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A Fourth Order Approximation of the Neumann
Type Overdetermined Elliptic Problem

Charyyar Ashyralyyev?®

?Department of Mathematical Engineering, Gumushane University, 29100 Gumushane, Turkey; TAU, Ashgabat, Turkmenistan

Abstract. In this paper, we consider an inverse elliptic problem with Neumann type overdetermination
and construct a fourth order of accuracy difference scheme for its solution. Stability, almost coercive stability
and coercive stability estimates for the solution of difference problem are proved. Later, we construct a
fourth order difference scheme for an inverse problem for multidimensional elliptic equation with Neumann
type overdetermination and Dirichlet boundary condition. Finally, we illustrate numerical example with
descriptions of numeric realization in a two-dimensional case.

1. Introduction

Inverse problems for partial differential equations with overdetermination are widely used in mathe-
matical modeling of real processes (see [1-3]). Theory and methods of solutions of identification problems
of determining the parameter of a partial differential equations have been extensively investigated by nu-
merous authors (see [1-15] and references therein). Details of description for such class of problems for
elliptic type differential and difference equations can be found in [16-31].

High order difference schemes for inverse elliptic problem with Dirichlet type overdetermination were
studied in [25, 28].

Let A be a self-adjoint positive definite operator A with domain D(A) in an arbitrary Hilbert space H.

We consider the problem of finding an element p € H and a function u(-) € C3([0,1]; H) N C([0, 1]; D(A))
from the following system

—uy(t) + Au(t) = f(t) +pt, t€(0,1), (1.1)
ur(0) = g, ur(A) = &, u(1) = 4, :

where @, &, ¢ are given elements of H, A € (0, 1) is known number.

For solving inverse problem (1.1), we reduce it to an auxiliary nonlocal problem. Namely, we apply the
substitution

u(f) = o(t) + A7 (pt), 1.2)
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and get the following auxiliary nonlocal problem for obtaining v(t)

—ou(t) + Av(t) = f(t), t€(0,1), (13)
0(0) —v(A) = @ = &, v(1) —v(A) = = &. ’

After obtaining the solution of ( 1.3), we can find v;(1). Then, by using formula
p=AE-u), (1.4)

we define an element p. Finally, we can obtain the solution (u(:), p) of problem (1.1) by formulas (1.2) and
(1.4).
In Section 2, we study a fourth order of accuracy difference scheme (ADS) for inverse problem (1.1) and
establish stability, almost coercive stability and coercive stability inequalities for its approximate solution.
Later, we study a fourth order approximation of the inverse problem for the multidimensional elliptic
equation with Neumann type overdetermination and Dirichlet boundary condition

—uy(t,x) — Zn: (ar()uy, ), + oult,x) = f(t,x) + p()t, x = (x1, -+ ,x,) €Q, 0<t <1,
r=1

ut(or .X') = (P(x)/ ut(l/x) = ll)(.X), ut(Ar x) = E(X)lx € 5/
ult,x)=0,0<t<1, xeSs.

(1.5)

Here, Q = (0,1) x --- x (0,1) is the open cube in the n-dimensional Euclidean space with boundary
S, Q=0QUSa(x) (x €Q)), P(x), EX), P(x) (x € Q), ft,x) (t € (0,1), x € Q) are given smooth functions,
a(x)>a>0(x¢€ 5), and A € (0,1), 0 > 0 are known numbers.

Stability estimates for solutions of problems (1.1) and (1.5) were given in [27]. Moreover, the first and
second order of ADS for them were presented.

In [29], a fourth order of ADS for inverse elliptic problem with Neumann type overdetermination was
presented. Stability estimates for the solution of difference scheme were given without proof.

In Section 3, we study a fourth order of ADS for problem (1.5) and establish stability and almost coercive
stability estimates for its solution. Later, we give numerical example with the descriptions of numeric
realization in a two-dimensional case.

The remainder of this paper is organized as follows. Section 2 is devoted to proof of Theorems on
stability and corcive stability estimates for solutions of a fourth order of ADS for inverse problem (1.1) and
auxiliary nonlocal problem (1.3). Stability and almost coercive stability estimates for solution of a fourth
order of ADS for problem (1.5) are established in Section 3. The numerical results are given in Section 4.
Last Section is conclusion.

2. A Fourth Order of Accuracy Difference Scheme

Let N be a given natural number and 7 = I%] Introduce the set of grid points {t; = k7, 0 <k < N} and

the spaces C.(H), C¢(H), and C7*(H) (0 < a < 1) of H-valued grid functions { fk}kl\jz_l1 with the following
norms

N-1 - N-1 — I fieen—fil l1
”{fk}k:l ”CT(H) = MaXi<k<N-1 ||fk| H’ |{fk}k:1 ”cg(H) = MaXj<k<N-1 ”fk |H t SUP) chcksnsN-1 "~ (o®
N-1 — (kt+n7)* (1=kT) | feen— fellr
”{fk}k:l ”c;'r“(H) = Maxj<k<N-1 “fk”H + SUPy g ckinsN-1 Ok ’

respectively.
Let [-] be a notation for greatest integer function and / = [%] .
Applying approximate formulas

w(0) = MO 32y (0) — Zu(7) + Zu(0) + o(7d),
w(1) = M0 STy + Tu(1 - 1) + S (1) + o(7d), (2.1)

T
w(A) = W SRy ) — D (A + 1) + S (A) + o(70),
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and the method of approximation of an abstract elliptic equation ( [33] , Section 5.3), we get a fourth order
ADS for problem (1.1)

—T 21 — 2y + thy) + At + GA% = Op + phy, O = f(t) + 5 (L2000 4 A f(ny),
tr=kt, 1<k<N-1,Nt=1,
(I—T—ZA)u —(I+%A)M0=T(I+ A)(p 0—12f1 - 0 p, (2.2)
(I 1:ZzA) U1 — (I+ %A) = T(I + 12A) - 12fl 12fl+1 12fz - ?tlp - T_;p'
(I— ﬁA)uN_l +(I+ %A)uN = T(I+ %A)lp— %fN— %fN_l + %f,; - T72;7+ T—gp.

