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Abstract. By using the generalized Srivastava-Attiya operator we give some results of differential
subordination and superordination of analytic functions. Some applications and examples are also obtained.
1. Introduction

Let A(p) denote the class of functions f(z) of the form

o
f@)= 2+ ) a2,
k=1

(1.1)
which are analytic in the open unit disc U = {z € C : |z| < 1}. Also, let A = A(1).

Moreover, we denote by H|a, ], the class of analytic functions in U in the form

f(2) =a+Zakzk @eCnelN={1,2--}.
k=n

Furthermore, Let Q be the set of analytic functions g(z) and univalent on I[_J\E(q), where
E@g) = {C €edU: lirrg q(z) = oo},
is such that min g (C) # 0 for C € JU\E(q).

The general Hurwitz-Lerch Zeta function @(z, s, b) defined by (cf., eg., [24, P. 121 et seq.])
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x k
O(z5,b) = Y| (ki—b)s 12)
k=0

beC\Z,, Zy =2 v {0}=1{0, -1, =2,... }, s € C when z € U, Re(s) > 1when |z| =1)

Several properties of @(z, s, b) can be found in many papers, for example Attiya and Hakami [2], Attiya
et el.[3], Choi et al. [6], Ferreira and Lépez [11], Gupta et al. [12] and Luo and Srivastava [18]. See, also
Kutbi and Attiya ([14], [15]), Srivastava and Attiya [23], Srivastava and Gaboury [25], Srivastava et al. [26],
Srivastava et al. [27], and Owa and Attiya [21].

We define the function G, by

Gspt =1+ (t+b)°zD(z,5,1+t+D) (1.3)
(zeU; beC\Zg; seC teR),
Attiya and Alhakami [2], defined the operator [J!,(f) by

T Alp) — Ap), 1.4)

and
TL(N@) = 2 Cepi * f(2) (15)
(zeU; feAp)beQ\Z;; seC; teR),

where * denotes the convolution or Hadamard product.
Attiya and Alhakami [2] showed that

t+b

jst,b(f)(z) =2+ ka (m) Aferp A (1.6)

(zeU; feAp)beC\Z;; seC; teR)

The operator J!, (f) generalizes many well known operators in Geometric Function Theory eg. Alexander
operator A(f) [1] , Libera operator L(f) [16], Bernardi operator L,(f) [4], Jung-Kim-Srivastava integral
operator I°(f) [13], Salagean operator D"(f) [22], the operator I{(f) was studied in ([9], [7] ), the operatorl,(f)

was studied in [28], the operator ]Spb( f) was studied in [17] and others.

Definition 1.1. Let f(z) and F(z) be analytic functions. The function f(z) is said to be subordinate to F(z), written
f(z) < F(z), if there exists a function w(z) analytic in U, with w(0) = 0 and |w(z)| < 1,and such that f(z) =
F(w(z)). If F(z) is univalent, then f(z) < F(z) ifand only if f(0) = F(0)and f(U) c F(U).

In our investigations we need the following results:

Theorem 1.1. [5] Let q(z) be an univalent function in U and y € C* such that

Re(zq”(z) + l) > max {0, —1}
q7'(2) 14

If p(z) is an analytic function in U with p(0) = q(0) and

p(2) +yzp'(z) < 9(2) + yzq'(2), (1.7)
then p(z) < q(z) and q(z) is the best dominant of (1.7).
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Corollary 1.1. [5] Let q(z) be a convex function in U with g(0) = a and y € C* such that Re(y) > 0.If p(z) €
Ha, 11 N Q and p(z) + yzp'(z) is univalent function in U,and

q(z) + yzq'(z) < p(z) + yzp'(2), (1.8)
then q(z) < p(z) and q(z) is the best subordinant of (1.8).

Lemma 1.1. [2] Let f(z) be in the class A(p), then

’

(Tt @) = E+DTLf@) — (t+b =PI, f(2), (1.9)
(zelU; beC\Z,;seC te]R)
In this paper, we give some results of differential subordination and superordination of analytic functions
associated with the operator J,(f).Also, we give some applications and examples of our results.
2. Main Results

Theorem 2.1. Let q(z) be an univalent function in U, with q(0) = 1 and

zq"(2) 1 .
Re( ) + 1) > max {0,—Re()—/)} (ye, (2.1)

If f(2) € A(p) and

t t t
J. tl,b(f )(2) I w1 (N@I S+1'bz(f )(z) 22)
T, (@) ( st,h(f)(z))
<q(z) +yzq'(2),
then
T, (H@)
—_— 2.3
7,00e 1@ 23)

and q(z) is the best dominant of (2.3).

Proof. 1f we define the function

oy = TiaaN
AN R TTE)

by differentiating logarithmically with respect to z, and using (??), we have

2p'(z) (t+ b)( jst/h(f)(z) j:_l,b(f)(z)]’

P JL,NE TN

which gives

zp’(z) 1 J. st_l,b(f )(2)
= [7) ) e
e )(pm 7,0 |
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therefore,
p@) +yzp'(z) =
T, (NG T 1,(N@T1,(NE)
— o tyt+b|1- - =
I, (N ( T f)(Z))

applying Theorem 1.1, we deduce the result of the theorem. O

The following example is an application of Theorem 1.1, when we put g(z) = % ,a€l0,1).

