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Abstract. In this paper, we study warped product pointwise semi-slant submanifolds of a Kaehler mani-
fold. First, we prove some characterizations results in terms of the tensor fields T and F and then, we obtain
a geometric inequality for the second fundamental form in terms of intrinsic invariants. Furthermore, the
equality case is also discussed. Moreover, we give some applications for Riemannian and compact Reman-
nian submanifolds as well, i.e., we construct necessary and sufficient conditions for the non-existence of
compact warped product pointwise semi-slant submanifold in complex space forms.

1. Introduction

It is well known that the geometry of warped product manifolds provide magnificent setting to supermodel
space time near black holes and bodies with large gravitational fields. The idea of warped product manifolds
was introduced by Bishop and O’Neill [6] to study manifolds of negative curvature. These manifolds are
extension of Riemannian product manifolds with warping functions.

On the other hand, the theory of slant submanifold is still active field of research nowadays which
was introduced by Chen in [7] of almost Hermitian manifolds. Among the class of slant manifolds we find
that almost complex(holomorphic) and totally real submanifolds are special cases of these submanifolds.

The study of pointwise slant submanifolds of almost Hermitian manifolds got momentum after the
work of F. Etayo in [15] which he call them the name of quasi-slant submanifolds. It was proved that the
totally geodesic quasi-slant submanifold of Kaehler manifold is slant submanifold. The best exmaple of
pointwise slant submanifolds is: every two dimensional submanifold in an almost Hermitian manifold
is always a pointwise slant submanifold. Later, these submanifolds in details studied by Chen-Gray
[12] in almost Hermitian manifolds. They obtained many interesting results geometric and topological
obstructions of almost Hermitian manifolds. It was proved that in [12] a totally geodesic quasi-slant
submanifold of a Kaehler manifold is slant submanifold.

Recently, Sahin [29] studied warped product pointwise semi-slant submanifold of Kaehlers. He proved
that the there do not exist warped product pointwise semi-slant submanifolds of the form M = Mθ× f MT of
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Kaehler manifold where Mθ is proper pointwise slant submanifold and MT is a complex submanifold. Then
he considered warped products of the form M = MT× f Mθ and obtained many interesting results including
characterization and inequality. He also provided some examples of pointwise semi-slant submanifolds
and their warped products. For the survey of warped product submanifolds we refer to[13].

In the present paper, we extend this study to the warped product pointwise semi-slant submanifolds
of Kaehler manifolds. The paper is organised as follows: Section 2, we recall some basic formulas and
definitions. Section 3, we give a brief introduction of pointwise semi-slant submanifolds. Section 4, we
study warped product pointwise semi-slant submanifolds and obtain some characterization results in
terms of the tensor fields. In Section 5, we establish an inequality for the second fundamental form in terms
of intrinsic invariants (Chen’ Invariants). The equality case is also discussed. Section 6, we give some
applications of such inequalities for Riemanian and compact Riemannian submanifolds in complex space
forms.

2. Preliminaries

Let (M̃, J, 1) be an almost Hermitian manifold with almost complex structure J and a Riemannian metric 1
such that

(a) J2 = −I, (b) 1(JU, JV) = 1(U,V), (2.1)

for all vector fields U,V on M̃, where I is the identity map.
Let Γ(TM̃) denote the set of all vector fields on M̃ and ∇̃ denote the Levi-Civita connection on M̃. If

the almost complex structure J satisfies
(∇̃U J)V = 0, (2.2)

for any U,V ∈ Γ(TM̃), then M̃ is called a Kaehler manifold.
Let M be a submanifold of an almost Hermitian manifold M̃ with induced metric 1 and if ∇ and ∇⊥

are the induced connections on the tangent bundle TM and the normal bundle T⊥M of M, respectively, then
Gauss and Weingarten formula are given by

(i) ∇̃UV = ∇UV + h(U,V), (ii) ∇̃UN = −ANU + ∇⊥UN, (2.3)

for each U,V ∈ Γ(TM) and N ∈ Γ(T⊥M), where h and AN are the second fundamental form and the shape
operator (corresponding to the normal vector field N) respectively for the immersion of M into M̃. They are
related as

1(h(U,V),N) = 1(ANU,V), (2.4)

where 1 denote the Riemannian metric on M̃ as well as the metric induced on M. Now for any U ∈ Γ(TM)
and N ∈ Γ(T⊥M), we have

(i) JU = TU + FU, (ii) JN = tN + f N, (2.5)

where TU(tN) and FU( f N) are tangential and normal components of JU(JN), respectively. From (2.1) and
(2.5)(i), it is easy to observe that for each U,V ∈ Γ(TM), we have

(a) 1(TU,V) = −1(U,TV) and (b) ||T||2 =

n∑
i, j=1

12(Tei, e j). (2.6)

For a submanifold M of a Riemannian manifold M̃, the equation of Gauss is given by

R̃(U,V,Z,W) = R(U,V,Z,W) + 1(h(U,Z), h(V,W))

− 1(h(U,W), h(V,Z)), (2.7)
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for any U,V,Z,W ∈ Γ(TM), where R̃ and R are the curvature tensors on M̃ and M respectively. The mean
curvature vector H for an orthonormal frame {e1, e2 · · · en} of tangent space TM on M is defined by

H =
1
n

trace(h) =
1
n

n∑
i=1

h(ei, ei), (2.8)

where n = dimM. Also we set

hr
i j = 1(h(ei, e j), er) and ||h||2 =

n∑
i, j=1

1(h(ei, e j), h(ei, e j)). (2.9)

The scalar curvature ρ for a submanifold M of an almost complex manifolds M̃ is given by

ρ(TM) =
∑

1≤i, j≤n

K(ei ∧ e j), (2.10)

where K(ei ∧ e j) is the sectional curvature of plane section spanned by ei and e j. Let Gr be a r−plane section
on TM and {e1, e2 · · · er} any orthonormal basis of Gr. Then the scalar curvature ρ(Gr) of Gr is given by

ρ(Gr) =
∑

1≤i, j≤r

K(ei ∧ e j). (2.11)

A submanifold M of an almost Hermitian manifold M̃ is said to be totally umbilical and totally geodesic if
h(U,V) = 1(U,V)H and h(U,V) = 0, respectively, for all U,V ∈ Γ(TM) where H is the mean curvature vector
of M. Furthermore, if H = 0, them M is minimal in M̃. The covariant derivatives of the endomorphism J, T
and F are defined respectively as

(∇̃U J)V = ∇̃U JV − J∇̃UV, ∀ U,V ∈ Γ(TM̃) (2.12)

(∇̃UT)V = ∇UTV − T∇UV, ∀ U,V ∈ Γ(TM) (2.13)

(∇̃UF)V = ∇⊥UFV − F∇UV ∀ U,V ∈ Γ(TM). (2.14)

On using (2.1), (2.2), (2.3), (2.5) and (2.12)-(2.14), we obtain

(a) (∇̃UT)V = AFVU + th(U,V), (b) (∇̃UF)U = f h(U,V) − h(U,TV), (2.15)

Assume that the set T∗M containing of all non-zero tangent vectors of submanifold M of an almost Hermitian
manifold M̃. Then for each non-zero vector X ∈ Γ(TxM) at point x ∈ M, the angle θ(X) between JX and
tangent space TxM is called the Wirtinger angle of X. Globally, the Wirtinger angle become a real-valued
function which is defined on T∗M such that θ : T∗M → R, is called the Wirtinger function . In this case, the
submanifold M of almost Hermitian manifolds M̃ is called pointwise slant submanifold.