Here [ is the identity operator.
To apply the discrete analogy of algorithm described in Section 1, we will construct the following
difference scheme to solve difference scheme (2.2)

—-T Z(Uk+1 — 20, + Uj_ 1) + Avp + 12A22)k =0, O = f(i’k) + (jw + Af(tk))

ty=kt, 1<k<N-1,Nt=1, @
(1= 3A)or = (1+ 55 A) 20— (1= A) v + 1+ 5 4) v (2.4)
- (1+ EA) - ~ 8 (h- ) - 50~ o - B (- 4). |
(1= 5A)onr + (14 FA)on = (1= HA) o + (1+ 374) vy 25)

=11+ HA) - - F v — )= H Pt~ ) + 5 (K + £)-

LetusC= A+ SA% F = §(tC+ VAC+2C?), R = (I + tF) ™", A > 0L

Since A is a self-adjoint positive definite operator , then the operator F is a self-adjoint positive definite
operator, too ([35]). In addition, the bounded operator F is defined on the whole space H.

Throught the text, positive constants which can differ in time, hence they are not a subject of precision
will be indicated with M. The other side, M(0) is used to focus on the fact that the constant depends only
ond.

Lemma 2.1. The following estimates hold ([33] , p. 298):

IR,y < M)A +61)7, ke ||FRY|,,_,, < < M()

|[FERE — RY)| M(é)(gm,l kek+reNO<a B < 1

i
H—-H

H-H —

Lemma 2.2. For1 <1< N -1, the next operators

S1 = (- RNy [(1- SA)(-I+ RN + R— RN-1 4+ RN-1 - RNH) 1 ZA(-[ + R?V)],
S, =(- RzN)—1 - %A) (R _ R2N-1 _ RI+1 4 R2N-I-1 _ RN-1 4 RN+1 4 pN-I-1 _ RN+Z+1)
+(I = R™N)™ (I + 55 A) (= + RN + R! = RN/ — RN-I 1 RN+)

have the inverses

G1=S5',G, =S, (2.6)
and the following estimates

I G1 llH—sn< M(6), Il G2 llH-H< M(5) 27)

are satisfied.
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Proof. Denote by S and Q the next operators

S=(- RzN)—l (_1 4+ R2N 4 R — R2N-1 4 RN-1 _ RN+1)],
Q=(I- RZN)—l —J 4+ R2N 4 Rl — R2N-I _ RN-I 4 RN+l 4 R — R2N-1 _ Ri+1 (2.8)
+R2N-I-1 _ RN-1 4 RN+1 4 RN-I-1 _ RN+Z+1].

It easy to see that S = —(I - R*N)"1 (I - R) (I - RN‘l) (I - RN“) . Hence, there exist G = S~! such that

G=—(1-R¥) (1-RN) (1 =R (1 - R,

and according to Lemma 2.1, the estimate

Il G llz-n< M1(6) 29)
is valid.
Then, we get
G; - G = G1GK;, (2.10)
where

2 2
Ki= == RN =S AU =R (=R (1= RN (1= RYY) + ZAG-T+ RZN)] :

By using estimates of Lemma 2.1, we can show that

Il K1 ll-m< Ma(0)T. (2.11)
Applying the triangle inequality, formula (2.10), estimates (2.9), (2.11), we obtain

Il G1 l-H<II G It + 1| G lH-all G lH-all Ki lH-a< M1(6)+ 1| Gr lla-m M1(6)Ma(6)T

for any small positive parameter 7. From that it follows first estimate of (2.7).
Now, we can rewrite Qas Q = —(I-R?N)"1 (I - R) (I - Rl) (I + RN ) (I - RN ‘H) . So, there exists its inverse

-1 -1
P=Q!'=—-(1I-RN) (I - RN‘H) (I - Rl) (I-R)', and according to the estimates of Lemma 2.1, we can
obtain

Il P ll-n< Ms(0). (212)
We have
G, — P = GyPK;, (2.13)
where

K, = —%(I — R2N)14 (R _ R2N-1 _ RI+1 4 R2N-I-1 _ RN-1 4 RN+1 4 RN-I-1 _ RN+I+1)
+30(1 = RN)TA(= + RN + Rl — RN-1 — RN-T 4 RN+,

By using Lemma 2.1, we can get that

I K2 lH-H< Ma(0)t. (2.14)
Applying the triangle inequality, formula (2.13), estimates (2.12), (2.14), we get
Il G2 lz-H=Il P lz-# + || G2 lli-all P llz-all Kz lH-a< M3(0)+ | G2 llH-H M3(0)Ma(d)T

for any small positive parameter 7. So, second estimate of (2.7) is valid. Therefore, proof of Lemma 2.2 is
finished.



C. Ashyralyyev / Filomat 31:4 (2017), 967-980 971

Theorem 2.3. Suppose that A is a self-adjoint positive definite operator, p, 1, & € D(A)and {fi}r' € C**(H) (0 < a < 1).