Example 2.1. Let « € [0,1) and y € C* with Re(y) 2 0, for f(z) € A(p) satisfies

(2.4)

T (A T PRI, (HE)
— o tyt+b|1- >
js,b(f)(z) (jstb (f)(Z))

1+(1-2a)z 21-a)yz
= 1-z 1-22 "7

then

. (J;L,,(f)(Z)] N
e —
JL(NE)

and « is the best possible.

Theorem 2.2. Let q(z) be a convex function in U with q(0) = 1 and y € C* such that Re(y) > 0.If f(z) € A(p)
satisfies

T ()
— ¢

VGE)
also, let
t t t
Tas0O o, Tl DT, 0 05
T, ()2 ( jst,b ( f)(z))
is univalent in U and
JTep(NE) I (D@ITL, (NG
(2)+7yz9' (z) < ———— +y(t+b)|1 - : : (2.6)
1 e J!,(Nz) v [ ( T f)(z))z
then
t
Tt (DG o

1= e

and q(z) is the best subordinant of (2.7).
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Proof. Define the function
p) = S” D
THE
therefore, p(z) and q(z) satisfy the following subordination relation
9(2) +yz2q'(2) < p() + yzp'(2),
applying Corollary 1.1, we have the result of the corollary. [
Combining Theorem 2.1 and Theorem 2.2, we obtain the following sandwich result:

Theorem 2.3. Let q1(z) and g2(z) be convex function in U, with q1(0) = q2(0) = land y € C such that Re(y) >
0.Also, let f(z) € A(p) and

Tns0@ [1 I PRI
jtb(f)() ( s,b(f)(z))

is univalent in U and
q1(2) + yzq,(2) <
STGICI [1 NI, f)(z)] )

s,b(f)( ) ( s,b(f)(z)>
72(2) + yz,(2)

then
T, (HE)
L@

and q1(z) and q(z) are the best subordinant and the best dominant of (2.8).

q1(z) < < 2(2) (2.8)

Alternating p(z) in Theorem 2.1 and Theorem 2.2 by p(z) = ST ”(f

2.2, Theorem 2.5 and Theorem 2.6 as follows:

, we obtain Theorem 2.4, Example

Theorem 2.4. Let q(z) be an univalent function in U, with q(0) = 1 and

Re (Zg:éj) + 1) > max {0, —Re (%)} (ye, (2.9)
If f(2) € Ap) and
Y(E+b B f + (1= y(t+b)) j—s”’z ,Ef)(Z) (2.10)

<q(z) +yzq (z),
then

J,(NE)
% <q(z) 2.11)

and q(z) is the best dominant of (2.11).
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Example 2.2. Let @ € [0,1) and y € C* with Re(y) 2 0, for f(z) € A(p) satisfies

Y+ b= Sb(f)( i +(1 - y(t+b)) j—SH;(;f)(Z) 212
1+(1- Za)z 2(1-a)yz
STz TTa—ar
then
t
Re(js“'b(f)(z)] -
zP

and a is the best possible.

Theorem 2.5. Let q(z) be a convex function in U with q(0) = 1 and y € C* such that Re(y) > 0.If f(z) € A(p)
satisfies

Tty HE@
—_— €

zP

7

also, let

t t
Y(t +b) j—s"’g @ +(1=y(t+b) j—”‘”’z’];f 1 (2.13)

is univalent in U and

() Te1,(NE)

9(2) + y2q'(2) < y(t+ b)“’— A=yt +b) = (2.14)
then
t
q(z) < j++r§f)(2) (2.15)

and q(z) is the best subordinant of (2.15).

Theorem 2.6. Let q1(z) and g2(z) be convex function in U, with q1(0) = g2(0) = land y € C such that Re(y) >
0.Also, let f(z) € A(p) and

¥t +b) S"f i +(1—y(t+ ))j—s”'z",ff ©

is univalent in U and

q1(2) + yzq;(2) <

t
y(t +b) Ton f )+(1 y(t + b)) j—m’zb ;f)(z) <
qz(Z) +7245(2)
then
T, NE@
M) < j—,,f <12(2) (2.16)

and q1(z) and q(z) are the best subordinant and the best dominant of (2.16).
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Theorem 2.7. Let q(z) be a convex function in U with q(0) = 1 and y € C* such that Re(y) > 0.If f(z) € A(p)
satisfies

TN

o <@ +y' @),

then

ST LTI <06 2.17)

and q(z) is the best dominant of (2.17).
Proof. Let we define the function
— 1 t
p(z) = Z—le,%,t(T )(2) (2.18)

where 7 (z) = J!,(f)(2), then by using 1.1 we have,

1/, 1
(71, e) - ;( 0,;_t<¢><z>)—(;—p) e
by using (2.18), we have

p@) +yzp'(z) = Z(pz),

since g(z) is convex function, therefore

zq" (z)
Re( q'(z)

using Theorem 1.1, we have the theorem. [

+ 1) > 0 > max {O, —Re (}/)} (Re(y) > 0), (2.19)

Remark 2.1. The operator ' fb( f)(z) generalizes the generalized Bernardi operator as follows:

T i@ = 100 = 5E [ - @20)
0

(z€eU; (2) € A(p); Re(y) > 0)
By using the above remark and Theorem 2.7 , we get the following corollary.

Corollary 2.1. Let g(z) be a convex function in U with q(0) = 1 and y € C* such that Re(y) > 0. If f(z) € A(p)
satisfies

IO

o <@ +yz' @),

then

(TN < q(2) (2.21)

zP 7_’7

where Lg(f) is generalized Bernardi operator defined by (2.20) and q(z) is the best dominant of (2.21).
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