A point x in a pointwise slant submanifold is called a totally real point if its slant function θ satisfies
cosθ = 0, at x. In the same way, a point x is called a complex point if its slant function satisfies sinθ = 0
at x. A pointwise slant submanifold M in an almost Hermitian manifold M̃ is called totally real if every
point of M is a totally real point. A pointwise slant submanifold of an almost Hermitian manifold is called
pointwise proper slant if it contains no totally real points. A pointwise slant submanifold M is called slant
when its slant function θ is globally constant, i.e., θ is also independent of the choice of the point on M. It is
clear that pointwise slant submanifolds include holomorphic, totally real and slant submanifolds. It clear
that CR-submanifold and slant submanifold are particular case of semi-slant submanifolds with θ = π/2
andD = 0, respectively.
Recently, Chen and Garay in [12] proved the following theorem for pointwise slant submanifolds such as:
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Theorem 2.1. Let M be a submanifold of an almost Hermitian manifold M̃. Then M is pointwise slant if and only if
there exists a constant λ ∈ [−1, 0] such that

T2 = − cos2 θI. (2.16)

for some real-valued function θ defined on the tangent bundle TM of M (cf. [12]).

Hence, for a pointwise slant submanifold M of an almost Hermitian manifold M̃, we have the following
relations which are consequences of the Theorem 2.1,

1(TU,TV) = cos2 θ1(U,V), (2.17)

1(FU,FV) = sin2 θ1(U,V), (2.18)

for any U,V ∈ Γ(TM). For differential function ϕ on M, the gradient gradϕ and Laplacian ∇ϕ of ϕ are
defined respectively as

1(1radϕ,X) = Xϕ and ∇X =

n∑
i=1

{(∇ei ei)ϕ − eiei}. (2.19)

The Laplacian of f is defined by

∆ f =

n∑
i=1

{(∇ei ei) f − ei(ei( f ))} = −
n∑

i=1

1(∇ei1rad f , ei). (2.20)

For a compact orientable Riemannian manifold M without boundary. Thus from the integration theory on
manifolds, we have ∫

M
∆ f dV = 0, (2.21)

such that dV denote the volume element of M (see [4]).�

3. Pointwise semi-slant submanifolds

The concept of semi-slant submanifolds were defined and studied by N. Papaghiuc (cf. [27]) as natural
extension of CR-submanifolds of almost Hermitian manifolds in terms of slant immersion. Moreover, as
a generalisation of semi-slant submanifolds, the pointwise semi-slant submanifolds were studied by Sahin
[29]. He defined these submanifolds as follows:

Definition 3.1. Let M be a submanifold of Kaehler manifold M̃ is said to be a pointwise semi-slant submanifold if
there exists two orthogonal distributionsD andDθ such that

(i) TM = D⊕Dθ,
(ii) D is holomorphic, i.e., J(D) ⊆ D,

(iii) Dθ is pointwise slant distribution with slant function θ : T∗M→ R.

On a pointwise semi-slant submanifold, If we denote the dimensions ofD andDθ by d1 and d2, then M is
invariant if d2 = 0 and pointwise slant if d1 = 0. Also, if θ is constant then M is proper semi-slant submanifold
with slant angle theta. We say that a pointwise semi-slant submanifold is proper if d1 , 0 and θ is not
constant. Moreover, if ν is an invariant subspace under J of normal bundle T⊥M, then in case of pointwise
semi-slant submanifold, the normal bundle T⊥M can be decomposed as:

T⊥M = FDθ
⊕ ν

.
Let us denotes the orthogonal projections onD andDθ by B and C respectively. then we can write

U = BU + CU, (3.1)
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where BU ∈ Γ(D) and BU ∈ Γ(Dθ). From (2.5) and (3.1), we obtain

JBU ∈ Γ(D), FBU = 0, (3.2)

TBU ∈ Γ(Dθ), FBU ∈ Γ(T⊥M). (3.3)

On a pointwise semi-slant submanifold M of Kaehler manifold M̃, the following are straightforward
observations

(i) FD = 0, (ii) TD = D,

(iii) t(T⊥M) ⊆ Dθ, (iv) TDθ
⊆ D

θ.

 (3.4)

For the integrability conditions of distributions involved in the definition pointwise semi-slant submanifold,
we refer to (cf. [29]). Now. we have the following useful result which is important for a Section 4.

Theorem 3.1. Let M be a pointwise semi-slant submanifold M of a Kaehler manifold M̃. Then the distributionD is
define as totally geodesic foliations if and only if

h(X, JY) ∈ Γ(ν),

for any X,Y ∈ Γ(D).

Proof. Let X,Y ∈ Γ(D) and Z ∈ Γ(Dθ), we have 1(∇XY,Z) = 1(∇̃XY,Z) = 1(J∇̃XY, JZ). Using (2.5)(i) and (2.12),
we obtain 1(∇XY,Z) = 1(∇̃X JY,TZ) + 1(∇̃X JY,FZ) − 1((∇̃X J)Y, JZ). From (2.2), (2.3)(i) and the definition of
totally geodesic foliation we get required result.

4. Warped Product Pointwise Submanifolds

Bishop and O’Neill defined in [6] the notion of warped product manifolds. They defined these manifolds
as: Let (M1, 11) and (M2, 12) be two Riemannian manifolds and f : M1 → (0,∞) and π1 : M1×M2 →M1, π2 :
M1 ×M2 →M2, the projection maps given by π1(p, q) = p and π2(p, q) = q for any (p, q) ∈M1 ×M2. Then the
warped product M = M1 × f M2 is the product manifold M1 ×M2 equipped with the Riemannian structure
such that

1(X,Y) = 11(π1∗X, π1∗Y) + ( f ◦ π1)212(π2∗X, π2∗Y) (4.1)

for any X,Y ∈ TM, where ∗ is the symbol for the tangent maps. The function f is called the warping function
of M. In particular, a warped product manifold is said to be trivial if its warping function is constant. In
such a case, we call the warped product manifold a Riemannian product manifold.

