The unit circle is ether the circumscribed circle or the escribed circle, for each triangle Tλ.

In general, ∂D is not necessary inscribed in the triangle Tλ (cf. Figure 2). But, under the assumption of
Theorem 1.2, ∂D is always inscribed in Tλ. See Lemma 3.2 below.

To prove Theorem 1.2, we need the following lemmas.

Lemma 3.1. The trace of the vertices of {Tλ}λ forms an ellipse if and only if (|a + b| − 1)2 > |ab|2.

Proof. The intersection point of two tangent lines lk, l j to the unit circle is given by

z =
2zkz j

zk + z j
. (8)

(If zk + z j = 0, the intersection point is the point at infinity.) Recall that the three preimages zk (k = 1, 2, 3)
are the solutions of

B(z) = z
z − a

1 − az
·

z − b

1 − bz
= λ. (9)

Eliminating zk, λ from (8) and (9), we have the equation of z variable,

baz2 + (−aabb + (a + b)(a + b) − 1)zz + abz
2
− 2(a + b)z − 2(a + b)z + 4 = 0. (10)

From Lemma 1.3, this equation (10) is an equation of generalized conic on C. Moreover, we can check that
(10) represents an ellipse if and only if

(|a + b| − 1)2 > |ab|2,

from Lemma 1.4. We can check also that an ellipse never degenerate to a point or the empty set.



M. Fujimura / Filomat 31:1 (2017), 61–68 67

Figure 3: The trace of intersection points of tangent lines forms an ellipse if (|a + b| − 1)2 > |ab|2.

Lemma 3.2. In the case of (|a + b| − 1)2 > |ab|2, the unit circle is always inscribed in Tλ.

Proof. Suppose that there exists a λ0 ∈ ∂D such that the unit circle is an escribed circle of Tλ0
.

We assume that the preimages z1,0, z2,0, z3,0 satisfy

arg z1,0 < arg z2,0 < arg z3,0 < arg z1,0 + π,

and that the preimages z1, z2, z3 move counter clockwise when λ moves on ∂D counter clockwise. The
other case can be treated similarly.

Since derivative of a Blaschke product never vanishes on ∂D, each preimage zk moves smoothly and

monotonically on ∂D. From the intermediate value theorem, there exists λ̃ ∈ ∂D such that the preimages
z̃1 and z̃3 satisfy conditions

z̃1 ∈

(

z1z2, z̃3 ∈

(

z3z1 and z̃3 = −̃z1.

Then, two tangent lines l̃1 and l̃3 are parallel. This contradicts with the fact of Lemma 3.1, and we have
the assertion.

Proof of Theorem 1.2. If (|a+b| −1)2 > |ab|2, each triangle Tλ is inscribed in an ellipse (10) that depends only
on two zeros a, b, from Lemma 3.1. Moreover, the unit circle is inscribed in each triangle Tλ, from Lemma
3.2.

Remark 3.3. From the above arguments, we also obtain the following fact.
For any a, b ∈ D, there exists a λ ∈ ∂D such that the unit circle is inscribed in Tλ. (It is impossible that the unit

circle is always escribed circle of Tλ for all λ ∈ ∂D.)

Moreover, the two foci of the circumscribed ellipse are given as follows.

Proposition 3.4. The circumscribed ellipse in Theorem 1.2 is given by

|z − f1| + |z − f2| = r, (11)

where f1, f2 are the two solutions of

Fa,b(t) = ((aabb + 1 − (a + b)(a + b))2 − 4aabb)t2 + 4((abb − b − a)a2 + (abb2 + 1)a + (−b − a)b2 + b)t

+ 4(a − b)2 = 0,
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and r is the unique positive solution of

Ra,b(r) = r2 −
16(bb − 1)(ab − 1)(ab − 1)(aa − 1)(aabb − (a + b)(a + b) + 2|a||b|+ 1)

((aabb + 1 − (a + b)(a + b))2 − 4aabb)2
= 0.

Proof. Two equations Fa,b(t) = 0 and Ra,b(r) = 0 are obtained by comparing the coefficients of two equations
(10) and (11).

Moreover, the last factor of the numerator of the constant term of Ra,b is written as

(|ab|2 − |a + b|2 + 2|a||b| + 1) = (|ab| + 1 + |a + b|)(|ab| + 1 − |a + b|)

and, the second factor of above equality satisfies

|ab| + 1 − |a + b| > |ab| + 1 − |a| − |b| = (1 − |a|)(1− |b|) > 0.

Hence, we can check that the constant term of Ra,b(r) is non-positive, and Ra,b(r) = 0 has a unique positive
real solution.
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