Then, for any { fk}llj:_ll , @, 9, & the solution of difference problem (2.3)—(2.5) exists and for its solution in C(H) obeys
the following stability and almosty coercive stability estimates:

0635 e = 24l ol 0+ DA e |- @15)
~ N-1 2 N-1
”{T 2(Vke1 — 20k + Uk—l)}kzl » + ”{(A1+ ﬁAZ) Z)k}kzl . 216)
< M[min {in L, 1+ i |1Fle il |l 1., + IF@ll, + [IFwll, + ||F<SIIH],

where M is independent of T, o, @, 1, &, and { fk}kl\]:_l1 .

Proof. It is known that , the direct difference problem

-7 2(vk+1 — 20k + Uy 1) + Avg + 12A20k = 6, O = f(tk) + 5 (W + Af(tk))
te=kt, 1<k<N-1,Nt=1, (2.17)
vy, UN are given

has a solution, and its solution is represented by formula ([32])

v = (I = RN)Y((Rk = RAN¥) g + (RN — RN*) oy ) — (RNF — RN*) (I + tF)(2I + TF) 1!

XY (RN=1 = RN*) 0,7] + (I + TF)(2I + TF)"'F ! Y (RI- - R¥1) 01, (218)
i=1 i=1
Applying (2.18) to (2.4) and (2.5), we get the following system equation to define vy and vy :
RZN (1= BA) (R - RN — R4 RN-1) 4 (14 SZA) (<1 + RV + RT = RV)] o
RZN) 1 (I _ IzA) (RN—l — RN+1 _ gN-I-1 RN+Z+1) + (I + %A) (RN—Z _ RN+Z) ON
I RZN) (I I;A) (RN—l RN+1 _ RN-I-1 4. RN+Z+1) (I + STZA) (RN—Z RN+Z)
x(I + tF)(2I + tF)"\F1 i (RN=1 = RN*) 0,7 + (I + TF)(2I + TF)'F~! z [(1— 5A) @19)
X (Rll—z\ _ R1+1 _ R|l+1 1| 1+1Rl+1+1) + (I + 572 A) (Rll i _ R1+1)] 91,1.
=t(I+ 5A) (-8 - % (fo- -5 h - fo) - a(f-5)
(I- RZN)—l [(I _ I_;A) (_RN—l + RN+ _ RI+L 4 RZN—I—l) + (I + 51_722A) (Rl _ RZN—Z)] oo+ (I — RZN)—l
x[(1—= GA) (=R + RN-1 = RN-I-1 4 RN+H#1) 4 (14 S2A) (1 = RN + RN = RN*)] oy — (1 - RV !
x|(I= GA) (=R +RN-1 = RN--1 4 RN+ 4 (14 S2A) (RN — RN*)| (I + F) (21 + F) ' F! (2.20)

N-1 ) ) N-1 . ) . .
x Y (RN—z _ RN+z) 0;t +(I+1F)Q2I + TF)_lF_l y [(I _ %A) (_RIN—l—zI + RN-1+i _ Rl+1-il 4 Rl+1+z)
i=1 i=1
+(I+354) (R - R¥)] 0t =7(I+ BA) W - &) -5 (- ) - FUva-fi)+ 5 (F+ 1)
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Solving this system equation, we obtain

0o = Go(I - RZN)—l [(I _ %A) (RN—l — RN+#1 _ gN-I-1 4 RN+I+1) + (I + %A) (RN—I _ RN+1)]
x{Gi(I = RN)™ (I = GA) (RN = RN*1 4 R — RN1) (I + F)(2L + TF)'F!
<5 (RN~ — RN*) 6,0 — Gy (I + TF)(I + F)'F!

=1

XNZ (I B —A) (R‘l‘” — R+ 4 RIN-1-i] _ RN—1+1’) 0it

i=1
+T (1 + 1 A) @-9) - (fo+f)-Sh+f)-5 (f(; - fh’,)} + Go(I - RN)1
x|(r- —A) (RN-1 — RN+ — RN=I-1 4 RN+H1) 4 (] 4 572A) (RN — RN)[ (1 + TF)(@I + TF) 1!
><NZ1 (RN i RNH)QT — Go(I + TF)(2I + TF)"1F1 z [(1— —A) (R” il _ R+ — RI1-il +Rl+1+l)
+(I+ 512 A) (RII il _ RIH)J 0;t + Gy (I+ 12A) (p - 5) - 12 526, (fo-f)

~5G (i~ fu1) - 5G (f - £,

oy = =09 + G (I - RN) 7 (1= GA) (RN-' = RN*1 + R — RN-1) (I + ¢F)(21 + 7F)"'F~!

N-1 N-1 . . , ,
x ¥, (RN = RN*) 0,7 — Gy (I + TF)(2l + TF)'F! 2 (1— GA) (R — R+ 4 RIN-1-1 _ RN-14) 9,7 (2.22)
i=1 =1

+T(I+%A)(go—z,b) — 2 (fo+ )= 5 (fi + fu- 1) (fé‘fz(w)‘

where G; and G, are defined by (2.6).
Hence, the difference problem (2.3)—(2.5) has solution (2.18), where vy and vy are defined by (2.21), (2.22).
Applying (2.18), (2.21), (2.22), and Lemmas 2.1-2.2, we can show that for the solution of difference
problem (2.3)—(2.5) the following inequalities hold:

(2.21)

IA

M lloll + 19l + et + 100 HC@] .29)

Ml + Il + 0t + 0035 | 224

IRvollc, (1)

IN

IRoNlc, k1)

In the [33], the estimates

o= . < M[H O | g+ IRZOlIc ety + ||RvN||c,<H>], (2.25)
N-1
“{T (Bt = 200+ 2 1)} k=1 Hlecan {(A " EAZ) vk}k—l C.(H)
< M]|min {m- i Pl O, + ICReolls + ICRowls| (2.26)

are proved for the solution of difference problem (2.17).