It was proved in [6] that for any X ∈ Γ(TM1) and Z ∈ Γ(TM2), the following holds

∇XZ = ∇ZX = (X ln f )Z (4.2)

where ∇ denotes the Levi-Civita connection on M. If M = M1 × f M2 is a warped product manifold, then M1
is a totally geodesic submanifold and M2 is a totally umbilical submanifolds of M.

Recall that B. Sahin proved in [29] that there do not exist warped product pointwise semi-slant of
the form M = Mθ × f MT of a Kaehler manifold M̃. Then he considered the warped products of the form
M = MT × f Mθ. In the following we have the following results for both types of warped products.

Theorem 4.1. [29] There do not exist proper warped product pointwise semi-slant submanifold M = Mθ × f MT in
a Kaehler manifold M̃ such that Mθ is a proper pointwise slant submanifold and MT is a holomorphic submanifold of
M̃.
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Lemma 4.1. [29] Let M = MT × f Mθ be a warped product pointwise semi-slant submanifold of a Kaehler manifold
M̃, where MT and Mθ are holomorphic and pointwise slant submanifolds of M̃ respectively. Then

1(h(X,Z),FTW) = −(JX ln f )1(Z,TW) − (X ln f )cos2θ1(Z,W),

1(h(Z, JX),FW) = (X ln f )1(Z,W) + (JX ln f )(Z,TW),

for any X ∈ Γ(TMT) and Z,W ∈ Γ(TMθ)

Lemma 4.2. On a non-trivial warped product pointwise semi-slant submanifold M = MT × f Mθ of a Kaehler
manifold M̃, we have

(i) (∇̃XT)Z = 0, (ii)(∇̃ZT)X = (JX ln f )Z − (X ln f )TZ,

(iii) (∇̃TZT)X = (JX ln f )TZ + cos2θ(X ln f )Z,

for any X ∈ Γ(TMT) and Z ∈ Γ(TMθ)

Proof. From (2.13) and (4.2), we derive

(∇̃XT)Z = ∇XTZ − T∇XZ = (X ln f )TZ − (X ln f )TZ = 0,

for X ∈ Γ(TMT) and Z ∈ Γ(TMθ). Again from (2.13) and (4.2), we obtain

(∇̃ZT)X = ∇ZTX − T∇ZX = (JX ln f )Z − (X ln f )TZ,

which is the second result of lemma. If we replace Z by TZ in(ii) and using Theorem 2.1, we get the last
result of lemma, which proves the lemma.

Lemma 4.3. Let M = MT × f Mθ be a warped product pointwise semi-slant submanifold of a Kaehler manifold M̃.
Then

(∇̃UT)X = (JX ln f )CU − (X ln f )TCU, (4.3)

(∇̃UT)Z = 1(CU,Z)J∇ ln f − 1(CU,TZ)∇ ln f , (4.4)

(∇̃UT)TZ = 1(CU,TZ)J∇ ln f + cos2 θ1(CU,Z)∇ ln f , (4.5)

for any U ∈ Γ(TM), X ∈ Γ(TMT) and Z,W ∈ Γ(TMθ).

Proof. Thus from using (2.15)(a), it follows that

(∇̃XT)Y = th(X,Y),

for X,Y ∈ Γ(TMT). Since for warped product submanifold, MT is totally geodesic in M, then using these
fact we get th(X,Y) = 0, which implies that h(X,Y) ∈ Γ(ν). Thus the above relation becomes

(∇̃XT)Y = 0. (4.6)

Now we applying (3.1) into (∇̃UT)X to derive another relation

(∇̃UT)X = (∇̃BUT)X + (∇̃CUT)X,

for U ∈ Γ(TM). The first part of right hand side in the above equation should be zero by virtue (4.6). Thus
the second part of the above equation follows from Lemma 4.2(ii). Again from (3.1), we have

(∇̃UT)Z = (∇̃BUT)Z + (∇̃CUT)Z,
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for Z ∈ Γ(TMθ) and U ∈ Γ(TM). Taking the inner product with X ∈ Γ(TMT) and using (2.13), we obtain

1((∇̃UT)Z,X) = 1(∇CUTZ,X) − 1(T∇CUZ,X)

= 1(∇CUZ, JX) − 1(∇CUX,TZ)

= −1(∇CU JX,Z) − 1(∇CUX,TZ).

From (4.2), we get
1((∇̃UT)Z,X) = −(JX ln f )1(CU,Z) − (X ln f )1(CU,TZ)

= 1(CU,Z)1(J∇ ln f ,X) − 1(CU,TZ)1(∇ ln f ,X),

which implies that
(∇̃UT)Z = 1(CU,Z)J∇ ln f − 1(CU,TZ)∇ ln f ,

which is (4.4). Replacing Z by TZ in (4.3) and using Theorem 2.1 for pointwise slant submanifold Mθ. Then
the above equation takes the form

(∇̃UT)TZ = 1(CU,TZ)J∇ ln f + cos2 θ1(CU,Z)∇ ln f ,

which is (4.5). Hence, the lemma is proved completely.

In a sequel, now we prove characterization results in terms of the tensor fields.

Theorem 4.2. Let M be a pointwise semi-slant submanifold of a Kaehler manifold M̃ with pointwise slant distribution
D
θ is integrable. Then M is locally a warped product submanifold if and only if

(∇̃UT)V = (JBVλ)CU − (BVλ)TCU + 1(CU,CV)J~∇λ − 1(CU,TCV)~∇λ, (4.7)

for each U,V ∈ Γ(TM) and a C∞-function µ on M with Zλ = 0 for each Z ∈ Γ(Dθ).

Proof. Suppose that M be a warped product pointwise semi-slant submanifold of a Kaehler manifold M̃.
Then using (3.1), we obtain

(∇̃UT)V = (∇̃UT)BV + (∇̃UT)CV,

for U,V ∈ Γ(TM). Thus the first part directly follows by Lemma 4.3 (4.3)-(4.4) in the above equation. Let us
prove the converse part that M be a pointwise semi-slant submanifold of a Kaehler manifold M̃ such that
the given condition (4.7) holds. It is easy to obtain the following condition

(∇̃XT)Y = 0.

by consider U = X and V = Y in (4.7), for X,Y ∈ Γ(D). Taking the inner product with TZ ∈ Γ(Dθ) and using
(2.13), we derive

1(∇̃X JY,TZ) = 1(T∇XY,TZ).

Since TZ and JY are orthogonal then from property of Riemannian connection and from (2.6), we derive

1(∇̃XTZ, JY) = −1(∇XY,T2Z).

From the covariant derivative of an almost complex structure J and Theorem 2.1, it is easily seen that

1((∇̃X J)TZ,Y) − 1(∇̃X JTZ,Y) = cos2 θ1(∇XY,Z).

Thus using the structure equation of Kaehler manifold and (2.5)(i), we arrive at

1(∇̃XT2Z,Y) + 1(∇̃XFTZ,Y) = cos2 θ1(∇XY,Z).
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Then using Theorem 2.1, in the first part of the above equation for pointwise slant function θ and also from
(2.3)(ii), we obtain

sin 2θX(θ)1(Z,Y) − cos2 θ1(∇XZ,Y) = 1(h(X,Y),FTZ) + cos2 θ1(∇XY,Z),

which implies that
1(h(X,Y),FTZ) = 0.

It is indicates that h(X,Y) ∈ Γ(ν) for all X,Y ∈ Γ(D). Then from Theorem 3.1, i.e., the distributionD is defines
a totally geodesic foliations and its leaves are totally geodesic in M. Furthermore, we set U = Z and V = W
in (4.7), we derive

(∇̃ZT)W = 1(Z,W)J∇λ + 1(TZ,W)∇λ

for Z,W ∈ Γ(Dθ). Taking the inner product with X ∈ Γ(D) and using (2.5)(i), we obtain

1(∇ZTW,X) − 1(T∇ZW,X) = −(Xλ)1(Z,TW) − (JXλ)1(Z,W).

By hypothesis of the theorem, as we have considered that the pointwise slant distribution is integrable. It
is obvious that, let Mθ be a leaf ofDθ in M and hθ be the second fundamental form of Mθ in M. Then

1(hθ(Z,TW),X) + 1(hθ(Z,W), JX) = −(Xλ)1(Z,TW) − (JXλ)1(Z,W). (4.8)

Replacing W by TW and X by JX in (4.7) and from the Theorem 2.1, we derive

− cos2 θ1(hθ(Z,W), JX) − 1(hθ(Z,TW),X) = cos2 θ(JXλ)1(Z,W) + (Xλ)1(Z,TW). (4.9)

Thus from (4.8) and (4.9), it follows that

sin2 θ1(hθ(Z,W), JX) = −sin2θ(JXλ)1(Z,W).

which implies that
1(hθ(Z,W), JX) = −(JXλ)1(Z,W).

From the gradient definition. Finally, we get

hθ(Z,W) = −1(Z,W)∇λ,

From the above relation, we conclude that Mθ is totally umbilical in M such that Hθ = −∇λ is the mean cur-
vature vector of Mθ. Now, we can easily show that the mean curvature vector Hθ is parallel corresponding
to the normal connection ∇′ of Mθ in M. This means that Mθ is an extrinsic spheres in M. Hence from result
of Hiepko (cf. [16]), M is called a warped product submanifold of integral manifolds MT and Mθ ofD and
D
θ, respectively. Its complete proof of the theorem.

Theorem 4.3. Let M be a pointwise semi-slant submanifold of a Kaehler manifold M̃ such that the pointwise slant
distributionDθ is integrable. Then M is locally a warped product submanifold if and only if

(∇̃UF)V = f h(U,BV) − h(U,TCV) − (BVλ)FCU (4.10)

for each U,V ∈ Γ(TM) and a C∞-function µ on M with Zλ = 0, for each Z ∈ Γ(Dθ).

Proof. From the first case, suppose that M be a warped product pointwise semi-slant submanifold in a
Kaehler manifold M̃. Then using (3.1) in (∇̃UF)X, we derive

(∇̃UF)X = (∇̃BUF)X + (∇̃CUF)X,
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for U ∈ Γ(TM) and X ∈ Γ(TMT). The first term of the above equation identically zero by using the fact that
MT is totally geodesic on M. Last term follows from (2.14) and (4.2), we obtain

(∇̃UF)X = −F∇CUX

= −(X ln f )FCU. (4.11)

From (2.15)(b), we derive
(∇̃UF)Z = f h(U,Z) − h(U,TZ), (4.12)

for Z ∈ Γ(TMθ). Furthermore, again from (3.1), we obtain

(∇̃UF)V = (∇̃UF)BV + (∇̃UF)CV. (4.13)

Hence, from (4.11), (4.12) in (4.13), we get desired result (4.10).
Conversely, suppose that M be a pointwise semi-slant submanifold of a Kaehler manifold M̃ with

integrable distributionDθ and (4.10) holds. Then for X,Y ∈ Γ(D), it follows from (4.10), we get −F∇XY = 0,
which implies that ∇XY ∈ Γ(D), thus the leaves of D are totally geodesic in M. On the other hand, the
pointwise slant distribution Dθ is assumed to be integrable. Then we can consider Mθ to be a leaf of Dθ

and hθ be the second fundamental form of immersion into M. Thus replacing U = Z and V = X, in (4.10)
for Z ∈ Γ(Dθ) and X ∈ Γ(D) and using the fact that CX = 0, we derive

(∇̃ZF)X = −(Xλ)FZ. (4.14)

Taking inner product in (4.14) with FW for W ∈ Γ(Dθ) and using relation (2.18), then equation (4.14) can be
modified as:

1((∇̃ZF)X,FW) = − sin2 θ(Xλ)1(Z,W).

Apply (2.14) in left hand side in the above equation, we obtain

1(−F∇ZX,FW) = − sin2 θ(Xλ)1(Z,W).

Thus by virtue (2.18) and definition of gradient of ln f , we arrive at

− sin2 θ1(∇ZX,W) = − sin2 θ1(∇λ,X)1(Z,W),

which implies that
1(hθ(Z,W),X) = −1(X,∇λ)1(Z,W).

Finally, we obtain
hθ(Z,W) = −1(Z,W)∇λ.

The above relation shows that the leaf Mθ ( ofDθ) is totally umbilical in M such that Hθ = −∇λ, is the mean
curvature vector of Mθ. Moreover, the condition Zλ = 0, for any Z ∈ Γ(Dθ) implies that the leaves of Dθ

are extrinsic spheres in M, i.e., the integral manifold Mθ of Dθ is totally umbilical and its mean curvature
vector is non zero and parallel along Mθ. Thus from result of Hiepko (cf. [16]), i.e., M = MT × f Mθ is locally
a warped product submanifold, where MT is an integral manifold of D and f is a warping function. It
completes proof of the theorem.