So, estimate (2.15) follows from estimates (2.23), (2.24), and (2.25).

By using (2.18), (2.21), (2.22), and Lemmas 2.1-2.2, we can get for the solution of difference problem
(2.3)—(2.5) the following estimates

IICRoly; +||Fell,, + [|F¥],, + IIFEIIH], (2.27)

IA

1
M [mm {ln p 1+ |In ||F||H—>H|} ”{Qk}kNﬂl“CT(H)

ICRoN I +||Fell, + [|F¥],, + IIFEIIH] (2.28)

IA

. 1
M |min {in =, 1+ lin Pl ol O

1 “cz(m
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are valid. Therefore, inequality (2.16) follows from estimates (2.26), (2.27), and (2.28). The proof of Theorem
2.3 is finished.

Letus 0 < a < 1. Denote by E, = E, (D (F), H), the Banach space of those functions v € H for which the
norm [|v|lg, = sup,., zl-a HFe‘ZFU”H +||v|ly is finite.

Theorem 2.4. Suppose that A is a self-adjoint positive definite operator, ¢, , & € D(F) and { fk}lk\]:_l1 eCH(H)0<a<1).
Then, the solution {ve}R5" of difference problem (2.3)~(2.5) obeys the following coercive inequality

2 N-1
A+—A2)vk}
{534,

p ||F5||Ea], (2.29)

N-1
k=1

||{T_2(Uk+l — 20 + Uk—l)} o

' ‘
e (H)

1 _
M[a(l -a) I ey + P, + llFw

where M is independent of T, at, @, Y, &, and {f }1,:]:_11 .

Proof. By using formulas (2.18), (2.21), (2.22), Lemmas 2.1 and 2.2, and definitions of norm of spaces E,
and C¢(H), it can be showed that the following inequalities hold:

1 N-1
ICRvo — O1]lg, < M[mlj{ek}k_l

1
a(l —a)

+ ||qu

Ce(H) E T |IF ¢||Ea + ”FEHEH]/ (2.30)

ICRoy — On-allg, < M[ [[E P

e IFoll, + ol + st | )

In the [33], for the solution of difference problem (2.17) estimate

2 N-1
A+—A2)vk}
(e )

sy * ICR20 = Bull, +ICRox = Ol

N-1
k=1

+

||{772(Uk+1 - 20 + Uk—l)}
Cr(H)

Ce(H)

< mJloa

is established. Therefore, (2.29) is valid.
From Theorems 2.3 and 2.4, (1.2), (1.4), and triangle inequality follow the following Theorems on stability,

almost corcive stability and coercive stability estimates for the solution ({uk}kN:_ll , p) of difference problem
(2.2).

Theorem 2.5. Suppose that Ais a self-adjoint positive definite operator, p,, & € D(A) and { fk}l,:lz_ll eCH'H)0O<a<1).
Then, for the solution ({uk}kN: _11 , p) of difference problem (2.2) in C.(H) X H obeys the following stability estimates:

”{”k}kN:E1 cmy S M[”(P”H + ”lll}”H +IEl + H{fk}sz_ll CT(H)]’ (2.32)

el <3l ol Ut TR e ) 23
1 _

I < flael, T+ s+ s | e

where M is independent of T, o, ¢, ¢, &, and { fk},i _11 .
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Theorem 2.6. Assume that ¢,,& € D(F) and {fk};]:;l € C((H) . Then, solution ({uk},i\]:’ll ,p) of difference scheme
(2.2) in C(H) x H obeys the almost coercive stability estimate

N-1
k=1

R ({75 I W

<M [min {in 1+ Pl [URS]L + [Fell, + IF],, + ||F£IIH],

”{T_Z(Mk+1 —2uy + Mk—l)}

Celth
where M does not depend on t,a, @, 1, &, and { fk}kl\lz_l1

Theorem 2.7. Suppose that A is a self-adjoint positive definite operator, o, ), & € D(A)and {fk}i\;l eC¥H)O<a<1).
Then, the solutions ({uk},i e p) of difference problem (2.2) obeys the following coercive inequality

> ~ N-1 2 42\, N

”{T (s — 2ux + uk—l)}kzl o + H{(A + LA )uk}k=1 i + Hp”H -
N-1

= M[a(ll—a) H{fk}kzl C%(H) + ”qu E, + ”FIIDHEH + ”FEHEA] ’

where M is independent of T, o, p, 1, &, and {fi}r .

3. Difference Scheme for the Problem (1.5)

Now, we consider problem (1.5). The differential expression
Au(x) = = ) (@, (), (1), + ou(x) (3.1)

r=1

generated by problem (1.5) defines a self-adjoint strongly positive definite operator A* acting on L,(QQ) with
the domain

D(AY) = {u(x) € Wo(Q), u(x) =0, x €S8}

The discretization of problem (1.5) is carried out in two steps. Let Mj, ..., M,, be given natural numbers.
Denote m = (my,--- ,m,) and h = (hy,--- , hy). In the first step, we define the grid spaces

ah = {x: (hlmlr"' rhnmn); my = 0/ /Mr/ her = 1/7/': 1/ /n}/Qh = ﬁhﬂQ,Sh = ahns

LetLy, = Lz(ﬁh), W;h = W;(f)h) and W%h = W%(ﬁh)be spaces of the grid functions C"(x) = {C(himy, -+, hymy)}
defined on (), equipped with the norms

1/2
7

) 12

llCllL,, = (erﬁ,, | (x)Phy - ..hn) Ch”Wéh = “Ch”Lz/, + (erﬁh Y, |(Ch(x))x,, m| ha - "hn) ,
1/2

[0 =l + (25 @) I hn) .