5. Inequalities for Warped Product Pointwise Semi-slant Submanifolds

In this section, we construct some geometric properties of the mean curvature for warped product semi-
slant submanifolds and using these result to derive a general inequality for the second fundamental form in
terms of Chen’s invariants. Similar inequality has been obtained in [22] for the squared norm of the second
fundamental form for warped product submanifolds such that the base manifold is invariant (holomorphic)
submanifold of a Kenmotsu manifold.
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Let φ : M = M1 × f M2 → M̃ be isometric immersion of a warped product M1 × f M2 into a Riemannian
manifold of M̃ of constant section curvature c. Let n1, n2 and n be the dimension of M1, M2, and M1 × f M2
respectively. Then for unit vector X,Z tangent to M1, M2 respectively, we have

K(X ∧ Z) = 1(∇Z∇XX − ∇X∇ZX,Z) =
1
f
{(∇XX) f − X2 f }. (5.1)

If we consider the local orthonormal frame {e1, e2.......en) such that e1, e2.....en1 tangent to M1 and en1+1.......en
are tangent to M2. Then in view of Guass equation (2.7), we derive

ρ(TM) = ρ̃(TM) +

2m∑
r=1

∑
1≤i, j≤n

(hr
iih

r
j j − (hr

i j)
2), (5.2)

for each j = n1 + 1.....n. Now we are ready to prove the general inequality. For this we need to define a
frame and obtain some preparatory lemmas. To prove the general inequality, we need the following frame
fields and some preparatory results.

Let M = MT × f Mθ be an n = n1 + n2-dimensional warped product pointwise semi-slant submanifold
of a 2m-dimensional Kaehler manifold M̃ such that dim MT = n1 = 2d1 and dimR Mθ = n2 = 2d2. Let us
consider the tangent spaces of MT and Mθ by D and Dθ respectively. Assume that {e1, e2, · · · , ed1 , ed1+1 =
Je1, · · · , e2d1 = Jed1 } is a local orthonormal frame of D and {e2d1+1 = e∗1, · · · , e2d1+d2 = e∗d2

, e2d1+d2+1 = e∗d2+1 =

secθTe∗1, · · · , en1+n2 = e∗n2
= secθTe∗d2

} is a local orthonormal frame of Dθ. Thus the orthonormal frames of
the normal sub bundles, FDθ and ν respectively are,{en+1 = ẽ1 = cscθFe∗1, · · · , en+d2 = ẽd2 = cscθFe∗1, en+d2+1 =
ẽd2+1 = cscθ secθFTe∗1, · · · , en+2d2 = ẽ2d2 = cscθ secθFTe∗d2

} and {en+2d2+1, · · · , e2m}.

Lemma 5.1. Let M be a non-trivial warped product pointwise semi-slant submanifold of a Kaehler manifold M̃. Then

1(h(X,X),FZ) = 1(h(X,X),FTZ) = 0, (5.3)

1(h(JX, JX),FZ) = 1(h(JX, JX),FTZ) = 0, (5.4)

1(h(X,X), ξ) = −1(h(JX, JX), ξ), (5.5)

for any X ∈ Γ(TMT), Z ∈ Γ(TMθ) and ξ ∈ Γ(ν).

Proof. From relation (2.3), we have

1(h(X,X),FTZ) = 1(∇̃XX,FTZ) = −1(∇̃XFTZ,X).

Thus from relation (2.5) and the covariant derivative of almost complex structure J, we obtain

1(h(X,X),FTZ) = 1(∇̃XTZ, JX) + 1((∇̃X J)TZ,X) + 1(∇̃XT2Z,X),

Using the structure equation of Kaehler manifolds and Theorem 2.1 for pointwise semi-slant submanifold,
we get

1(h(X,X),FTZ) = −1(∇X JX,TZ) + sin 2θX(θ)1(Z,X) − cos2 θ1(∇XX,Z)

Since, MT is totally geodesic in M, with this fact we get result (5.3). On other part, interchanging Z by TZ
and X by JX in the above equation we get the required result (5.4). Now for (5.5), from Kaehler manifold,
we have ∇̃X JX = J∇̃XX, this relation reduced to

∇X JX + h(JX,X) = J∇XX + Jh(X,X).

Taking the inner product with Jξ in the above equation for any ξ ∈ Γ(ν), we obtain

1(h(JX,X), Jξ) = 1(h(X,X), ξ). (5.6)
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Interchanging X by JX in (5.6) and making use of (2.1)(i). Furthermore, the fact ν is an invariant normal
bundle of T⊥M under an almost complex structure J, we get

−1(h(X, JX), Jξ) = 1(h(JX, JX), ξ). (5.7)

From (5.6) and (5.7), we get (5.5). Its complete proof of lemma.

Lemma 5.2. Let φ be an isometrically pointwise immersion φ : M = MT × f Mθ −→ M̃ such that MT is invariant
submanifold of M̃ and Mθ is pointwise slant submanifold of M̃. Then the squared norm of mean curvature of M is
given by

||H||2 =
1
n2

2m∑
r=n+1

[
hr

n1+1n1+1 + ....... + hr
nn

]2
,

where H is the mean curvature vector. Moreover, and n1, n2, n and 2m are dimensions of MT, Mθ, MT × f Mθ and
M̃ respectively.

Proof. From the definition of the mean curvature vector, we have

||H||2 =
1
n2

2m∑
r=n+1

(hr
11 + · · · + hr

nn)2,

Thus from consideration of dimension n = n1 + n2 of MT × f Mθ such that n1 and n2 are dimensions of MT
and Mθ respectively, we arrive at

||H||2 =
1
n2

2m∑
r=n+1

(hr
11 + · · · hr

n1n1
+ hr

n1+1n1+1 + · · · + hr
nn)2.

Using the frame ofD and coefficient of n1 in right hand side of the above equation, we get(
hr

11 + · · · hr
n1n1

+ hr
n1+1n1+1 + · · · + hr

nn

)2
=

(
hr

11 + · · · hr
d1d1

+ hr
d1+1d1+1 + · · · hr

2d12d1
+ hr

n1+1n1+1 + ..... + hr
nn

)2
.

From the relation hr
i j = 1(h(ei, e j), er) , for 1 ≤ i, j ≤ n and n + 1 ≤ r ≤ 2m and frame forD, the above equation

take the form(
hr

11 + · · · hr
n1n1

+ hr
n1+1n1+1 + · · · + hr

nn

)2

= {1(h(e1, e1), er)+ ....+1(h(ed1 , ed1 ), er)+1(h(Je1, Je1), er)+ · · ·+1(h(Jed1 , Jed1 ), er)+ ....+hr
n1+1n1+1 + · · ·+hr

nn}
2. (5.8)

It well known that er belong to normal bundle T⊥M for ever r ∈ {n + 1 · · · 2m}, it mean that there two cases
such that er belong to F(TMθ) or ν.

Case 1: If er ∈ Γ(FDθ), then from using frame in (5.6) of normal components for pointwise slant distribution
D
θ which is defined in frame. Then equation (5.8) can be written as(

hr
11 + · · · hr

n1n1
+ hr

n1+1n1+1 + · · · + hr
nn

)2

=
{

cscθ1(h(e1, e1),Fe∗1) + .. + cscθ1(h(ed1 , ed1 ,Fe∗d2
) + cscθ secθ1(h(e1, e1),FTe∗1)

+ · · · + cscθ secθ1(h(ed1 , ed1 ),FTe∗d2
) + cscθ1(h(Je1, Je1),Fe∗1) +

· · · + cscθ1(h(Jed1 , Jed1 ),Fe∗d2
) + cscθ secθ1(h(Je1, Je1),FTe∗1) +

· · · + cscθ secθ1(h(Jed1 , Jed1 ),FTe∗d2
) + hr

n1+1n1+1 + · · · + hr
nn

}2
.
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Now from virtue (5.1) and (5.2) of Lemma 5.1, finally we get

(hr
11 + · · · hr

n1n1
+ hr

n1+1n1+1 + · · · + hr
nn)2 = (hr

n1+1n1+1 + · · · + hr
nn)2. (5.9)

Case 2: If er ∈ Γ(ν), then from relation (5.4) of Lemma 5.1, the equation (5.8) simplifies as(
hr

11 + .......hr
n1n1

+ hr
n1+1n1+1 + · · · + hr

nn

)2

=
{
1(h(e1, e1), er) + · · · + 1(h(ed1 ), ed1 ), er) − 1(h(e1, e1), er) · · · − 1(h(ed1 , ed1 ), er) + · · · + hr

n1+1n1+1 + · · · + hr
nn

}2
,

which implies that (
hr

11 + · · · hr
n1n1

+ hr
n1+1n1+1 + · · · + hr

nn

)2
=

(
hr

n1+1n1+1 + · · · + hr
nn

)2
. (5.10)

From (5.7) and (5.9) for every normal vector er belong to the normal bundle T⊥M and taking the summing,
we can deduce that

2m∑
r=n+1

(
hr

11 + · · · hr
n1n1

+ hr
n1+1n1+1 + · · · + hr

nn

)2
=

2m∑
r=n+1

(
hr

n1+1n1+1 + · · · + hr
nn

)2
.

Hence, the above relation proves our assertion. It completes proof of the lemma.

Theorem 5.1. Let φ : M = MT× f Mθ −→ M̃ be an isometrically immersion of an n-dimensional non-trivial warped
product pointwise semi-slant submanifold M into 2m-dimensional Kaehler manifold M̃ such that Mθ is pointwise
slant submanifold and MT is invariant submanifold of M̃. Then

(i) The squared norm of the second fundamental form of M is given by

||h||2 ≥ 2
(
ρ̃(TM) − ρ̃(TMT) − ρ̃(TMθ) −

n2∇ f
f

)
, (5.11)

where n2 is the dimension of pointwise slant subamnifold Mθ.
(ii) The equality holds in the above inequality, if and only if MT is totally geodesic and Mθ is totally umbilical

submanifolds of M̃.

Proof. Putting X = W = ei, and Y = Z = e j in Gauss equation (2.7), we obtain

R̃(ei, e j, e j, ei) = R(ei, e j, e j, ei) + 1(h(ei, e j), h(e j, ei) − 1(h(ei, ee), h(e j, e j)).

Over 1 ≤ i, j ≤ n(i , j), taking summation in above equation, we obtain

2ρ̃(TM) = 2ρ(TM) − n2
||H||2 + ||h||2.

Then from (2.11), we derive

||h||2 = n2
||H||2 + 2ρ̃(TM) − 2

n1∑
i=1

n∑
j=n1+1

K(ei ∧ e j) − 2ρ(TMT) − 2ρ(TMθ).

The fourth and fifth terms of the above equation can be obtained by using (5.2), then we get

||h||2 = n2
||H||2 + 2ρ̃(TM) − 2

n1∑
i=1

n∑
j=n1+1

K(ei ∧ e j)
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−2ρ̃(TMT) − 2
2m∑

r=n+1

∑
1≤i,t≤n1

(hr
iih

r
tt − (hr

it)
2) − 2ρ̃(TMθ) − 2

2m∑
r=n+1

∑
n1+1≤ j,l≤n

(hr
j jh

r
ll − (hr

jl)
2). (5.12)

Now we using the following formula obtained by Chen (cf. [10]) for general warped product submanifold,
i.e.,

n1∑
i=1

n∑
j=n1+1

K(ei ∧ e j) =
n2∇ f

f
.

Then equation (5.12) implies that

||h||2 = n2
||H||2 + 2ρ̃(TM) − 2

n2∆ f
f
− 2ρ̃(TMθ)

−2ρ̃(TMT) − 2
2m∑

r=n+1

∑
1≤i,t≤n1

(hr
iih

r
tt − (hr

it)
2) − 2

2m∑
r=n+1

∑
n1+1≤ j,l≤n

(hr
j jh

r
ll − (hr

jl)
2).

We adding and subtracting the same terms in the above equation, we find that

||h||2 = n2
||H||2 + 2ρ̃(TM) − 2

n2∆ f
f
− 2ρ̃(TMθ) − 2ρ̃(TMT)

− 2
2m∑

r=n+1

∑
1≤i,t≤n1

(hr
iih

r
tt − (hr

it)
2) −

2m∑
r=n+1

((hr
11)2 + ... + (hr

nn)2)

+

2m∑
r=n+1

((hr
11)2 + · · · + (hr

nn)2) − 2
2m∑

r=n+1

∑
n1+1≤ j,l≤n

(hr
j jh

r
ll − (hr

jl)
2).

The above equation is equivalent to the new form

||h||2 = n2
||H||2 + 2ρ̃(TM) − 2

n2∆ f
f
− 2ρ̃(TMθ) − 2ρ̃(TMT)

+2
2m∑

r=n+1

n1∑
i,t=1

(hr
it)

2
−

2m∑
r=n+1

(hr
11 + · · · + hr

nn)2
− 2

2m∑
r=n+1

∑
n1+1≤ j,l≤n

(hr
j jh

r
ll − (hr

jl)
2).