To the differential operator A* (3.1), assign the difference operator A} , defined by the formula,

n

A;uh(x) =- 2 (ai(x)u%(x))x .t ou'(x) (3.2)

i=1

acting in the space of grid functions u"(x) satisfying the conditions u(x) =0 forall x € S, . It is known that
([33]) A; is a self-adjoint positive define operator in L, (€2 ).
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For u"(t, x) and p"(x) functions, we get a system of ordinary differential equations

Tz

— B0 | Axyh(tx) = it x) + P (x), 0< E< T, xeQy 53)
ul(0,x) = (p(x), ul(A,x) = &x), ul(T,x) = ¢P(x),x € Q. ’

In the second step of discretization, applying discrete analogy of (2.1), system equations (3.3) is replaced by
a fourth order of ADS

-1 2( ul | =2ult e+l )+ AU+ (A") =0+ plty,
h
= i)+ 2 Mwﬂ(tk)) b =kT, 1<k<N-1Nt=1,
5 _ 3 h 3.4
(I - EA;) (I + %Aj) =T (I + ﬁAi)(P - 12 0 12f1 ¥ 0 - %P ! , 34
5 U= h h I h
(I - _Ax) l+1 ( + %AZZ) =T (I + 1 Ax) f l+21 ./, N Thp . 14 !
5t h 5 T ¢h th h h
(I_ ﬁA;) Un_q (I+ ﬁAz)” (“’ 12AZ)’7[’ 112 N~ oSy TN TP e

hN

By using discrete analogy of (1.2), we get auxiliary difference problem for function {vk} L0

(0)=20} (x)+0}_, (%)
X ZIT X)+ k ;X +Ax h(x) + = (Ax) h(x) = ez(x)/

GZ(x Pt ) + 2 (f (b, 0 thitk )+ f(te1,x) +A;fh(tk,x)),1 <k<N-1rxeQ,
(1- A7) Vi) - (1 + S5 AY) oh(x) — (1 - BAL) O, ()
+(1+ %A;) x) =1 (1 + —A*) (") - @) - 5 [ i) - fr)] (3.5)
~5 A - M(x)] -5, x e
(135 A5) 00 — (1= A R0 — (1= 543) e, )
(1 + 32 AN () = T (I + 12A;;) (l,Dh(x) Eh(x)) =l - fh(x)]
~5 [0 -y @] =% [ - @]+ 5 [f’h +f1], xe Oy

k+1

Difference problem (3.5) has solution

o = ([-RMN)7((RF = R*NF)of + (RNF - RN*H) ol ) - (RN*k — RV [+ aF)@L+TF)T (3.6)
4 N-1 1 N-1
x (F5) (RN — RN*) 0] + (1 + TF) (21 + TF}) Z (R¥1 — R*) gl
i=1 i=1
where,
-1
vl = — v+ Gi(I - RN) ™ (I = GAT) (RN1 = RN*L 4 R — RIN-1) (1 + 2F)(21 + oF}) ! (FY)
N-1 . . -1 N-1 2 ; ;
x ¥, (RN = RN*) 0t = Gy (I + TE) @I + 7F) 7 (FY) ¥ (I— HAY) (R - R1+ (37)
i=1 i=1

RN RV ol o (1 5AY) (¢ - 0) = 35 (f+ A0) - B (A + Ai) - 5 (R - 7).
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2(1 RZN)—l [(I _ %AZ) (RN—l _ RN+1 _ RN—I—l + RN+Z+1) (I + 511'2 Az) (RN—I _ RN+I)]

h

?Gl(l RZN) (1— ZAL) (RN = RN*1 4 R = RN-1) (I + TF)(21 + TF}) !
x (F ) (RN = RN) 0,7 = Gy (I + TF)(21 + TF}) ! (F;;)_1
X N;
+T( + AN (" —y") =SS (fl+ f1) - G (F+ £ 1) S (= )} + Ga(1 = RNy (3.8)
[(I _Ax) (RN—l _RN+1 RN -1 +RN+1+1) + (I+ Ax) (RNfl RN+Z)]

(I _ _Ax) (Rll—il — R+ 4 RIN-1-il _ RN—1+i) 6?7

1N-1 -1

(I + TF)2l + TF) ™ (Fh) El (RN=1 = RN*1) 0l — Go(I + TFY) (21 + TFY) " ()

xNil [(I _ %Aii) (Rll—il _ R+ _ RI+1-i 4 Rl+l+i) + (1 + ﬁAx) (R\l—il _ Rl+i)]

i=1
2 Ax h 2 ° , ,

XQ?T +1Gy (I * EAh) <(Ph - 5}) - 51_2G2 (fg _flh) GZ( 1h 1+1) EGZ( oh - th)'

After solving difference problem (3.5), we define function p"(x) by formula
pl(x) = A [g(x) T (20,4 = 99,5 + 18], - 1lv,h+1)] ,x € Q. (3.9)

Finally, the solution of difference problem (3.4) will be calculated by formula

Wl =t + (Ax) ("te). (3.10)
It is well known that ( [34])
min {ln -1+ 'ln ”F “C .6, ’} MIn —— p—y |h| (3.11)

Theorem 3.1. The solution of difference scheme (3.4) obeys the following stability estimates:

J62h 7o <Ml e, + e, + Hf’tw
||<A*>1thLZh<M[uwnw+n¢h||w+néhllh, + e j,

N- 1”

where M does not depend on t, a, h, o' (x), V"' (x), E"(x), and { f,j’(x)}1 B
Theorem 3.2. For the solution of difference scheme (3.4) the following almost coercive stability estimate is valid:

h)
u
(kxxm

||(ph||wgh+||¢'71|W;,,+||ahuwg,,]

I
k

k

h
2uk+uk 1

T2

AN

e,

maxi<k<N-1 + maxXi<k<N-1 |
l

<M [ln

T+h Collan)

is valid, where M is independent of T, a, h, @"(x), Y"(x), &"(x) and { f,f(x)}ll\]_1

The proofs of Theorems 3.1 and 3.2 are based on the results of abstract Theorems 2.5 - 2.6, formulas
(3.6)=(3.11), symmetry properties of operator A; in Ly, and the following theorem.