Again we adding and subtracting the same terms for last term in the above equation. Then we modified as

||h||2 = n2
||H||2 + 2ρ̃(TM) − 2

n2∆ f
f
− 2ρ̃(TMθ) − 2ρ̃(TMT) + 2

2m∑
r=n+1

n1∑
i,t=1

(hr
it)

2

−

2m∑
r=n+1

(hr
11 + · · · + hr

nn)2
−

2m∑
r=n+1

((hr
n1+1n1+1)2 + · · · + (hr

nn)2)

− 2
2m∑

r=n+1

∑
n1+1≤ j,l≤n

(hr
j jh

r
ll − (hr

jl)
2) +

2m∑
r=n+1

((hr
n1+1n1+1)2 + · · · + (hr

nn)2).

After using the Lemma 5.2. The above equation turn into the new form, i.e.,

||h||2 = 2ρ̃(TM) − 2
n2.∆ f

f
− 2ρ̃(TMθ) − 2ρ̃(TMT) + 2

2m∑
r=n+1

n1∑
i,t=1

(hr
it)

2 + 2
2m∑

r=n+1

n∑
j,l=n1+1

(hr
jl)

2. (5.13)
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Thus the equation (5.13) implies the inequality (5.11). If equality sign in (5.11) holds if and only if we have

(i)
2m∑

r=n+1

n1∑
i,t=1

(1(h(ei, et), er))2 = 0,

(ii)
2m∑

r=n+1

n1∑
j,l=n1+1

(1(h(e j, el), er))2 = 0. (5.14)

As the fact that MT is totally geodesic in M, from (5.3) and (5.4), it implies that MT is totally geodesic in M̃.
On the other hand, (5.14) implies that h vanishes onDθ. Moreover,Dθ is a spherical distribution in M, then
it follows that Mθ is totally umbilical in M̃. Its complete proof of the theorem.

Now, we are able to prove the following theorem by using the above result for a complex space form as
follows:

Theorem 5.2. Assume that φ : M = MT × f Mθ −→ M̃ be an isometrically immersion of an n-dimensional non-
trivial warped product pointwise semi-slant submanifold M into a 2m-dimensional complex space form M̃(c) with
constant holomorphic sectional curvature c such that Mθ is a proper pointwise slant submanifold and MT is an
invariant submanifold of M̃. Then

(i) The squared norm of the second fundamental form of M is given by

||h||2 ≥ 2n2

(
||∇(ln f )||2 +

n1c
4
− ∆(ln f )

)
(5.15)

where n2 is the dimension of pointwise slant subamnifold Mθ.
(ii) The equality holds in the above inequality if and only if MT is totally geodesic and Mθ is totally umbilical

submanifolds of M̃. Moreover, M is minimal submanifold in M̃.

Proof. The Remannian curvature of complex space form with constant holomorphic sectional curvature c
is given by

R̃(X,Y,Z,W) =
c
4

{
1(Y,Z)1(X,W) − 1(Y,W)1(X,Z) + 1(X, JZ)1(JY,W) − 1(Y, JZ)1(JX,W) + 21(X, JY)1(JZ,W)

}
,

for any X,Y,Z,W ∈ Γ(TM̃). Now substituting X = W = ei and Y = Z = e j in the above equation, we get

R̃(ei, e j, e j, ei) =
c
4

{
1(ei, ei)1(e j, e j) − 1(ei, e j)1(ei, e j) + 1(ei, Je j)1( je j, ei) − 1(ei, Jei)1(e j, Je j) + 212(Je j, ei)

}
.

Taking summation over basis vector of TM such that 1 ≤ i , j ≤ n, it is easy to obtain that

2ρ̃(TM) =
c
4

(
n(n − 1) + 3

∑
1≤i, j≤n

12(Tei, e j)
)
. (5.16)

Let M be a proper pointwise semi-slant submanifold of complex space form M̃(c). Thus we set the following
frame, i.e.,

e1, e2 = Je1, · · · e2d1−1, e2d1 = Je2d1−1,

e2d1+1, e2d1+2 = secθTe2d1+1, · · · e2d1+2d2−1e2d1+2d2 = secθTed1−1.

Obviously, we derive
12(Jei, ei+1) = 1, f or i ∈ {1, .....2d1 − 1}
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= cos2 θ f or i ∈ {2d1 + 1, ......2d1 + 2d2 − 1}.

Thus it is easily seen that
n∑

i, j=1

12(Tei, e j) = 2(d1 + d2. cosθ). (5.17)

From (5.16) and (5.17), it follows that

2ρ̃(TM) =
c
4

n(n − 1) +
3c
2

(d1 + d2 cosθ). (5.18)

Similarly, for TMT, we derive

2ρ̃(TMT) =
c
4

[n1(n1 − 1) + 3n1] =
c
4

[n1(n1 + 2)] . (5.19)

Now using fact that ||T||2 = n2.cos2θ, for pointwise slant submanifold TMθ, we derive

2ρ̃(TMθ) =
c
4

[
n2(n2 − 1) + 3n2 cos2 θ

]
=

c
4

[
n2

2 + n2(3 cos2 θ − 1)
]
. (5.20)

Therefore using (5.18), (5.19) and (5.20) in (5.11), we get the required result and the equality case directely
comes from Theorem 5.1(ii). It completes proof of the theorem.

Corollary 5.1. Assume that φ : M = MT × f M⊥ → M̃ be an isometrically immersion of an n-dimensional non-
trivial CR-warped product submanifold M into a 2m-dimensional complex space form M̃(c) with constant holomorphic
sectional curvature c such that M⊥ is totally real submanifold and MT is invariant submanifold of M̃. Then

(i) The squared norm of the second fundamental form of M is given by

||h||2 ≥
n1n2c

2
−

2n2∆ f
f

, (5.21)

where n2 is the dimension of totally real submanifold subamnifold M⊥.
(ii) The equality holds in the above inequality if and only if MT and M⊥ are totally umbilical and totally geodesic

submanifolds of M̃, respectively. Moreover, M is minimal submanifold M̃.

Proof. The proof follows from the Theorem 5.2, if the slant function θ becomes globally constant and using
θ = π

2 , for totally real submanifolds, we get required result.

6. Applications to Compact Warped Product Submanifolds in Complex Space Forms

Theorem 6.1. Let M = MT × f Mθ be a compact warped product pointwise semi-slant submanifold of complex space
form M̃(c). Then M is a Riemannian product if

||h||2 ≥
n1.n2.c

2
, (6.1)

where n1 and n2 are dimensions of MT is invariant and Mθ is proper pointwise slant submanifolds, respectively.

Proof. Let us consider that, the inequality holds in Theorem 5.2, we get

n1n2c
2

+ n2||∇ ln f ||2 − ||h||2 ≤ n2∆(ln f ). (6.2)

From the integration theory on manifolds, i.e., compact orient-able Riemannian manifold without boundary
on M, we obtain ∫

M

(
n1n2c

2
+ n2||∇ ln f ||2 − ||h||2

)
dV ≤ n2

∫
M

∆(ln f )dV = 0.
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If the following inequality holds

||h||2 ≥
n1n2c

2
.

Then ∫
M

(||∇ ln f ||2)dV ≤ 0.

Since integration always be positive for positive functions. Hence, we derive ||∇ ln f ||2 ≤ 0, but ||∇ ln f ||2 ≥ 0,
which implies that ∇ ln f = 0, i.e., f is a constant function on M. Thus M becomes simply Riemannian
product manifold.

Theorem 6.2. Let M = MT× f Mθ be a compact warped product proper pointwise semi-slant submanifold in a complex
space form M̃(c) such that MT is invariant submanifold of dimension n1 and Mθ is pointwise slant submanifold of
dimension n2 in M̃(c). Then M is simply a Riemannian product if and only if

n1∑
i=1

n2∑
j=1

||hν(ei, e j)||2 =
n1.n2.c

4
, (6.3)

where θ is a real value function define on T∗M is called a slant function and hν is a components of h in Γ(ν).

Proof. Suppose that the equality sign holds in (5.15), then we have

||h(D,D)||2 + ||h(Dθ,Dθ)||2 + 2||h(D,Dθ)||2 =
n1.n2.c

2
+ 2n2{||∇ ln f ||2 − ∆(ln f )}.

Following the equality case of the inequality in (5.15) implies from Theorem 5.2 (ii) that MT is totally
geodesic in M̃ and this means that h(ei, e j) = 0, for any 1 ≤ i, j ≤ 2d1. Also and Mθ is totally umbilical
submanifolds into M̃ and it can be written as h(e∗t , e

∗
s) = 1(e∗t , e

∗
s)H, for any 1 ≤ t, s ≤ 2d2. Since M is minimal

submanifold in M̃ by hypothesis, then its mean curvature vector H identically zero, i.e., H = 0. Hence
h(e∗t , e

∗
s) = 0, f or every 1 ≤ t, s ≤ 2d2 by minimality of MT.Thus above equation takes the new form

n1.n2.c
4

= n2∆(ln f ) + ||h(D,Dθ)||2 − n2||∇ ln f ||2.

Suppose that M is compact submanifold, then M is closed and bounded. Hence taking integration over the
volume element dV of M and from (2.21), we derive∫

M

(n1.n2.c
4

)
dV =

∫
M

(
||h(D,Dθ)||2 + n2||∇ ln f ||2

)
dV (6.4)

Let us assume that X = ei and Z = e j for 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2, respectively, then we have

h(ei, e j) =

n+n2∑
r=n+1

1(h(ei, e j), er)er +

2m∑
r=n+n2+1

1(h(ei, e j), er)er.

The first term in the right hand side of the above equation is FDθ-component and the second term is
ν-component. Taking summation over the vector fields on MT and Mθ and using adapted frame fields, we
get

n1∑
i=1

n2∑
j=1

1(h(ei, e j), h(ei, e j)) =
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= csc2 θ
d1∑

i=1

d2∑
j,k=1

1(h(ei, e∗j),Fe∗k)2 + csc2 θ sec2 θ
d1∑

i=1

d2∑
j,k=1

1(h(ei,Te∗j),Fe∗k)2

+ csc2 θ sec2 θ
d1∑

i=1

d2∑
j,k=1

1(h(ϕei, e∗j),FTe∗k)2 + csc2 θ sec2 θ
d1∑

i=1

d2∑
j,k=1

1(h(Jei, e∗j),FTe∗k)2

+ csc2 θ sec4 θ
d1∑

i=1

d2∑
j,k=1

1(h(Jei,Te∗j),FTe∗k)2 + csc2 θ sec2 θ
d1∑

i=1

d2∑
j,k=1

1(h(Jei,Te∗j),Fe∗k)2

+ csc2 θ
d1∑

i=1

d2∑
j,k=1

1(h(Jei, e∗j),Fe∗k)2 + csc2 θ sec4 θ
d1∑

i=1

d2∑
j,k=1

1(h(ei,Te∗j),FTe∗r)
2 +

n1∑
i=1

n2∑
j=1

2m∑
r=n+n2+1

1(h(ei, e j), er)2.

Then using Lemma 4.1, we derive

||h(D,Dθ)||2 = n2(csc2 θ + cot2 θ)||∇ ln f ||2 +

n1∑
i=1

n2∑
j=1

||hν(ei, e j)||2. (6.5)

Then from (6.4) and (6.5), it follow that

∫
M

 n1∑
i=1

n2∑
j=1

||hµ(ei, e j)||2 + 2n2 cot2 θ||∇ ln f ||2
 dV =

∫
M

(n1.n2c
4

)
dV. (6.6)

If (6.3) is satisfied, then (6.6) implies that f is constant function on proper pointwise semi-slant submanifold
M. Thus M is a Riemannian product of invariant and pointwise slant submanifolds MT and Mθ respectively.
Conversely, suppose that M is simply a Riemannian product then warping function f must be constant, i.e.,
∇ ln f = 0. Thus from (6.6) implies the equality (6.3). Its complete proof of the theorem.

We immediately obtain the following corollaries by using θ = π
2 , for totally real submanifold as:

Corollary 6.1. Let M = MT× f M⊥ be a compact CR-warped product submanifold of complex space form M̃(c). Then
M is a Riemannian product if

||h||2 ≥
n1.n2.c

2

where n1 and n2 are dimensions of MT and M⊥ respectively.

Corollary 6.2. Let M = MT × f M⊥ be a compact CR-warped product submanifold in a complex space form M̃(c)
such that MT is invariant submanifold of dimension n1 and M⊥ is totally real submanifold of dimension n2 into M̃(c).
Then M is simply a Riemannian product if and only if

n1∑
i=1

n2∑
j=1

||hν(ei, e j)||2 =
n1.n2.c

4
.

where hν is a components of h in Γ(ν).
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[36] M. Zlatanović, I. Hinterleiter and M. Najdanović, Geodesic mapping onto Kählerian spaces of the first kind, Czech. Math. J. 64, No. 4,

(2014), 1113-1122. Zblo6433717.