Theorem 3.3. ([36]) For the solution of the elliptic difference problem

Aul(x) = o'(x), x € Q,
u'(x) =0, x €Sy,
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the following coercivity inequality holds :

n
h
Z ||(ukl)}rxyrjr L
r=1

<MW,
where M does not depend on h and o'

4. Numerical Results

In this section, by using a fourth order approximation, we obtain numerical solution of the inverse
problem

_Putx)  Pultx)

7 — g T ult,x) = exp (—nt) sin(mx) + tp(x),0 <x < 1,0 <t <1,
u(0,x) = (-t + 1) sin(mx),0 < x < 1,
u(1,x) = (—mexp (—m) + 1) sin(nx),0 <x < 1, 4.1)

ut(%,x) = (—n exp (—%) + 1) sin(rx), 0 <x <1,
u(t,0) =u(t,m)=0,0<t<1 (A=13)

for the elliptic equation. Note that u(t, x) = (exp (—7t) + t) sin(nx) and p(x) = (n2 + 1) sin(7tx) are the exact
solutions of (4.1).
Let N and M be natural numbers, T = & and & = & . Introduce the set of grid points

[0,1]; X [0, 1], = {(t, x;) : ty = kT, k=1,--- N-1,x;=ih, j=1,--- ,M~—1}.
Applying (3.5) , we get, a fourth order of ADS

VL Dpk okl ok kb 2 —20F 4ok 20k+v
i i i . _itl i i-l k _ 1 l 2 Trirl i k
2 72 + 0~ 3l ( e 7t Z’z+1) i ( vi)
vk —20k ok —20k 40k
—h% =+ v:.‘_l) - h—’l + vk] = exp (—mt) sin(mx;) [1 T—z (2n + 1)]
+(m2+1)(1+ 5 (72 +1))sin(nxi),k:1- N-1,i=1- ,M-2,
_ ok k _ 4.k _ 1.k k _ 4.k _1
Uy = Uy = 0,01 = 502 503, Uy 1 = 204 2 517)1\4 _3k=0,---,N,
0 _ 572 [ —200+20 | 72 | Ui =20, 40, 1 I+1
—0) = 35 |-+ ¥ + 0! — L |- + ol [ -0
i 12 h? 12 h? i i
2 vl yltl ol 2040
2 [ _ %% U I+1 ™S Wit Bl = § —~|_ _ A
+15 0 +7; +v + 2 7 +v ’L'[ (1 e ) 4.2)

2 2
_’1r_27_[ (772 + 1) (1 _ 6_/‘) _ 51% (1 _ e—ﬂl’[) _ ’1r_2 (e—mr _ n(1+1)T) + ﬁT( (1 _ e—nl’r)]
xsin(nx;), i=1,--- ,M—1,
oN 4 52 [ w2l N N1 4 T_2 [_ T N- 1]
: 5 . . hz
I+1 zvl+1+vl+1

g+l 2| Yia i I+1 51 _ 020040
v+ 55 = +7, +v+ = +0

_ _ - _ ,=A)_ T — _—/\_5L —n_—nl
=1|-m|(e e) 1277(71 +1)(e e) 12(3 e )

—% ( ~(-9n _ e’”(’“)) - %n (e’” + e’”lT)] sin(nx;), i=1,--- ,M—1

for the approximate solutions of the corresponding nonlocal boundary value problem. Applying (3.9), and
second order of accuracy in x approximation of A, we get formula for p function in grid points

_ 1 1 1 1 ' ‘ ' '
pi = 12h2 [51+1 (21’;14 vj13 + 180)7) - 110;:1) -2 (51' - (ZU;+4 —90),5 + 180, — 110;+1)) +&in

20, —9¢v¢ . +18vi  — 119
— (2013 — 9013 + 1801} — 1103 )] + & - ——2 =1, M1,
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Now, we can rewrite difference scheme (4.2) in the matrix form

AVH_Z + BV + CVi+BV,_1+AV, »,=10;, i= SM=2, (4 3)
Vo=10,Vu=0V; = v, -1 V3,VM1—-VM2—-VM3 '
Here, I is the (N + 1) X (N + 1) identity matrix, 8;, i = ,M —2are (N + 1) X 1 column matrices, A, B, C
are (N + 1) X (N + 1) square matrices,
o 09
Ve=| : ,s=i-1,4,i+1;,0;=| : |,
N N
U Insnxa 6;
6k = et [1 +Z (27‘( + 1) (2 +1)(1+ 5 (2 + 1))] sin(x;),
k =1---,N-1,i=1,--- , M-1,
00 =1 [—n (1 - e‘A) - ﬁn (n2 + 1) (1 - e‘A) - (1 - e‘”h)
2
-5 (e"” - e‘"(’“)T) +Zn (1 — e |sin(mx;),
o =1 [—n (e‘“ - e‘A) ~-Tn (7‘(2 + 1) (e‘” - e"‘) - (e‘” - e‘”’)
3 . .
-z (e’(l’T)” — e’”(m)) -5Ln (e’” + e’”“)] sin(rxg),i=1,--+ ,M—1.
Nonzero elements of these matrices are defined by
ai,i:%/ bi,i:_hlz_;_p;_éhwczt—l'i' 2+h2+ (lﬁt+%+1)r
. 2 2
Ci-1,i = Ciji+1 = 12,1_2 o N;ep = 1—2%—5112, cp=1-gz -1,
c11=cn+1g =1+ Zz + S Ol = N+ = 1 +tegz + 13
CN+1,N = -1+ 72 + 12/CN+1N+1 =1+ 5T2 + 12 ’
2
bl,l = W/ b1,2 12h2’b1r1 bN+1,l = ;12h2’ s
biis1 = bnirin = — 75z, bveun = — 1z bveine = — 5.
We search solution of system equation (4.3) by formula
V,' = OéiV,'+1 + ﬁl’VH_z + Vi, i=M-— 2, cee ,0. (44)

Here, ajand B; (i = 1,..., M) are (N + 1) X (N + 1) square matrices, y; (i = 1,...,M) are (N + 1) X 1 column
matrices. For their calculation, we get formulas

Fi = (C+ Baj_1 + ABia + Aaiaaig) , Bi = —Fi_lA, o = —Fi_l (B+BBi_1 + At 2fi1),
yi=—F1(16; - Byi.1 — Aqiayii1 — Ayig) ,i=2,--- ,M =2

with yg =y; = 6), ag = fo are (N + 1) X (N + 1) zero matrices, a; = —4, 1 = ;—*I.

Vectors Vi and V-1 are defined by formulas

Vm = 6), V-1 = [(Bm—2 + 5I) — (4] — apm-—2) an] " (] = ana) yavor — yamial -

Now, we give the results of the numerical analysis using by MATLAB programs. The numerical
solutions are recorded for different values of N, M, and u’; represents the numerical solutions of these
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difference schemes at grid points of (f, x,), and p, represents the numerical solutions at x,. For their
comparison with exact solutions, the errors computed by

1<k<N- 1<k<N-1
n=1

M-1 M-1 M-1
Evﬁ = maxl(z |v(tk, Xp) — v’;|2 h)%, Euz\l\/fI = max (Z )u(tk, Xn) — u’fl|2 h)%, Epm = (Z |p(xn) —pn|2 h)%.
n=1 n=1

Tables 1-3 are constructed for N = 10, M = 300, N = 20, M = 1200. Table 1 gives the error between the
exact solution and solutions derived by difference schemes for nonlocal problem. Table 2 include error
between the exact p solution and approximate p derived by difference schemes. Table 3 gives the error
between the exact u solution and solutions derived by difference schemes.

Table 1. Error Evf\],I

Difference Schemes for v | N=10,M=300 | N=20,M=1200
First order ADS 0.1096 0.052929
Second order ADS 0.0217 5.84x1073
Fourth order ADS 4.61x107° 3.09x107°

Table 2. Error Eppm

Calculation of p N=10,M=300 | N=20,M=1200
First order ADS 0.21335 0.095715
Second order ADS | 0.25584 0.065631
Fourth order ADS | 1.29x1073 7.85x107°

Table 3. Error Eu})

Difference Schemes for u | N=10,M=300 | N=20,M=1200
First order ADS 0.1096 0.052929
Second order ADS 0.0234 6.13x1073
Fourth order ADS 1.15x107% 7.00x107°

5. Conclusion

In [29], a fourth order of ADS for inverse elliptic problem with Neumann type overdetermination was
presented. Stability estimates for the solution of difference scheme were given without proof.

In the present study, stability, almost coercive stability and coercive stability estimates for the solution
of a fourth order ADS for Neumann type overdetermined inverse elliptic problem are established. Then,
we study a fourth order approximation of the inverse problem for multidimensional elliptic equation with
Neumann type overdetermination and Dirichlet boundary condition. Stability and almost coercive stability
estimates for the solution of this difference problem are obtained.

Finally, we illustrate numerical example with the descriptions of numeric realization in a two-dimensional
case. The results of computer calculations show that a fourth order of ADS is more accurate comparing
with the first and second order of ADS proposed in [27].

Of couse established abstract results can be applied to contstruct stable high order of ADS for multidi-
mensional elliptic equations with mixed boundary conditions.



C. Ashyralyyev / Filomat 31:4 (2017), 967-980 980

References

(1]
[2]
[3]
[4]
[5]
(6]

[7]
(8]

[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]

[27]
[28]

[29]
[30]
[31]
[32]
[33]
[34]

[35]
[36]

AL Prilepko, D.G. Orlovsky, I.A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker, New
York, 2000.

A.A. Samarskii, PN. Vabishchevich, Numerical Methods for Solving Inverse Problems of Mathematical Physics, Inverse and
[lI-Posed Problems Series, Walter de Gruyter&Co, Berlin, Germany, 2007.

S. 1. Kabanikhin, Inverse and Ill-posed Problems: Theory and Applications, Walter de Gruyter, Berlin, 2011.

Y.S. Eidelman, An inverse problem for an evolution equation, Math. Notes 49(5) (1991) 535-540.

M. Dehghan, Determination of a control parameter in the twodimensional equation, Appl. Numer. Math. 37(4) (2001)489-502.
A. Ashyralyev, A. S. Erdogan, Well-posedness of the inverse problem of a multidimensional parabolic equation, Vestn. Odessa
Nat. Univ., Math. Mech. 15(18)(2010) 129-135.

A. Ashyralyev, On the problem of determining the parameter of a parabolic equation., Ukr. Math. J. 62(9) (2011) 1397-1408.

C. Ashyralyyev, A. Dural, Y. Sozen, Finite difference method for the reverse parabolic problem with Neumann condition, AIP
Conference Proceedings 1470 (2012)102-105.

T.S. Aleroev, M. Kirane, Salman A. Malik, Determination of a source term for a time fractional diffusion equation with an integral
type over-determining condition, Electron. J. Differential Equations 2013(270) (2013) 1-16.

A. Ashyralyev, M. Urun, Determination of a control parameter for the Schrodinger equation, Contemporary Analysis and Applied
Mathematics 1(2) (2013) 156-166.

M. Kirane, Salman A. Malik, M. A. Al-Gwaiz, An inverse source problem for a two dimensional time fractional diffusion equation
with nonlocal boundary conditions, Mathematical Methods in the Applied Sciences 36(9) (2013) 056-069.

AS. Erdogan, A. Sazaklioglu, A note on the numerical solution of an identification problem for observing two-phase flow in
capillaries, Mathematical method in the Aplied Sciences 37(16)(2014) 2393-2405.

A. Ashyralyev, A. S. Erdogan, Well-Posedness of the Right-Hand Side Identification Problem for a Parabolic Equation, Ukr. Math.
J. 66(2) (2014) 165-177.

A. Ashyralyev, M. A. Ashyralyyeva, On source identification problem for a hyperbolic-parabolic equation, Contemporary
Analysis and Applied Mathematics 3(1) (2015) 88-103.

A. Mohebbi, M. Abbasi, A fourth-order compact difference scheme for the parabolic inverse problem with an overspecification
at a point, Inverse problems in science and engineering 23(3) (2015) 457478

V. V. Soloviev, Inverse problems of source determination for the two-dimensional Poisson equation, Zh. Vychisl. Mat. Mat. Fiz.
44(5) (2004) 862-871.

V. V. Soloviev, Inverse Problems for Elliptic Equations on the Plane I. Differ. Equ. 42(8) (2006) 1106-1114.

D. G. Orlovskii, Inverse Dirichlet Problem for an Equation of Elliptic Type, Differ. Equ. 44(1) (2008) 124-134.

V. V. Soloviev, Inverse Coefficient Problems for Elliptic Equations in a Cylinder: I, Differ. Equ. 49(7) (2011) 908-916.

C. Ashyralyyev, M. Dedeturk, Approximate solution of inverse problem for elliptic equation with overdetermination, Abstr.
Appl. Anal., Article ID 548017 (2013) 1-11.

D. Orlovsky, S. Piskarev, The approximation of Bitzadze-Samarsky type inverse problem for elliptic equations with Neumann
conditions, Contemporary Analysis and Applied Mathematics 1(2) (2013) 118-131.

N. C. Roberty, Simultaneous Reconstruction of Coefficients and Source Parameters in Elliptic Systems Modelled with Many
Boundary Value Problems, Mathematical Problems in Engineering Volume 2013, Article ID 631950 (2013).

A. Bouzitouna, N. Boussetila, F. Rebbani, Two regularization methods for a class of inverse boundary value problems of elliptic
type, Boundary Value Problems 2013:178 (2013).

A. Qian, Identifying an unknown source in the Poisson equation by a wavelet dual least square method, Bound. Value Probl.
2013:267 (2013)

C. Ashyralyyev (2014). High order of accuracy difference schemes for the inverse elliptic problem with Dirichlet condition,
Bound. Value Probl. 2014:5 (2014) 1-23.

A. Ashyralyev, C. Ashyralyyev, On the problem of determining the parameter of an elliptic equation in a Banach space, Nonlinear
Anal. Model. Control, 19(3) (2014) 350-366.

C. Ashyralyyev, Inverse Neumann problem for an equation of elliptic type, AIP Conference Proceedings 1611 (2014) 46-52.

C. Ashyralyyev, High order approximation of the inverse elliptic problem with Dirichlet-Neumann Conditions, Filomat 28:5
(2014) 947-962.

C. Ashyralyyev, Well-posedness of a fourth order of accuracy difference scheme for the Neumann type overdetermined elliptic
problem, AIP Conference Proceedings 1676 020007 (2015); doi: 10.1063/1.4930433.

C. Ashyralyyev, Y. Akkan, Numerical solution to inverse elliptic problem with Neumann type overdetermination and mixed
boundary conditions, Electron. J. Differential Equations 2015(188) (2015) 1-15.

C. Ashyralyyev, M. Dedeturk, Approximation of the inverse elliptic problem with mixed boundary value conditions and
overdetermination, Bound. Value Probl. 2015:51 (2015) 1-15.

A. Ashyralyev, E.Ozturk, On a difference scheme of fourth order of accuracy for the Bitsadze-Samarskii type nonlocal boundary
value problem, Math. Meth. Appl. Sci. 36 (2013) 936-955.

A. Ashyralyev and P. E. Sobolevskii, New Difference Schemes for Partial Differential Equations, Operator Theory Advances and
Applications, Birkhduser Verlag, Basel, Boston, Berlin, 2004.

A. Ashyralyev, F. S. Ozesenli Tetikoglu, A Note on Bitsadze-Samarskii Type Nonlocal Boundary, Numerical Functional Analysis
and Optimization 34(9) (2013) 939-975.

S. G. Krein, Linear Differential Equations in Banach Space, Nauka, Moscow, Russia, 1966.

P. E. Sobolevskii, Difference Methods for the Approximate Solution of Differential Equations, Voronezh State University Press,
Voronezh, Russia, 1975.



